A Delay-tolerant Proximal-Gradient Algorithm for Distributed Learning

Konstantin Mishchenko KAUST
Franck Iutzeler Univ. Grenoble Alpes
Jérôme Malick CNRS and Univ. Grenoble Alpes
Massih Amini Univ. Grenoble Alpes

ICML 2018
Global objective

\[
\min_{x \in \mathbb{R}^d} \frac{1}{m} \sum_{j=1}^{m} \ell_j(x) + g(x)
\]

- \(m\) examples
- individual losses \((\ell_j)\)
- empirical risk minimization
- regularizer \(g\)

Local data

\[
\min_{x \in \mathbb{R}^d} \sum_{i=1}^{M} \pi_i f_i(x) + g(x)
\]

- \(M\) data blocks
- stored locally
- local function \((f_i)\)
- \(f_i(x) = \frac{1}{|S_i|} \sum_{j \in S_i} \ell_j(x)\)
- proportion \(\pi_i = |S_i|/m\) at \(i\)

Problem: Large sum minimization
Optimization: Variance-reduced sto. gradient

v.s.

Mid-sized distributed optimization
this presentation
DISTRIBUTED OPTIMIZATION

ASYNCHRONISM

SCARSE COMMUNICATIONS

CONCLUSION
Problem: \[\min_x \sum_{i=1}^{M} \pi_i f_i(x) + g(x) \]

Direct extension of the prox. grad.:

Worker \(i \) update on local variable

\[
 x_i^{k+1/2} = x_i^k - \gamma \nabla f_i(x_i^k)
\]

for all \(i = 1, \ldots, M \)

Master gathering of the local variables

\[
\bar{x}^{k+1} = \sum_{i=1}^{M} \pi_i x_i^{k+1/2}
\]

Master performs a proximity operation

\[
x_1^{k+1} = \ldots = x_M^{k+1} = \text{prox}_{\gamma g} \left(\bar{x}^{k+1} \right)
\]

Implementation Algorithm

Master:

- Initialize \(\bar{x} = \bar{x}^0 \)
- While not converged do
 - When all workers have finished:
 - Receive \((x_i) \) from each of them
 - Broadcast \(\bar{x} \) to all agents
 - \(\bar{x} \leftarrow \sum_{i=1}^{M} \pi_i x_i \)
 - Broadcast \(\bar{x} \) to all agents
 - \(k \leftarrow k + 1 \)
- Interrupt all slaves
- Output \(x \)

Worker \(i \):

- Initialize \(x = x_i = \bar{x} \)
- While not interrupted by master do
 - Receive the most recent \(\bar{x} \)
 - \(z \leftarrow \text{prox}_{\gamma g} \left(\bar{x} \right) \)
 - \(x_i \leftarrow z - \gamma \nabla f_i(z) \)
 - Send \(x_i \) to the master

\[
f_i(x) = \frac{1}{|S_i|} \sum_{j \in S_i} \ell_j(x)
\]
Distributed Proximal Gradient

Master:
- Initialize \bar{x}
- **while not converged do**
 - **when all** workers have finished:
 - Receive (x_i) from each of them
 - $\bar{x} \leftarrow \sum_{i=1}^{M} \pi_i x_i$
 - Broadcast \bar{x} to all agents
 - $k \leftarrow k + 1$
- Interrupt all slaves
- **Output** x

Worker i:
- Initialize $x = x_i = \bar{x}$,
- **while not interrupted by master do**
 - Receive the most recent x
 - $z \leftarrow \text{prox}_{\gamma g}(\bar{x})$
 - $x_i \leftarrow z - \gamma \nabla f_i(z)$
 - Send x_i to the master

Define time k as the number of master updates

x^k is the value of variable x at time k

Theorem

Let each f_i be L-smooth and μ-strongly convex. Then, for $\gamma \in (0, 2/(\mu + L)]$,

$$
||x^k - x^*||^2 \leq (1 - \alpha)^k ||x^0 - x^*||^2
$$

where x^* is the unique minimizer of the $\min_x \sum_{i=1}^{M} \pi_i f_i(x) + g(x)$ and $\alpha = 2\gamma \mu L / (\mu + L) \in (0, 1]$.

Proof. It is exactly proximal gradient descent.
Two Limitations

Synchronism: Master waits for *all* workers at each time

<table>
<thead>
<tr>
<th>Agent 1</th>
<th>Agent 2</th>
<th>Agent 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>idle</td>
<td>idle</td>
<td>idle</td>
</tr>
</tbody>
</table>

image: W. Yin

Communications: Sending may be more costly than computing a gradient

Local updates may be:
- *late* (or not, depending on state),
- *fast* (or not, depending on $|S_i|$),
- *costly* (often).

We provide an efficient Distributed Proximal Gradient algorithm:

- **Asynchronous** delay-tolerant communications
- **Scarse** comp./comm. tradeoff
DISTRIBUTED OPTIMIZATION

ASYNCHRONISM

SCARSE COMMUNICATIONS

CONCLUSION
Asynchronous Master Slave Framework

Master

\[x^k = x^{k-1} + \Delta \]

\[\Delta (i = i(k)) x^k \]

Worker 1

(\(\nabla f_1, \text{prox}_g \))

Worker 1

(\(\nabla f_i, \text{prox}_g \))

Worker M

(\(\nabla f_M, \text{prox}_g \))

\(i = i(k) \) viewpoint

\[i \quad i \quad i \quad k - D_i^k \quad k = k - d_i^k \]

\(j \neq i(k) \) viewpoint

\[j \quad j \quad j \quad k - D_j^k \quad k - d_j^k \quad k \]

- **iteration** = receive from a worker + master update + send back
- **time** \(k \) = number of iterations
- **delay** \(d_i^k \) = time since last exchange with \(i \)
 \[d_i^k = 0 \text{ iff } i \text{ updates at time } k, \quad d_i^k = d_i^{k-1} + 1 \text{ elsewhere} \]
- **second delay** \(D_i^k \) = time since penultimate exchange with \(i \)

Algorithm = global communication scheme + local optimization method

what is \(\bar{x} \)

what is \(\bigcirc_i \)
DAve communication scheme
master variable $\bar{x}^k = \text{combination of workers last contributions} (x_i^{k-d_i^k})_i$

one update/time = one worker contribution but all workers are always involved at the master

$$\bar{x}^k = x^{k-1} + \Delta \text{ with } \Delta = \pi_i(x_i^k - x_i^{k-D_i^k}) \text{ for } i = i(k)$$

i.e. $$\bar{x}^k = \sum_{i=1}^{M} \pi_i x_i^{k-d_i^k} = \sum_{i=1}^{M} \pi_i \bigoplus_i (x_i^{k-D_i^k})$$

PG proximal gradient optimization method
one step of proximal gradient on regularizer g and local loss $f_i = \frac{1}{|S_i|} \sum_{j \in S_i} \ell_j$

\[z \leftarrow \text{prox}(\bar{x}) \]
\[x_i \leftarrow z - \gamma \nabla f_i(z) \]
\[\Delta \leftarrow \pi_i (x_i - x_i^{\text{prev}}) \]
\[x_i^{\text{prev}} \leftarrow x_i \]
DAve-PG

Master:

Initialize \bar{x}

while not converged do

when a worker finishes:

Receive adjustment Δ from it

$\bar{x} \leftarrow \bar{x} + \Delta$

Send \bar{x} to the agent in return

$k \leftarrow k + 1$

Interrupt all slaves

Output $x = \text{prox}_{\gamma g}(\bar{x})$

Worker i:

Initialize $x = x_i = \bar{x}$,

while not interrupted by master do

Receive the most recent \bar{x}

$z \leftarrow \text{prox}_{\gamma g}(\bar{x})$

$x_i \leftarrow z - \gamma \nabla f_i(z)$

$\Delta \leftarrow \pi_i \left(x_i - x_i^{\text{prev}} \right)$

$x_i^{\text{prev}} \leftarrow x_i$

Send adjustment Δ to master

$f_i(x) = \frac{1}{|S_i|} \sum_{j \in S_i} \ell_j(x)$

In practice:

- MPI blocking Send and Receive
- No computation/stORAGE at the master
- $x = \text{prox}_{\gamma g}(\bar{x})$ is the converging variable
Comparison with other combinations

<table>
<thead>
<tr>
<th>Combining:</th>
<th>DAve-PG iterates</th>
<th>PIAG gradients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update x^k:</td>
<td>$\text{prox}{\gamma g} \left(\sum{i=1}^{M} \pi_i x^k - D_i^k - \gamma \sum_{i=1}^{M} \pi_i \nabla f_i(x^k - D_i^k) \right)$</td>
<td>$\text{prox}{\gamma g} \left(x^{k-1} - \gamma \sum{i=1}^{M} \pi_i \nabla f_i(x^{k-D_i^k}) \right)$</td>
</tr>
</tbody>
</table>

- Combining iterates is more stable than combining gradients
- Example: 2D quadratic functions on 5 worker
 - but one worker 10x slower than the others
 - Stepsize γ of PIAG is 10x smaller due to delays
 - the one for DAve-PG stays the same
 - DAve-PG is less chaotic and faster than PIAG

Revisiting the clock:

- **epoch sequence** \((k_m)\) = recursively defined by \(k_0 = 0\) and

\[k_{m+1} = \min\{k : \text{each worker made at least 2 updates on the interval } [k_m, k]\} \]
\[= \min\{k : k - D_i^k \geq k_m \text{ for all } i = 1, .., M\} \]

- **epoch time** \(m\) = number of epochs

Intuition: \(k_{m+1}\) is the first moment when \(\bar{x}^k\) no longer depends directly on information prior to \(k_m\).

\[\bar{x}^k = \sum_{i=1}^{M} \pi_i x^{k-D_i^k} - \gamma \sum_{i=1}^{M} \pi_i \nabla f_i(x^{k-D_i^k}) \]

Theorem

Let each \(f_i\) be \(L\)-smooth and \(\mu\)-strongly convex. Then, for \(\gamma \in (0, 2/(\mu + L)]\),

\[\forall k \geq k_m, \quad \|x^k - x^*\|^2 \leq (1 - \alpha)^m \|x^0 - x^*\|^2 \]

where \(x^*\) is the unique minimizer of the \(\min_x \sum_{i=1}^{M} \pi_i f_i(x) + g(x)\) and \(\alpha = 2\gamma L/(\mu + L)\).

Exact same result as the synchronous case but over the **epoch time** \(m\), not \(k\).
Logistic regression w/ elastic net $\frac{1}{m} \sum_{j=1}^{m} \log(1 + \exp(-y_j z_j^T x)) + \lambda_1 ||x||_1 + \frac{\lambda_2}{2} ||x||_2^2$

- 100 machines (1 CPU, 1 GB) in a cluster
- 10% of the data in machine one, even on the rest
Distributed Optimization

Asynchronism

Scarse Communications

Conclusion
To exchange less, a solution is to compute more.

DAve-RPG

Master:
- Initialize \bar{x}
- **while** not converged **do**
 - **when** a worker finishes:
 - Receive adjustment Δ from it
 - $\bar{x} \leftarrow \bar{x} + \Delta$
 - Send \bar{x} to the agent in return
 - $k \leftarrow k + 1$
- Interrupt all slaves
- **Output** $x = \text{prox}_\gamma g(\bar{x})$

Worker i:
- Initialize $x = x_i = \bar{x}$,
- **while** not interrupted by master **do**
 - Receive the most recent \bar{x}
 - Select a number of repetitions p
 - Initialize $\Delta = 0$
 - **for** $q = 1$ to p **do**
 - $z \leftarrow \text{prox}_\gamma g(\bar{x} + \Delta)$
 - $x_i \leftarrow z - \gamma \nabla f_i(z)$
 - $\Delta \leftarrow \Delta + \pi_i(x_i - x_i^{\text{prev}})$
 - $x_i \leftarrow x_i^{\text{prev}}$
 - Send the adjustment Δ to the master

$f_i(x) = \frac{1}{|S_i|} \sum_{j \in S_i} \ell_j(x)$

Difference with before:
- **at each** local step, the worker performs p proximal gradient steps
- controlled rate improvement by

$$\max_{\text{repetitions } p \text{ in the epoch}} 1 - \frac{\gamma \mu}{\sum_{q=1}^{p-1} (1 - \gamma \mu)^{q-1} \min_i \pi_i^q}$$

but the epochs become longer
- Logistic regression w/ elastic net: \(\frac{1}{m} \sum_{j=1}^{m} \log(1 + \exp(-y_j z_j^T x)) + \lambda_1 \|x\|_1 + \frac{\lambda_2}{2} \|x\|_2^2 \)

- 100 machines (1 CPU, 1 GB) in a cluster

- 10% of the data in machine one, even on the rest

- there is a compromise to find ...

- ... but \(p \) can be changed without restrictions
DISTRIBUTED OPTIMIZATION

ASYNCHRONISM

SCARSE COMMUNICATIONS

■ CONCLUSION
Distributed Delay-Tolerant Proximal Gradient Algorithm:

- Simple to implement
- Adaptable to performance/computation compromise
- General, adaptable epoch analysis

Poster # 155

Future works:

- Sparse communications
- Using identification to control the communications

Thank you! – Franck IUTZELER http://www.iutzeler.org