Wasserstein Distributionally Robust Optimization for Machine Learning

Advisors: Franck Iutzeler (Univ. Grenoble Alpes) & Jérome Malick (CNRS)

Practical informations:

e Host: the applied maths laboratory (LJK) of Univ. Grenoble Alpes, in a team of 10 permanents researchers
and 13 Ph.D. students (including 4 former MVA students)

Located in the campus of Grenoble, with mountains at your doorstep
Starting date: March/April 2023 — potential Ph.D. position in October 2023
Strong background in mathematics required; proficiency in Python or Julia appreciated

Contact: franck.iutzelerQuniv-grenoble-alpes.fr or jerome.malick@univ-grenoble-alpes.fr
Key-words: optimization, learning, optimal transport, variational analysis, stochastic algorithms

Context: Taking robust decisions is fundamental in many applications and is gaining importance with the
rise of autonomous artificial intelligence systems (see eg. how to cheat neural networks and self-driving cars [1]).
Indeed, real situations may differ from training data (due to attacks, lack of data, distributional shifts, or data
biais). We would then seek for distributionally robust models that can perform well over all distributions that
are close to the training data: denoting by ¢(6, £) the error of a model parametrized by 6 € R for a data point
¢ € Z C R", we can learn a distributionally robust model by solving the min-max problem

min  sup Eeq[l(0,¢)] (1)
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that features a supremum over the measures in a neighborhood U of the empirical distribution stemming from
the training data (&;)”,. For its nice mathematical properties, Wasserstein distance is popular to define this
neighborhood [2,3]: Q € U if and only if W(L 3™, 6.,,Q) < p. Note that p = 0 gives the standard empirical
risk minimization problem. However, the resulting Wasserstein distributionally robust optimization problem (1)
is difficult to solve, in general, due to the constrained supremum over the infinite dimensional space of measures.
Inspired by recent developments in optimal transport [4], we recently studied in [5] the entropic regularization
of these problems, which naturally amounts to replacing the supremum in (1) by a log-sum-exp approximation.

Topic: In this context, we will consider the theoretical or practical aspects of Wasserstein distributionally
robust optimization for machine learning and decision-making. A major question is the design, analysis and
implementation of numerical optimization methods for solving entropic regularizations of (1). More theoret-
ically, we will investigate generalization properties and behaviour of worst-case distributions. Finally, we are
also interested in the application of these tools to improve fairness; see [6] in the context of federated learning.
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Figure 1: Illustration of distr. robust optimization from [6]: improved prediction of a robust model (A-FL) over
the standard one (FedAvg) in a federated setting, on both non-conforming users and data-poor users.
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