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Context: Taking robust decisions is fundamental in many applications and is gaining importance with the
rise of autonomous artificial intelligence systems (see eg. how to cheat neural networks and self-driving cars [1]).
Indeed, real situations may differ from training data (due to attacks, lack of data, distributional shifts, or data
biais). We would then seek for distributionally robust models that can perform well over all distributions that
are close to the training data: denoting by ℓ(θ, ξ) the error of a model parametrized by θ ∈ Rd for a data point
ξ ∈ Ξ ⊂ Rn, we can learn a distributionally robust model by solving the min-max problem

min
θ∈Rd

sup
Q∈U

Eξ∼Q[ℓ(θ, ξ)] (1)

that features a supremum over the measures in a neighborhood U of the empirical distribution stemming from
the training data (ξi)

m
i=1. For its nice mathematical properties, Wasserstein distance is popular to define this

neighborhood [2,3]: Q ∈ U if and only if W ( 1
m

∑m
i=1 δξi ,Q) ≤ ρ. Note that ρ = 0 gives the standard empirical

risk minimization problem. However, the resulting Wasserstein distributionally robust optimization problem (1)
is difficult to solve, in general, due to the constrained supremum over the infinite dimensional space of measures.
Inspired by recent developments in optimal transport [4], we recently studied in [5] the entropic regularization
of these problems, which naturally amounts to replacing the supremum in (1) by a log-sum-exp approximation.

Topic: In this context, we will consider the theoretical or practical aspects of Wasserstein distributionally
robust optimization for machine learning and decision-making. A major question is the design, analysis and
implementation of numerical optimization methods for solving entropic regularizations of (1). More theoret-
ically, we will investigate generalization properties and behaviour of worst-case distributions. Finally, we are
also interested in the application of these tools to improve fairness; see [6] in the context of federated learning.

Table 1: 90th percentile of the distribution of
test misclassification errors (in %).

EMNIST Sent140
Linear ConvNet Linear RNN

FedAvg 49.660.67 28.461.07 46.830.54 49.673.95

FedProx 49.150.74 27.011.86 46.830.54 49.864.07

q-FFL 49.900.58 28.020.80 46.390.40 48.664.68

Tilted-ERM 48.590.62 25.461.49 46.690.49 46.543.27

AFL 51.620.28 45.081.00 47.520.32 57.781.19

�-FL, ↵ = 0.8 49.100.24 26.231.15 46.440.38 46.464.39

�-FL, ↵ = 0.5 48.440.38 23.690.94 46.640.41 50.488.24

�-FL, ↵ = 0.1 50.340.95 25.462.77 51.391.07 86.4510.95

Table 2: Mean of the distribution of test mis-
classification errors (in %).

EMNIST Sent140
Linear ConvNet Linear RNN

FedAvg 34.380.38 16.640.50 34.750.31 30.160.44

FedProx 33.820.30 16.020.54 34.740.31 30.200.48

q-FFL 34.340.33 16.590.30 34.480.06 29.960.56

Tilted-ERM 34.020.30 15.680.38 34.700.31 30.040.25

AFL 39.330.27 33.010.37 35.980.08 37.740.65

�-FL, ↵ = 0.8 34.490.26 16.090.40 34.410.22 30.310.33

�-FL, ↵ = 0.5 35.020.20 15.490.30 35.290.25 33.592.44

�-FL, ↵ = 0.1 38.330.48 16.371.03 37.790.89 51.9811.81

ERM. We note that q-FFL marginally outperforms �-FL on Sent140-Linear, but the difference 0.05%116

is much smaller than the standard deviation across runs.117

�-FL is competitive at multiple values of ↵. For EMNIST-ConvNet, �-FL with ↵ 2 {0.5, 0.8} is118

better in 90th percentile error than all other methods we compare to, and �-FL with ↵ = 0.1 is tied119

with Tilted-ERM, the next best method. We also empirically confirm that �-FL interpolates between120

FedAvg (↵ ! 1) and AFL (↵ ! 0).121

Yet, �-FL is competitive in terms of average error. Perhaps surprisingly, �-FL gets the best test122

error performance on EMNIST-ConvNet and Sent140-Linear. This suggests that the average test123

distribution is shifted relative to the average training distribution p↵. In the other cases, we find that124

the reduction in mean error is small relative to the gains in the 90th percentile error.125

Minimizing superquantile loss over all clients performs better than minimizing worst error126

over all clients. Specifically, AFL which aims to minimize the worst error among all clients, as well127

as other objectives which approximate it (�-FL with ↵ ! 0, q-FFL with q ! 1) tend to achieve128

poor performance. �-FL offers a more nuanced and more effective approach via the constraint set129

⇡i  1/(n↵) than the straight pessimistic approach minimizing the worst error among all clients.130

�-FL yields improved prediction on non-conforming clients. This can be observed from the131

histogram of �-FL in Figure 1, which exhibits thinner tails than FedAvg or Tilted-ERM. We see that132

the ERM objective of FedAvg sacrifices performance on the nonconforming clients. Tilted-ERM133

does improve over FedAvg in this regard, but �-FL has a thinner right tail than Tilted-ERM, showing134

better handling of heterogeneity.135

�-FL yields improved prediction on data-poor clients. We observe in Figure 1 that Tilted-ERM136

and q-FFL mainly improve the performance on data-rich clients, that is clients with lots of data. On137

the other hand, �-FL gives a greater reduction in misclassification error on data-poor clients, that is138

clients with little data (< 200 examples per client).139
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Figure 1: Per-client test misclassification error on EMNIST. Left: histogram of per-client errors. Right two:
Scaltter plot of dataset size versus test error.
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Figure 1: Illustration of distr. robust optimization from [6]: improved prediction of a robust model (∆-FL) over
the standard one (FedAvg) in a federated setting, on both non-conforming users and data-poor users.
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