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Harnessing the Structure
of some Optimization Problems

Hieronymus Bosch

The Garden of Earthly Delights, open (1490-1500)



Mathematical Optimization in Data Science

⊲ In Data Science, one seeks a model that fits the observed data parametrized model Px , data {aj, bj }mj=1, loss ℓ

while ensuring some structure on the parameter/model for generalization and stability regularizer Ω

central thread of this presentation

Regularized
Emprirical Risk Minimization

Computations can be split – Part B

min
x ∈ℝn

1
m

m∑
i=1

ℓ (bi, Px (ai))︸                  ︷︷                  ︸
=:f (x)

minimizes the risk

+ _ Ω(x)︸  ︷︷  ︸
=:g (x)

regularizes the solutions

Brings valuable structure – Part A
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Harnessing the Structure
of some Optimization Problems

A – Structure Identification in Data Science



Structure & Identification for the lasso

Quadratic risk
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⊲ Non-differentiability patterns of regularizers

� can trap the problems’ solutions small changes in the data may not change the sparsity structure

� attract the iterates of some optimization methods but not all
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Optimization for the lasso

Quadratic risk

1
m

m∑
j=1

(
〈x, aj〉 − bj

) 2
smooth function f

but costly to evaluate

+

ℓ1 norm

_‖x ‖1

nonsmooth function g
but simple to minimize

 

lasso

1
m

m∑
j=1

(
〈x, aj〉 − bj

) 2
+ _‖x ‖1

composite function f + g

To minimize f + g

Proximal gradient ISTA

⊲ Iteratively approximate f by a quadratic smoothness

⊲ Use the proximity operator of g prox simple

xk+1 = argminu

{
f (xk) + 〈∇f (xk), u − xk 〉 +

1
2W

‖u − xk ‖2 + g (x)
}

= argminu

{
g (u) +

1
2W



u −
(
xk − W∇f (xk)

) 

2}

= prox
Wg

(
xk − W∇f (xk)

)

×
xk

xk −W∇f (xk )

f (xk ) + 〈∇f (xk ), xk − u〉 + 1
2W ‖u − xk ‖

2

f

� Tibshirani: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (1996)
� Bach, Jenatton, Mairal, Obozinski: Optimization with sparsity-inducing penalties. Foundation and Trends in Machine Learning (2012)
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u −
(
xk − W∇f (xk)

) 

2}
= prox

Wg

(
xk − W∇f (xk)

)

prox
Wg (y) := argminu

{
g (u) +

1
2W

‖u − y ‖2
}

for the ℓ1 norm: soft-thresholding per coordinate

prox[i ]
W_‖·‖1 (y) =


y [i ] + W_ if y [i ] < −W_

0 if −W_ ≤ y [i ] ≤ W_

y [i ] − W_ if y [i ] > W_

� Tibshirani: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (1996)
� Bach, Jenatton, Mairal, Obozinski: Optimization with sparsity-inducing penalties. Foundation and Trends in Machine Learning (2012)
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Proximal Identification for the lasso

Solving the lasso problem min
x∈ℝn

f (x )︷                      ︸︸                      ︷
1
m

m∑
j=1

(
〈x, aj 〉 − bj

) 2
+

g (x )︷ ︸︸ ︷
_ ‖x ‖1

by proximal gradient xk+1 = prox
Wg

(
xk − W∇f (xk)

)
prox

Wg (y) := argminu

{
g (u) +

1
2W

‖u − y ‖2
}

for the ℓ1 norm: soft-thresholding per coordinate

prox[i ]
W_‖·‖1 (y) =


y [i ] + W_ if y [i ] < −W_

0 if −W_ ≤ y [i ] ≤ W_

y [i ] − W_ if y [i ] > W_

The sequence (xk) converges to a solution x★.

If x★ ∈ M and a Qualifying Condition holds
y is in the relative interior of the green zone

⇔ ∇ [i ]f (x★) ∈ (−_, _)
⇔ 1

m

∑m
j=1 a

[i ]
j ( 〈x★, aj 〉 − bj) ∈ (−_, _)

Then, the iterates belong to M in finite time.

M

−W_ W_

Zone mapped to
M = {x ∈ ℝn : xi = 0}
by prox

W_ ‖ · ‖1

� Liang, Fadili, Peyré: Activity Identification and Local Linear Convergence of Forward–Backward-type Methods. SIAM Journal on Optimization (2017)
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Proximal Identification Theory

Finite-time identification holds for a proximal method as long as

⊲ the iterates are well-defined and converge yk → y

⊲ g is nonsmooth across the smooth structure manifold

but smooth along it

⊲ some Qualifying Condition (QC) holds

{
yk = ...

xk+1 = prox
Wg (yk)

∃ Y > 0 such that for all y ∈ B(y, Y), proxg (y) ∈ M (QC)

M

×
y

Y

prox
Wg

•
yk

•
•

• xk+1
••

⊲ Well-grounded theory in nonsmooth analysis partial smoothness, nonconvex proximal methods

� Lewis: Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization (2002)
� Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis (2004)
� Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems. Optimization (2006)
� Vaiter, Peyré, Fadili: Model consistency of partly smooth regularizers. IEEE Trans. on Information Theory (2017)
� Fadili, Malick, Peyré: Sensitivity analysis for mirror-stratifiable convex functions. SIAM Journal on Optimization (2018)
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Proximal Identification in Data Science

⊲ In Data Science problems, the regularizer is often chosen to have

� an explicit proximity operator proximal methods are possible

� which is also a structure oracle the structure of the output is known

ℓ1 norm sparsity

nuclear norm low-rank
soft thresholding the singular values

1D total variation change sparsity
dynamic programming

Finite time
Identification

and
Current structure
proximity operator

but we never know if the
structure is final

I, Malick: Nonsmoothness in Machine Learning: specific structure, proximal identification, and applications,
Set-Valued and Variational Analysis, 2020.

⊲ Does faster minimization means faster identification?

⊲ Can we leverage the current structure numerically?
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Harnessing the Structure
of some Optimization Problems

A – Structure Identification in Data Science

⊲ Does faster minimization means faster identification?



Interplay between Acceleration and Identification

min
x ∈ℝn

‖Ax − b‖2 + _ |x ‖1
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Accel. Proximal Gradient

Accelerated proximal gradient (FISTA){
xk+1 = prox

Wg

(
yk − W∇f (yk)

)
yk+1 = xk+1 + Uk+1 (xk+1 − xk)

⊲ faster in practice and worst case rates

X exploratory behavior

% overshooting

% misfit to curved structure
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Structure-adapted acceleration

Idea Pre-define a collection C = {M1, . . . ,Mp} of sought structures eg. sparsity patterns, rank, constraint activity

and condition the acceleration to a structure test


yk =

{
xk if Tk = 0
xk + Uk (xk − xk−1) otherwise

xk+1 = prox
Wg (yk − W∇f (yk))

T1: counter overshooting

T1k = 0 (no acceleration) if

{
xk ∈ M

xk−1 ∉ M for some M ∈ C

Theorem The accelerated rate O(1/k2) is maintained if the qualification condition (QC) holds.

Bareilles & I: On the Interplay between Acceleration and Identification for the Proximal Gradient algorithm,
Computational Optimization and Applications, 2020
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Effect in practice

min
x ∈ℝn
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Accel. Proximal Gradient

T1 Conditioning acceleration to structure test T1

⊲ no overshooting

⊲ similar suboptimality

⊲ structure is more stable
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Why is structure information important?

Low-rank matrix regression
Y = AS + E with rank(S) = 3 min

X ∈ℝ20×20
‖AX − Y ‖2F + _‖X ‖∗

⊲ Structure (plain line), recovered percentage
0% rank(xk) = 20
100% rank(xk) = rank(S) = 3

⊲ Suboptimality (dashed)
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⊲ Does faster minimization means faster identification ?

� Not always, but a compromised can be reached by structure-aware acceleration

� Valuable structure can be completely lost even if the suboptimality is low 11/26
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⊲ Does faster minimization means faster identification ?

� Not always, but a compromised can be reached by structure-aware acceleration

� Valuable structure can be completely lost even if the suboptimality is low 11/26



Harnessing the Structure
of some Optimization Problems

A – Structure Identification in Data Science

⊲ Can we leverage the current structure numerically?



Leveraging the structure numerically

Observe Sk =
⋂

i:xk ∈Mi

(bk,i

Mi

+ (1 − bk,i)ℝn) for bk,i ∼ B(p) additional randomness

and compute Pk = � projSk
and Qk = (Pk)−1/2 the reference point xℓ only changes if possible

yk =

projSk
(Qk

(

xk − W∇f (xk)

)
) + proj⊥Sk

(yk−1)

gradient step most of the computational cost

xk+1 = prox
Wg (

Q−1
k

yk) proximity operator gives structure

⊲ Proximal gradient identifies structure but does not use it
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Leveraging the structure numerically

Observe Sk =
⋂

i:xk ∈Mi

(bk,i

Mi

+ (1 − bk,i)ℝn) for bk,i ∼ B(p) additional randomness

and compute Pk = � projSk
and Qk = (Pk)−1/2 the reference point xℓ only changes if possible

yk = projSk
(

Qk
(

xk − W∇f (xk)

)

) + proj⊥Sk
(yk−1) gradient step most of the computational cost

xk+1 = prox
Wg (

Q−1
k

yk) proximity operator gives structure

Idea Project using the output of prox
Wg and the pre-defined collection C = {M1, . . . ,Mp}

⊲ For sparsity patterns: Mi = {x ∈ ℝn : x [i ] = 0} and Sk = {x ∈ ℝn : supp(x) = supp(xk)}

⊲ Direct use of the structure fails No correctness guarantee, contrary to screening methods

� Ndiaye, Fercoq, Gramfort, Salmon: Gap-safe screening rules for sparsity enforcing penalties. Journal of Machine Learning Research (2017)
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Leveraging the structure numerically

Observe Sk =
⋂

i:xk ∈Mi
(bk,iMi + (1 − bk,i)ℝn) for bk,i ∼ B(p) additional randomness

and compute Pk = � projSk
and Qk = (Pk)−1/2 the reference point xℓ only changes if possible

yk = projSk
(

Qk
(

xk − W∇f (xk)

)

) + proj⊥Sk
(yk−1) gradient step most of the computational cost

xk+1 = prox
Wg (

Q−1
k

yk) proximity operator gives structure

Idea Project on a random space comprising the current structure so that the whole space is spanned

⊲ For sparsity patterns: sort of “coordinate descent” on the support + random ones

⊲ Mixing randomized coordinate descent with identification induces a biais convergence issues

� Friedman, Hastie, Tibshirani: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software (2010)
� Massias, Gramfort, Salmon: Celer: a Fast Solver for the Lasso with Dual Extrapolation. ICML (2018)
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Leveraging the structure numerically

Observe Sk =
⋂

i:xk ∈Mi
(bk,iMi + (1 − bk,i)ℝn) for bk,i ∼ B(p)

additional randomness

and compute Pk = � projSk
and Qk = (Pk)−1/2

the reference point xℓ only changes if possible

yk = projSk
(Qk

(
xk − W∇f (xk)

)
) + proj⊥Sk

(yk−1) gradient step most of the computational cost

xk+1 = prox
Wg (Q

−1
k yk) proximity operator gives structure

⊲ We restrict ourselves to affine subspaces ℓ1/ℓ2-group lasso, 1D TV-fused lasso, g may not be separable

⊲ Unbiasing with Qk works after identification but not before which prevents identification...
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Leveraging the structure numerically

Observe Sk =
⋂

i:xℓ ∈Mi
(bk,iMi + (1 − bk,i)ℝn) for bk,i ∼ B(p)

additional randomness

and compute Pk = � projSk
and Qk = (Pk)−1/2 the reference point xℓ only changes if possible

yk = projSk
(Qk

(
xk − W∇f (xk)

)
) + proj⊥Sk

(yk−1) gradient step most of the computational cost

xk+1 = prox
Wg (Q

−1
k yk) proximity operator gives structure

⊲ Structure adaptation can be performed only at some iterations

⊲ The amount of change ‖Qk−1Q−1
k ‖ and harshness of the sparsification _min(Qk) has to be tampered
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Convergence result for strongly convex problems

Theorem There is an explicit adaptation strategy such that the iterates of the previous method satisfy

� ‖xk − x★‖2 = O
( (

1 − _
W`L
` + L

) ak )
where ak is the number of adaptations performed before k and _ = infk _min(� projSk

).
Furthermore, if the qualifying constraint (QC) holds, finite-time identification happens and the rate improves

‖xk − x★‖2 = Oℙ

( (
1 − 2_min(� projS★)

W`L
` + L

) k)
.

Example for sparsity patterns: We sample s coordinates at random outside of the support.
If k = kℓ−1 is an adaptation time, the current support can be used after

cℓ =

⌈
log

(
‖QℓQ−1

ℓ−1‖22
)
+ log(1/(1 − 2W`L/(n(` + L))))

log(1/(1 − 2sW`L/(null(xℓ−1) (` + L))))

⌉
iterations

Grishchenko, I, Malick: Proximal Gradient Methods with Adaptive Subspace Sampling,
Mathematics of Operations Research, 2021
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Numerical illustration

logistic regression with 1D total
variation regularization

min
x ∈ℝn

1
m

m∑
j=1

log
(
1 + exp

(
−bja>j x

) )
+
_2
2
‖x ‖22 + _TV(x)

⊲ n = 123
⊲ the solutions has 13 jumps
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⊲ Can we leverage the current structure numerically ?

� For coordinate descent methods and with affine structures, the sampling strategy can be adapted to
the uncovered structure
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Harnessing the Structure
of some Optimization Problems

B – Distributed Structure & Asynchrony



Distributed Structure & Asynchrony

Computations can be split – Part B

min
x ∈ℝn

1
m

m∑
j=1

ℓ (bj, Px (aj)) + _ Ω(x)  min
x ∈ℝn

1
M

M∑
i=1

f i (x) + g (x)

M workers + Coordinator

Local data/loss

f i (x) =
M
m

∑
j∈Di

ℓ (bj, Px (aj))

Common regularizer

g (x) =
_

M
Ω (x)

xk+1 = prox
Wg

(
1
M

∑M
i=1 u

i
k

)Master

u1k = xk − W∇f 1 (xk)
Worker 1

… uik = xk − W∇f i (xk)

Worker i
… uMk = xk − W∇f M (xk)

Worker M

u1 x ui x uM x

⊲ Distributed Proximal Gradient leads to communication bottlenecks

⊲ We can implement asynchronous send/receive with the coordinator
using the MPI standard in Python/C/C++, or the Channel objects in Julia along with the Distributed library
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Asynchronous Proximal Gradient

x = prox
Wg

(
1
M

∑M
i=1 u

i
)Master

u1 = x − W∇f 1 (x)

Worker 1
… ui = x − W∇f i (x)

Worker i
… uM = x − W∇f M (x)

Worker M

update ui receive xi = i(k)

⊲ Proximal gradient with asynchronous communications… with no further assumptions on the system

⊲ … that can be further sparsified

using identification for ℓ1 regularization

Idea Introduction of an epoch sequence: kℓ+1 = min{k : each machine made at least 2 updates in [kℓ , k]}

Showing that maxk∈[kℓ ,kℓ+1)


xk − x★



2 ≤ (1 − V)2maxk′∈[kℓ−1,kℓ )


xk′ − x★



2
Mishchenko, I, Malick, Amini: A delay-tolerant proximal-gradient algorithm for distributed learning, ICML, 2018
—, —, —: A Distributed Flexible Delay-tolerant Proximal Gradient Algorithm, SIAM Journal on Optimization, 2020

� Bertsekas, Tsitsiklis. Parallel and distributed computation: numerical methods. (2015)
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Asynchronous Proximal Gradient

x = prox
Wg

(
1
M

∑M
i=1 u

i
)Master

u1 = x − W∇f 1 (x)

Worker 1
… ui = x − W∇f i (x)

Worker i
… uM = x − W∇f M (x)

Worker M

update ui receive xi = i(k)Adaptive Compression Automatic Compression

⊲ Proximal gradient with asynchronous communications… with no further assumptions on the system

⊲ … that can be further sparsified using identification for ℓ1 regularization

Idea Coordinate descent as presented before only works for well-conditioned problems due to asynchronicity

Iterative reconditionning à la Catalyst

Grishchenko, I, Malick, Amini: Distributed Learning with Sparse Communications by Identification,
SIAM Journal on Mathematics of Data Science, 2021

� Lin, Mairal, Harchaoui: Catalyst acceleration for first-order convex optimization: from theory to practice. Journal of Machine Learning Research (2018)
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Two Current Directions & Perspectives

Pierre Soulages

Peinture 222 x 314 cm, 24 février 2008



Two Current Directions & Perspectives

U – Structure Identification Cont’



Identification of Smooth Manifolds

min
x ∈ℝn

F (x) =
risk
f (x)
smooth

+
regularization

g (x)
nonsmooth

{
yk = xk − W∇f (xk)

xk+1 = prox
Wg (yk)

Provided that:

⊲ a Qualifying Condition holds

around a critical limit point x ∈ M

⊲ g is nonsmooth across the manifold M

but smooth along it

After some finite time:

⊲ the proximal gradient map x ↦→ prox
Wg (x − W∇f (x))

is M-valued and Lipschitz-continuous

⊲ F = f + g is smooth locally on M

M

×
x − W∇f (x)

prox
Wg

×
x

•
yk

•
•

• xk+1
••

� Poliquin and Rockafellar: Prox-regular functions in variational analysis. Transactions of the American Mathematical Society (1996)
� Lewis: Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization (2002)
� Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis (2004)
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Optimization on Smooth Manifolds

min
x ∈ℝn

F (x) =
risk
f (x)
smooth

+
regularization

g (x)
nonsmooth xk+1 = RiemannianGradientM (xk)

Since after some time:

⊲ xk belongs to M

⊲ F = f + g is smooth locally on M
Riemannian optimization steps can be performed:

⊲ Tractable for many regularizers
linear spaces (sparsity), fixed rank, etc.

⊲ 1st and 2nd order methods can be implemented
Toolbox ManOpt in Matlab, Python, Julia

M
•xkTxkM

xk − WmF (xk)

×

xk − WgradF (xk)

•
xk+1 = Rxk (−WgradF (xk))

⊲ This is useful only if we are on the “right” manifold and we never know that

� Boumal, Mishra, Absil, Sepulchre: Manopt, a Matlab toolbox for optimization on manifolds. The Journal of Machine Learning Research (2014)
� Boumal: An introduction to optimization on smooth manifolds (2020)
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Newton acceleration

Idea Alternate proximal gradient steps and Riemannian Newton steps


xk+1 = prox

Wg (uk − W∇f (uk)) identifies the current structure

Observe Mk+1 3 xk+1

uk+1 = RiemannianNewtonMk+1 (xk+1) updates on the corresponding manifold

Theorem Provided that the minimizers of the function are qualified, the method converges quadratically.

Bareilles, I, Malick: Newton acceleration on manifolds identified by proximal-gradient methods, ArXiv, 2020

Perspective Providing “structure stability” guarantees for statistical models eg. by estimating the radius of the

qualification, tuning the regularization by bi-level programming. This motivates high-accuracy objectives for nonsmooth solvers

� Lemaréchal, Oustry, Sagastizábal: The U-Lagrangian of a convex function. Trans. of the AMS (2000)
� Mifflin, Sagastizábal: A VU-algorithm for convex minimization. Mathematical programming (2005)
� Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems. Optimization (2006)
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Illustration on trace norm regression

10 × 12 matrices
rank of solution: 6
 optimal dim.: 96 min

X ∈ℝ20×20
‖AX − Y ‖2F + _‖X ‖∗

Proximal Gradient
Accel. Proximal Gradient

Alt. Newton
Alt. Truncated Newton

0 2 4 6 810−18

10−14

10−10
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10−2

time (s)

F
(x

k)
−
F
(x

★
)

100 101 102 103 104 105
95

100

105

110

115

120

iterations

di
m
(M

k)
Perspective Understanding the relation between structure identification and statistical simplicity
eg. the links between qualification and RIP-like properties 20/26



Another interesting structure: composition of a smooth map and a nonsmooth function

min
x ∈ℝn

g (c (x)) ℝn smooth map
−−−−−−−−−−→

c
ℝm

intermediate space

nonsmooth function−−−−−−−−−−−−−−−−−→
g

ℝ

max. of functions
max(f1(x), . . . , fN (x))

maximal eigenvalue
_max(A0 +

∑n
i=1 x

[i ]Ai)

⊲ Identification by prox
Wg holds in the intermediate space structure is lost when restoring the feasibility

Idea Minimize g ◦ c along a tentative structure even if the current point is not on it

� Use prox
Wg (c (xk)) to find structure in the intermediate space, defined by hk (u) = 0

� Translate the structure to the input space as sk (x) = hk (c (x)) = 0 in general sk (xk) ≠ 0

� Perform a SQP step on min
x ∈ℝn

g (c (x)) s.t. sk (x) = 0 smooth minimization along, Newton-Raphson across

Perspective Writing a generic optimizer for composite problems when prox
Wg is explicit

with automatic differentiation for the map and benchmark against other nonsmooth methods

� Overton. On minimizing the maximum eigenvalue of a symmetric matrix. SIAM Journal on Matrix Analysis and Applications. (1988)
� Oustry. A second-order bundle method to minimize the maximum eigenvalue function. Mathematical Programming. (1999)
� Lewis and Wright. A proximal method for composite minimization. Mathematical Programming (2016)
� Lewis and Wylie. A simple newton method for local nonsmooth optimization. (2019)
� Bolte, Chen, Pauwels. The multiproximal linearization method for convex composite problems. Mathematical Programming. (2020)
� Han and Lewis. Survey Descent: A Multipoint Generalization of Gradient Descent for Nonsmooth Optimization. preprint (2021) 21/26



Two Current Directions & Perspectives

V – Optimization beyond Minimization



Some optimization problems beyond minimization

Empirical Risk Minimization optimizes the average loss
under Pm =

1
m

∑m
j=1 X (aj,bj )

min
x ∈ℝn

1
m

m∑
j=1

ℓ (bj, Px (aj))︸                  ︷︷                  ︸
f (x)

= �b∼Pm
[
ℓx (b)

]

1. Online learning data is revealed in a sequential order

min
x ∈ℝn

ft (x) for t = 1, . . . , T

2. Saddle-point problems Nash equilibria, adversarial examples, variational inequalities

min
x1∈C1

max
x2∈C2

f (x1, x2)

3. Robust risk minimization distribution shifts between training and testing

min
x ∈ℝn

max
`∈A

�b∼`
[
ℓx (b)

]
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1. Optimization in Open Networks as an Online Problem

Agent j

Agent k

Agent i

At time t , an agent updates

using its local function

Asynchronous

open network

exchanges subgradients
with neighbors

Agents can join and leave so
minimizing the current loss is out of reach

ft (x) =
1

|Vt |
∑
i∈Vt

f i (x)
Vt are the agents at time t

Goal: minimize the running loss

Loss(T ) =
1∑T

t=1 |Vt |

T∑
t=1

∑
i∈Vt

f i (xreft )

xreft is the value of any agent at time t

Idea Use the framework of online optimization to analyze (offline) minimization over open networks

⊲ with subgradient exchanges, we obtain Loss(T ) = O(1/
√
T ) without a global clock or current network state

⊲ by extending dual averaging xt = projC

(
x1 − Wi,t

∑
s∈Si,t

gj,s
)
to incorporate all gradients "equally"

Hsieh, I, Malick, Mertikopoulos: Optimization in Open Networks via Dual Averaging, CDC 2021.
–: Multi-Agent Online Optimization with Delays: Asynchronicity, Adaptivity, and Optimism, preprint Dec. 2020.

Perspective Examining the behavior of a flock of agents wishing to regroup and learn simultaneously
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2. Rates of Mirror Descent for Border Solutions in Variational Inequalities

Find x★ ∈ C such that
〈v (x★), x − x★〉 ≥ 0 for all x ∈ C
v is Lipschitz and strongly monotone

xk+1 = argminu∈C
{
−W 〈v (xk), xk − u〉 + Dh (u, xk)

}
with Dh (u, x) = h(u) − h(x) − 〈∇h(x), u − x〉

⊲ If x★ is on the border of C , the observed rate depends on the regularizer h

v (x) = x − x★

C = [0, +∞]

100 101 102
10−2

10−1

iterations

x k
−
x★

Euclidean
Entropy
t−1

Fractional Power (q = 0.75)
t−0.8
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2. Rates of Mirror Descent for Border Solutions in Variational Inequalities

Find x★ ∈ C such that
〈v (x★), x − x★〉 ≥ 0 for all x ∈ C
v is Lipschitz and strongly monotone

xk+1 = argminu∈C
{
−W 〈v (xk), xk − u〉 + Dh (u, xk)

}
with Dh (u, x) = h(u) − h(x) − 〈∇h(x), u − x〉

⊲ If x★ is on the border of C , the observed rate depends on the regularizer h

Idea Upper-bound the Bregman divergence locally around a border solution

Find the smallest V★ ∈ [0, 1] such that Dh (x★, x) ≤
^

2
‖x − x★‖2(1−V★) for all x close to x★ in C

For border solutions, the convergence rate
of Dh (x★, xk) for Mirror Descent depends
on the value of V★

Domain (C) Regularizer (h) Legendre Exponent (V★) Convergence Rate

Euclidean arbitrary x2/2 0 exp(−O(t))
Entropic [0,∞) x log x 1/2 O(1/t)
Tsallis [0,∞) [q(1 − q)]−1(x − xq) max{0, 1 − q/2} O(1/tq/(2−q) )
Hellinger [−1, 1] −

√
1 − x2 3/4 O(1/t1/3)

⊲ Can be extended to Mirror Prox, Optimistic Mirror Descent, and stochastic variants

Perspective Exploiting the structure of constraint sets in variational inequalities
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3. Regularization in Distributionally Robust Optimization

Distributionally robust
risk minimization min

x ∈ℝn
sup

`∈U(Pm)
�b∼`

[
ℓx (b)

]
⊲ Ambiguity set U(Pm): distributions in a neighborhood of the observed samples Pm discrete distribution

⊲ This neighborhood depends on a chosen metric on distributions

� Wasserstein distance has many good properties includes continuous distributions, statistical guarantees

� but the resulting problem may be difficult to optimize dual approach

Idea Regularize the Wasserstein distance with Kullback-Liebler divergences for a more tractable objective

Perspective Going towards statistical guarantees & non-convex objectives not only for neural networks!

� Esfahani and Kuhn: Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable reformulations. Mathematical Programming (2018)
� Blanchet, Murthy, Zhang. Optimal transport-based distributionally robust optimization: Structural properties and iterative schemes. Mathematics of Operations Research (2021)
� Gao and Kleywegt. Distributionally Robust Stochastic Optimization with Wasserstein Distance. preprint (2016)
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Conclusion

Hokusai

Fine Wind, Clear Morning (Gaifū kaisei) in Thirty-six Views of Mount Fuji (1830-1832)



Conclusion

⊲ Data Science problems offer a vast playground for optimizers

⊲ I particularly enjoy the theory & practice of

� Structure stability

� Distributional robustness

� Resilience in multi-agent systems

⊲ Many thanks to all the collegues, students, and friends that made all this possible.

Thank you!
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Motivating the Riemannian manifold nature of the observed structures: partial smoothness

A function g is (C2-)partly smooth at a point x̄ relative to the C2 manifold M around x̄ if:

⊲ (smoothness) the restriction of g to M is a C2 function near x̄ ;

⊲ (regularity) g is (Clarke) regular at all points x ∈ M near x̄ , with mg (x) ≠ ∅;

⊲ (sharpness) the affine span of mg (x̄) is a translate of Nx̄M;

⊲ (sub-continuity) the set-valued mapping mg restricted to M is continuous at x̄ .

M
•

x

Tx̄M

x + Wmg (x)
{x + Wmg (x) : x ∈ M}

� Lewis: Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization (2002)
� Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis (2004)
� Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems. Optimization (2006)



Motivating the Riemannian manifold nature of the observed structures: partial smoothness

A function g is (C2-)partly smooth at a point x̄ relative to the C2 manifold M around x̄ if:

⊲ (smoothness) the restriction of g to M is a C2 function near x̄ ;

⊲ (regularity) g is (Clarke) regular at all points x ∈ M near x̄ , with mg (x) ≠ ∅;

⊲ (sharpness) the affine span of mg (x̄) is a translate of Nx̄M;

⊲ (sub-continuity) the set-valued mapping mg restricted to M is continuous at x̄ .

M
•

x

Tx̄M

x + Wmg (x)
×

y
{x + Wmg (x) : x ∈ M}

If g is p.s. and y−x
W

∈ ri mg (x),
then for all y close to y , prox

Wg (y) ∈ M

In the non-convex case,

additional conditions are needed on proxWg

� Lewis: Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization (2002)
� Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis (2004)
� Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems. Optimization (2006)



Asynchronous Level Bundle

F (x) = x2 + 2x + 1

F̌k (x) := max
j∈Jk

{F (xj) + 〈vj, x − xj 〉 }

Jk ⊂ {1, 2, . . . , k}: set of indices of
points at which the oraclewas called

•

•
Bundle model from 2
queries

F 1 (x) = x2/2
F 2 (x) = x2/2 + 2x + 1

F̌ ik (x) := max
j∈Jik

{
F i (xj) + 〈v ij , x − xj 〉

}
Jik ⊂ {1, 2, . . . , k}: set of indices of
points at which oracle i was called

F̌ d
k (x) :=

M∑
i=1

F̌ ik

Disaggregated Bundle model
for a sum of 2 functions
from 2 queries per function

•
•

•

•

⊲ The disaggregated bundle accumulates information asynchronously no need to query all functions at all points

⊲ We can design a level bundle method to minimize F

I, Malick, de Oliveira: Asynchronous level bundle methods, Mathematical Programming, 2020.



Multi-agent Online Optimization with Delays

Agent j

Agent k

Agent i (t) Environment i (t )
Asynchronous

network

plays xt

suffers loss ft (xt )

receives gt ∈ mft (xt )

sends some gs
to neighbors

receives some gs
from neighbors

At time t :
⊲ an agent i (t) becomes actives
⊲ plays a point xt
⊲ suffers loss ft (xt )
⊲ receives feedback gt ∈ mft (xt )

Asynchronously: agents exchange feedback vectors gs
 delay bounded by g

Goal: minimize the regret RegT (u) =
T∑
t=1

ft (xt ) −
T∑
t=1

ft (u)

Idea active agent i(t) only has some subgradients {gs : s ∈ St } at time t

⊲ we extend dual averaging to incorporate all gradients “equally” xt = argminx ∈C

{∑
s∈St

〈gs, x〉 +
‖x ‖2

2Wt

}
⊲ even without a global clock, we obtain RegT (u) = O(

√
T × g)

Hsieh, I, Malick, Mertikopoulos: Multi-Agent Online Optimization with Delays: Asynchronicity, Adaptivity, and
Optimism, ArXiv 2012.11579, 2020.




	Introduction
	Harnessing the Structure  of some Optimization Problems
	Structure Identification in Data Science
	Distributed Structure & Asynchrony

	Two Current Directions & Perspectives
	Structure Identification Cont'
	Optimization beyond Minimization

	Conclusion
	Appendix

