Harnessing the Structure of some Optimization Problems

Habilitation defense

Franck Iutzeler December 15th, 2021

Univ. Grenoble Alpes

Introduction

Musée des Beaux-Arts et d'Archéologie de Besançon

Mosaic of Neptune (IInd century)

Introduction

Ph.D. in 2013 *Optimization on graphs* Post-docs in Supélec & Louvain-la-Neuve Since Sept. 2015 Assistant Professor at UGA

- ▶ Research interests:
 - Numerical Optimization
 - ♦ Machine Learning
 - ♦ Multi-agent systems
- In this defense:
 - ♦ Selection of works from 2018-2021
 - $\diamond~$ In collaboration with 5 PhD & master students
 - ♦ Current interests and perspectives for future research

Harnessing the Structure of some Optimization Problems

HIERONYMUS BOSCH

The Garden of Earthly Delights, open (1490-1500)

▶ In Data Science, one seeks a model that fits the observed data parametrized model P_x , data $\{a_j, b_j\}_{j=1}^m$, loss ℓ while ensuring some structure on the parameter/model for generalization and stability regularizer Ω

central thread of this presentation

▶ In Data Science, one seeks a model that fits the observed data parametrized model P_x , data $\{a_j, b_j\}_{j=1}^m$, loss ℓ while ensuring some structure on the parameter/model for generalization and stability regularizer Ω

central thread of this presentation

▶ In Data Science, one seeks a model that fits the observed data parametrized model P_x , data $\{a_j, b_j\}_{j=1}^m$, loss ℓ while ensuring some structure on the parameter/model for generalization and stability regularizer Ω

central thread of this presentation

Harnessing the Structure of some Optimization Problems

A – Structure Identification in Data Science

Structure & Identification for the lasso

Non-differentiability patterns of regularizers

• can trap the problems' solutions small changes in the data may not change the sparsity structure

Structure & Identification for the lasso

- ▶ Non-differentiability patterns of regularizers
 - can trap the problems' solutions small changes in the data may not change the sparsity structure
 - attract the iterates of some optimization methods but not all

Optimization for the lasso

Quadratic risk

$$\frac{1}{m}\sum_{i=1}^{m}\left(\langle x,\mathbf{a}_{j}\rangle-b_{j}\right)^{2}$$

smooth function *f but* **costly** to evaluate

To minimize f + g

 ℓ_1 norm

 $\lambda \|x\|_1$

nonsmooth function *g but* **simple** to minimize

 $\frac{\mathbf{lasso}}{\frac{1}{m}\sum_{j=1}^{m} \left(\langle x, \mathbf{a}_j \rangle - b_j \right)^2 + \lambda \|x\|_1}$

composite function f + g

Iteratively approximate f by a quadratic smoothness

 \rightarrow

 $x_k - \gamma \nabla f(x_k)$

$$\begin{split} x_{k+1} &= \operatorname{argmin}_{u} \left\{ f(x_{k}) + \langle \nabla f(x_{k}), u - x_{k} \rangle + \frac{1}{2\gamma} \| u - x_{k} \|^{2} + g(x) \right\} \\ &= \operatorname{argmin}_{u} \left\{ g(u) + \frac{1}{2\gamma} \| u - (x_{k} - \gamma \nabla f(x_{k})) \|^{2} \right\} \end{split}$$

Tibshirani: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (1996)

Bach, Jenatton, Mairal, Obozinski: Optimization with sparsity-inducing penalties. Foundation and Trends in Machine Learning (2012)

Optimization for the lasso

Quadratic risk

$$\frac{1}{m}\sum_{i=1}^{m}\left(\langle x,\mathbf{a}_{j}\rangle-b_{j}\right)^{2}$$

smooth function *f but* **costly** to evaluate

To minimize *f* + *g Proximal gradient* ISTA ℓ_1 norm

 $\lambda \|x\|_1$

nonsmooth function *g but* **simple** to minimize

 $\frac{\mathbf{lasso}}{\frac{1}{m}\sum_{j=1}^{m} \left(\langle x, \mathbf{a}_j \rangle - b_j \right)^2 + \lambda \|x\|_1}$

 \rightarrow

composite function f + g

- Iteratively approximate f by a quadratic smoothness
- ▶ Use the proximity operator of *g* prox simple

$$\begin{aligned} \mathbf{prox}_{\gamma g}(y) &:= \operatorname{argmin}_{u} \left\{ f(x_{k}) + \langle \nabla f(x_{k}), u - x_{k} \rangle + \frac{1}{2\gamma} \| u - x_{k} \|^{2} + g(x) \right\} \\ &= \operatorname{argmin}_{u} \left\{ g(u) + \frac{1}{2\gamma} \| u - (x_{k} - \gamma \nabla f(x_{k})) \|^{2} \right\} \\ &= \operatorname{prox}_{\gamma g} \left(x_{k} - \gamma \nabla f(x_{k}) \right) \end{aligned}$$

Tibshirani: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (1996)

Bach, Jenatton, Mairal, Obozinski: Optimization with sparsity-inducing penalties. Foundation and Trends in Machine Learning (2012)

Solving the lasso problem $\min_{x \in \mathbb{R}^n} \frac{1}{m} \sum_{j=1}^m \left(\langle x, \mathbf{a}_j \rangle - b_j \right)^2 + \overbrace{\lambda \| x \|_1}^{g(x)}$ by proximal gradient $x_{k+1} = \mathbf{prox}_{\gamma g} \left(x_k - \gamma \nabla f(x_k) \right)$

$$\mathbf{prox}_{\gamma g}(y) := \operatorname{argmin}_{u} \left\{ g(u) + \frac{1}{2\gamma} \|u - y\|^{2} \right\}$$

for the *l*₁ norm: *soft-thresholding* per coordinate

$$\mathbf{prox}_{\boldsymbol{\gamma}\boldsymbol{\lambda}\|\cdot\|_{1}}^{[i]}(\boldsymbol{\gamma}) = \begin{cases} y^{[i]} + \boldsymbol{\gamma}\boldsymbol{\lambda} & \text{if } y^{[i]} < -\boldsymbol{\gamma}\boldsymbol{\lambda} \\ 0 & \text{if } -\boldsymbol{\gamma}\boldsymbol{\lambda} \le y^{[i]} \le \boldsymbol{\gamma}\boldsymbol{\lambda} \\ y^{[i]} - \boldsymbol{\gamma}\boldsymbol{\lambda} & \text{if } y^{[i]} > \boldsymbol{\gamma}\boldsymbol{\lambda} \end{cases}$$

The sequence (x_k) converges to a solution x^* .

Solving the lasso problem $\min_{x \in \mathbb{R}^n} \frac{1}{m} \sum_{j=1}^m (\langle x, \mathbf{a}_j \rangle - b_j)^2 + \widehat{\lambda} ||x||_1$ by proximal gradient $x_{k+1} = \mathbf{prox}_{\gamma g} (x_k - \gamma \nabla f(x_k))$

$$\mathbf{prox}_{\gamma g}(y) := \operatorname{argmin}_{u} \left\{ g(u) + \frac{1}{2\gamma} \|u - y\|^{2} \right\}$$

for the *l*₁ norm: *soft-thresholding* per coordinate

$$\mathbf{prox}_{\boldsymbol{\gamma}\boldsymbol{\lambda}\|\cdot\|_{1}}^{[i]}(\boldsymbol{\gamma}) = \begin{cases} y^{[i]} + \boldsymbol{\gamma}\boldsymbol{\lambda} & \text{if } y^{[i]} < -\boldsymbol{\gamma}\boldsymbol{\lambda} \\ 0 & \text{if } -\boldsymbol{\gamma}\boldsymbol{\lambda} \le y^{[i]} \le \boldsymbol{\gamma}\boldsymbol{\lambda} \\ y^{[i]} - \boldsymbol{\gamma}\boldsymbol{\lambda} & \text{if } y^{[i]} > \boldsymbol{\gamma}\boldsymbol{\lambda} \end{cases}$$

The sequence (x_k) converges to a solution x^* . If $x^* \in \mathcal{M}$

Solving the lasso problem $\min_{x \in \mathbb{R}^n} \frac{1}{m} \sum_{j=1}^m \left(\langle x, \mathbf{a}_j \rangle - b_j \right)^2 + \widetilde{\lambda \| x \|_1}$ by proximal gradient $x_{k+1} = \mathbf{prox}_{\gamma g} \left(x_k - \gamma \nabla f(x_k) \right)$

$$\mathbf{prox}_{\gamma g}(y) := \operatorname{argmin}_{u} \left\{ g(u) + \frac{1}{2\gamma} \|u - y\|^{2} \right\}$$

for the l₁ norm: soft-thresholding per coordinate

$$\mathbf{prox}_{\boldsymbol{\gamma}\boldsymbol{\lambda}\|\cdot\|_{1}}^{[i]}(\boldsymbol{\gamma}) = \begin{cases} y^{[i]} + \boldsymbol{\gamma}\boldsymbol{\lambda} & \text{if } y^{[i]} < -\boldsymbol{\gamma}\boldsymbol{\lambda} \\ 0 & \text{if } -\boldsymbol{\gamma}\boldsymbol{\lambda} \le y^{[i]} \le \boldsymbol{\gamma}\boldsymbol{\lambda} \\ y^{[i]} - \boldsymbol{\gamma}\boldsymbol{\lambda} & \text{if } y^{[i]} > \boldsymbol{\gamma}\boldsymbol{\lambda} \end{cases}$$

The sequence (x_k) converges to a solution x^* . If $x^* \in \mathcal{M}$ and a Qualifying Condition holds

$$\begin{split} \overline{\mathbf{y}} \text{ is in the relative interior of the green zone} \\ \Leftrightarrow \nabla^{[i]} f(\mathbf{x}^{\star}) \in (-\lambda, \lambda) \\ \Leftrightarrow \frac{1}{m} \sum_{j=1}^{m} \mathbf{a}_{j}^{[i]} (\langle \mathbf{x}^{\star}, \mathbf{a}_{j} \rangle - b_{j}) \in (-\lambda, \lambda) \end{split}$$

Solving the lasso problem
$$\min_{x \in \mathbb{R}^n} \frac{1}{m} \sum_{j=1}^m \left(\langle x, \mathbf{a}_j \rangle - b_j \right)^2 + \overline{\lambda \| x \|_1}$$

by proximal gradient $x_{k+1} = \mathbf{prox}_{\gamma g} \left(x_k - \gamma \nabla f(x_k) \right)$

$$\mathbf{prox}_{\gamma g}(y) := \operatorname{argmin}_{u} \left\{ g(u) + \frac{1}{2\gamma} \|u - y\|^{2} \right\}$$

for the *l*₁ norm: *soft-thresholding* per coordinate

$$\mathbf{prox}_{\boldsymbol{\gamma}\boldsymbol{\lambda}\|\cdot\|_{1}}^{[i]}(\boldsymbol{y}) = \begin{cases} y^{[i]} + \boldsymbol{\gamma}\boldsymbol{\lambda} & \text{if } y^{[i]} < -\boldsymbol{\gamma}\boldsymbol{\lambda} \\ 0 & \text{if } -\boldsymbol{\gamma}\boldsymbol{\lambda} \le y^{[i]} \le \boldsymbol{\gamma}\boldsymbol{\lambda} \\ y^{[i]} - \boldsymbol{\gamma}\boldsymbol{\lambda} & \text{if } y^{[i]} > \boldsymbol{\gamma}\boldsymbol{\lambda} \end{cases}$$

The sequence (x_k) converges to a solution x^* . If $x^* \in \mathcal{M}$ and a Qualifying Condition holds

 $\overline{\gamma}$ is in the relative interior of the green zone $\Leftrightarrow \nabla^{[i]}f(x^*) \in (-\lambda, \lambda)$ $\Leftrightarrow \frac{1}{m} \sum_{j=1}^{m} \mathbf{a}_{j}^{[i]}(\langle x^*, \mathbf{a}_{j} \rangle - b_{j}) \in (-\lambda, \lambda)$ Then, the iterates belong to \mathcal{M} in finite time.

Proximal Identification Theory

Finite-time identification holds for a proximal method as long as

- ▶ the iterates are well-defined and **converge** $y_k \rightarrow \overline{y}$
- g is nonsmooth across the smooth structure manifold but smooth along it
- ▶ some Qualifying Condition (QC) holds

$$\begin{cases} y_k = \dots \\ x_{k+1} = \mathbf{prox}_{\gamma g}(y_k) \end{cases}$$

- ▶ Well-grounded theory in nonsmooth analysis partial smoothness, nonconvex proximal methods
- Lewis: Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization (2002)
- Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis (2004)
- Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems. Optimization (2006)
- Vaiter, Peyré, Fadili: Model consistency of partly smooth regularizers. IEEE Trans. on Information Theory (2017)
- Fadili, Malick, Peyré: Sensitivity analysis for mirror-stratifiable convex functions. SIAM Journal on Optimization (2018)

Proximal Identification in Data Science

- ▶ In Data Science problems, the regularizer is often *chosen* to have
 - an explicit proximity operator proximal methods are possible
 - ♦ which is also a structure oracle the structure of the output is known

nuclear norm ↔ low-rank soft thresholding the singular values 1D total variation ↔ change sparsity dynamic programming

Finite time	and	Current structure	but we never know if the
Identification		proximity operator	structure is final

I, Malick: Nonsmoothness in Machine Learning: specific structure, proximal identification, and applications, Set-Valued and Variational Analysis, 2020.

- ▶ Does faster minimization means faster identification?
- ▶ Can we leverage the current structure numerically?

Harnessing the Structure of some Optimization Problems

A – Structure Identification in Data Science

> Does faster minimization means faster identification?

Interplay between Acceleration and Identification

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|^2 + \lambda \|x\|_1$$

Accelerated proximal gradient (FISTA)

- $\begin{cases} x_{k+1} = \mathbf{prox}_{\gamma g} \left(y_k \gamma \nabla f(y_k) \right) \\ y_{k+1} = x_{k+1} + \alpha_{k+1} (x_{k+1} x_k) \end{cases}$
- **faster** in practice and worst case rates
- ✓ exploratory behavior
- × overshooting

Interplay between Acceleration and Identification

$$\min_{x \in \mathbb{R}^n} ||Ax - b||^2 + \lambda \max(0, ||x||_{1.3} - 1)$$

Accelerated proximal gradient (FISTA)

- $\begin{cases} x_{k+1} = \mathbf{prox}_{\gamma g} \left(y_k \gamma \nabla f(y_k) \right) \\ y_{k+1} = x_{k+1} + \alpha_{k+1} (x_{k+1} x_k) \end{cases}$
- ▶ **faster** in practice and worst case rates
- ✓ exploratory behavior
- × overshooting
- × misfit to curved structure

Structure-adapted acceleration

Idea Pre-define a *collection* $C = \{M_1, \ldots, M_p\}$ of *sought structures* eg. sparsity patterns, rank, constraint activity

and condition the acceleration to a *structure test*
$$\begin{cases} y_k = \begin{cases} x_k & \text{if } \mathsf{T}_k = 0\\ x_k + \alpha_k(x_k - x_{k-1}) & \text{otherwise} \end{cases} \\ x_{k+1} = \mathbf{prox}_{y_k}(y_k - \gamma \nabla f(y_k)) \end{cases}$$

T¹: counter overshooting

$$\mathsf{T}_k^1 = 0$$
 (no acceleration) if $\begin{cases} x_k \in \mathcal{M} \\ x_{k-1} \notin \mathcal{M} \end{cases}$ for some $\mathcal{M} \in C$

Theorem The accelerated rate $O(1/k^2)$ is maintained if the qualification condition (QC) holds.

Bareilles & I: On the Interplay between Acceleration and Identification for the Proximal Gradient algorithm, Computational Optimization and Applications, 2020

Effect in practice

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|^2 + \lambda \|x\|_1$$

Conditioning acceleration to structure test T^1

- no overshooting
- ▶ similar suboptimality
- structure is more stable

Effect in practice

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|^2 + \lambda \max(0, \|x\|_{1.3} - 1)$$

Conditioning acceleration to structure test T^1

- no overshooting
- ▶ similar suboptimality
- structure is more stable

Why is structure information important?

- ▶ Does faster minimization means faster identification ?
 - Not always, but a compromised can be reached by structure-aware acceleration
 - Valuable structure can be completely lost even if the suboptimality is low

Why is structure information important?

- ▶ Does faster minimization means faster identification ?
 - Not always, but a compromised can be reached by structure-aware acceleration
 - Valuable structure can be completely lost even if the suboptimality is low

Harnessing the Structure of some Optimization Problems

A – Structure Identification in Data Science

▶ Can we leverage the current structure numerically?

 y_k = $x_k - \gamma \nabla f(x_k)$ gradient step \rightsquigarrow most of the computational cost x_{k+1} = $\operatorname{prox}_{\gamma g}(y_k)$ proximity operator \rightsquigarrow gives structure

▶ Proximal gradient identifies structure but does not use it

Leveraging the structure numerically

Observe $S_k = \bigcap_{i:x_k \in \mathcal{M}_i} \mathcal{M}_i$

 $y_k = \operatorname{proj}_{\mathcal{S}_k}(x_k - \gamma \nabla f(x_k)) + \operatorname{proj}_{\mathcal{S}_k}^{\perp}(y_{k-1}) \quad \text{gradient step} \rightsquigarrow \text{most of the computational cost}$ $x_{k+1} = \operatorname{prox}_{\gamma g}(y_k) \quad \text{proximity operator} \rightsquigarrow \text{gives structure}$

Idea Project using the output of **prox**_{*vg*} and the pre-defined *collection* $C = \{M_1, \ldots, M_p\}$

- ▶ For sparsity patterns: $\mathcal{M}_i = \{x \in \mathbb{R}^n : x^{[i]} = 0\}$ and $\mathcal{S}_k = \{x \in \mathbb{R}^n : \operatorname{supp}(x) = \operatorname{supp}(x_k)\}$
- > Direct use of the structure fails No correctness guarantee, contrary to screening methods

Ndiaye, Fercoq, Gramfort, Salmon: Gap-safe screening rules for sparsity enforcing penalties. Journal of Machine Learning Research (2017)

Observe $S_k = \bigcap_{i:x_k \in \mathcal{M}_i} (\xi_{k,i} \mathcal{M}_i + (1 - \xi_{k,i}) \mathbb{R}^n)$ for $\xi_{k,i} \sim \mathcal{B}(p)$ additional randomness

$$y_{k} = \operatorname{proj}_{\mathcal{S}_{k}}(x_{k} - \gamma \nabla f(x_{k})) + \operatorname{proj}_{\mathcal{S}_{k}}^{\perp}(y_{k-1}) \text{ gradient step \longrightarrow most of the computational cost}$$

$$c_{k+1} = \operatorname{prox}_{\gamma g}(y_{k}) \text{ proximity operator \longrightarrow gives structure}$$

Idea Project on a random space comprising the current structure so that the whole space is spanned

- ▶ For sparsity patterns: sort of "coordinate descent" on the support + random ones
- > Mixing randomized coordinate descent with identification induces a biais convergence issues

Friedman, Hastie, Tibshirani: Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software (2010)

[♦] Massias, Gramfort, Salmon: Celer: a Fast Solver for the Lasso with Dual Extrapolation. ICML (2018)

Leveraging the structure numerically

Observe
$$S_k = \bigcap_{i:x_k \in \mathcal{M}_i} (\xi_{k,i}\mathcal{M}_i + (1 - \xi_{k,i})\mathbb{R}^n)$$
 for $\xi_{k,i} \sim \mathcal{B}(p)$
and compute $\mathbf{P}_k = \mathbb{E} \operatorname{proj}_{S_k}$ and $\mathbf{Q}_k = (\mathbf{P}_k)^{-1/2}$
 $y_k = \operatorname{proj}_{S_k}(\mathbf{Q}_k(x_k - \gamma \nabla f(x_k))) + \operatorname{proj}_{S_k}^{\perp}(y_{k-1})$ gradient step \rightsquigarrow most of the computational cost
 $x_{k+1} = \operatorname{prox}_{\gamma g}(\mathbf{Q}_k^{-1}y_k)$ proximity operator \rightsquigarrow gives structure

- ▶ We restrict ourselves to affine subspaces ℓ_1/ℓ_2 -group lasso, 1D TV-fused lasso, g may not be separable
- ▶ Unbiasing with Q_k works *after identification* but not before which prevents identification...

Leveraging the structure numerically

Observe
$$S_k = \bigcap_{i:\mathbf{x}_\ell \in \mathcal{M}_i} (\xi_{k,i}\mathcal{M}_i + (1 - \xi_{k,i})\mathbb{R}^n)$$
 for $\xi_{k,i} \sim \mathcal{B}(p)$
and compute $\mathbf{P}_k = \mathbb{E} \operatorname{proj}_{S_k}$ and $\mathbf{Q}_k = (\mathbf{P}_k)^{-1/2}$ the reference point \mathbf{x}_ℓ only changes if possible
 $y_k = \operatorname{proj}_{S_k}(\mathbf{Q}_k(\mathbf{x}_k - \gamma \nabla f(\mathbf{x}_k))) + \operatorname{proj}_{S_k}^{\perp}(y_{k-1})$ gradient step \rightsquigarrow most of the computational cost
 $\mathbf{x}_{k+1} = \operatorname{prox}_{\gamma g}(\mathbf{Q}_k^{-1}y_k)$ proximity operator \rightsquigarrow gives structure

- ▶ Structure adaptation can be performed only at **some** iterations
- ▶ The amount of change $\|\mathbf{Q}_{k-1}\mathbf{Q}_k^{-1}\|$ and harshness of the sparsification $\lambda_{\min}(\mathbf{Q}_k)$ has to be tampered

Convergence result for strongly convex problems

Theorem There is an explicit adaptation strategy such that the iterates of the previous method satisfy

$$\mathbb{E} \|x_k - x^{\star}\|^2 = O\left(\left(1 - \lambda \frac{\gamma \mu L}{\mu + L}\right)^{a_k}\right)$$

where a_k is the number of *adaptations* performed before k and $\lambda = \inf_k \lambda_{\min}(\mathbb{E} \operatorname{proj}_{S_k})$. Furthermore, if the qualifying constraint (QC) holds, finite-time identification happens and the rate improves

$$\|x_k - x^{\star}\|^2 = O_{\mathbb{P}}\left(\left(1 - 2\lambda_{\min}(\mathbb{E}\operatorname{proj}_{\mathcal{S}^{\star}})\frac{\gamma\mu L}{\mu + L}\right)^k\right)$$

Example for sparsity patterns: We sample *s* coordinates at random outside of the support. If $k = k_{\ell-1}$ is an adaptation time, the current support can be used after

$$\mathbf{c}_{\ell} = \left\lceil \frac{\log \left(\|\mathbf{Q}_{\ell} \mathbf{Q}_{\ell-1}^{-1}\|_2^2 \right) + \log(1/(1 - 2\gamma \mu L/(n(\mu + L))))}{\log(1/(1 - 2s\gamma \mu L/(\text{null}(x_{\ell-1})(\mu + L))))} \right\rceil \text{ iterations}$$

Grishchenko, I, Malick: Proximal Gradient Methods with Adaptive Subspace Sampling, Mathematics of Operations Research, 2021

Numerical illustration

logistic regression with 1D total variation regularization

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{m} \sum_{i=1}^m \log\left(1 + \exp\left(-b_j \mathbf{a}_j^\top x\right)\right) + \frac{\lambda_2}{2} \|x\|_2^2 + \lambda \mathrm{TV}(x)$$

n = 123
 the solutions has 13 jumps

- ▶ Can we leverage the current structure numerically ?
 - For coordinate descent methods and with affine structures, the sampling strategy can be adapted to the uncovered structure

Harnessing the Structure of some Optimization Problems

B – Distributed Structure & Asynchrony

- ▶ Distributed Proximal Gradient leads to communication bottlenecks
- ▶ We can implement **asynchronous** *send*/*receive* with the coordinator

using the MPI standard in Python/C/C++, or the Channel objects in Julia along with the Distributed library

Asynchronous Proximal Gradient

Proximal gradient with asynchronous communications... with no further assumptions on the system

Idea Introduction of an *epoch sequence*: $k_{\ell+1} = \min\{k : \text{ each machine made at least 2 updates in } [k_{\ell}, k]\}$ Showing that $\max_{k \in [k_{\ell}, k_{\ell+1})} \|\overline{x}_k - \overline{x}^{\star}\|^2 \le (1 - \beta)^2 \max_{k' \in [k_{\ell-1}, k_{\ell})} \|\overline{x}_{k'} - \overline{x}^{\star}\|^2$

Mishchenko, I, Malick, Amini: A delay-tolerant proximal-gradient algorithm for distributed learning, ICML, 2018 –, –, –: A Distributed Flexible Delay-tolerant Proximal Gradient Algorithm, SIAM Journal on Optimization, 2020

Bertsekas, Tsitsiklis. Parallel and distributed computation: numerical methods. (2015)

Asynchronous Proximal Gradient

- Proximal gradient with asynchronous communications... with no further assumptions on the system
- \triangleright ... that can be further **sparsified** using **identification** for ℓ_1 regularization

Idea Coordinate descent as presented before only works for well-conditioned problems due to asynchronicity Iterative reconditionning *à la* Catalyst

Grishchenko, I, Malick, Amini: Distributed Learning with Sparse Communications by Identification, SIAM Journal on Mathematics of Data Science, 2021

Lin, Mairal, Harchaoui: Catalyst acceleration for first-order convex optimization: from theory to practice. Journal of Machine Learning Research (2018)

Two Current Directions & Perspectives

PIERRE SOULAGES

Peinture 222 x 314 cm, 24 février 2008

Two Current Directions & Perspectives

α – Structure Identification Cont'

Identification of Smooth Manifolds

$$\min_{x \in \mathbb{R}^n} F(x) = \frac{\substack{\text{risk}\\f(x)}}{\substack{\text{smooth}\\\text{nonsmooth}}} + \frac{\substack{\text{regularization}\\g(x)}}{\substack{\text{nonsmooth}}}$$

Provided that:

- ▷ a Qualifying Condition holds around a critical limit point $\overline{x} \in \mathcal{M}$
- ▷ g is nonsmooth across the manifold M
 but smooth along it

After some finite time:

- ▶ the proximal gradient map $x \mapsto \mathbf{prox}_{\gamma g}(x \gamma \nabla f(x))$ is *M*-valued and Lipschitz-continuous
- $\triangleright \quad F = f + g \text{ is smooth locally on } \mathcal{M}$

- Lewis: Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization (2002)
- Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis (2004)

$$y_k = x_k - \gamma \nabla f(x_k)$$
$$x_{k+1} = \mathbf{prox}_{\gamma g}(y_k)$$

Poliquin and Rockafellar: Prox-regular functions in variational analysis. Transactions of the American Mathematical Society (1996)

Optimization on Smooth Manifolds

 $\min_{x \in \mathbb{R}^n} F(x) = f(x) +$ g(x)nonsmooth

Since after some time:

- \triangleright x_k belongs to \mathcal{M}
- F = f + g is smooth locally on \mathcal{M} ⊳

Riemannian optimization steps can be performed:

Tractable for many regularizers ⊳

- 1st and 2nd order methods can be implemented ⊳
- This is useful only if we are on the "right" manifold and we never know that ⊳

Boumal, Mishra, Absil, Sepulchre: Manopt, a Matlab toolbox for optimization on manifolds. The Journal of Machine Learning Research (2014)

Boumal: An introduction to optimization on smooth manifolds (2020)

 $x_k - \gamma \partial F(x)$ $x_{L} - v \operatorname{grad} F(x_{L})$ $x_{k+1} = R_{x_k} \left(-\gamma \operatorname{grad} F(x_k)\right)$ $T_{x_k}\mathcal{M}$

 $x_{k+1} = \text{Riemannian} \text{Gradient}_{\mathcal{M}}(x_k)$

 \mathcal{M}

Newton acceleration

Idea Alternate proximal gradient steps and Riemannian Newton steps

$$x_{k+1} = \mathbf{prox}_{\gamma g}(u_k - \gamma \nabla f(u_k))$$
 identifies the current structure
Observe $\mathcal{M}_{k+1} \ni x_{k+1}$
$$u_{k+1} = \text{RiemannianNewton}_{\mathcal{M}_{k+1}}(x_{k+1})$$
 updates on the corresponding manifold

Theorem Provided that the minimizers of the function are *qualified*, the method converges quadratically.

Bareilles, I, Malick: Newton acceleration on manifolds identified by proximal-gradient methods, ArXiv, 2020

Perspective Providing "structure stability" guarantees for statistical models eg. by estimating the radius of the qualification, tuning the regularization by bi-level programming. This motivates high-accuracy objectives for nonsmooth solvers

- \diamond Lemaréchal, Oustry, Sagastizábal: The $\mathcal U$ -Lagrangian of a convex function. Trans. of the AMS (2000)
- \diamond Mifflin, Sagastizábal: A \mathcal{VU} -algorithm for convex minimization. Mathematical programming (2005)
- Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems. Optimization (2006)

Illustration on trace norm regression

 10×12 matrices rank of solution: 6 \rightsquigarrow optimal dim.: 96

$$\min_{X \in \mathbb{R}^{20 \times 20}} \|AX - Y\|_F^2 + \lambda \|X\|_*$$

Perspective Understanding the relation between structure identification and statistical simplicity eg. the links between qualification and RIP-like properties

Another interesting structure: composition of a smooth map and a nonsmooth function

Identification by prox_{yg} holds in the *intermediate* space structure is lost when restoring the feasibility

Idea Minimize $g \circ c$ along a tentative structure even if the current point is not on it

- Use $\mathbf{prox}_{yg}(c(x_k))$ to find structure in the intermediate space, defined by $h_k(u) = 0$
- Translate the structure to the input space as $s_k(x) = h_k(c(x)) = 0$ in general $s_k(x_k) \neq 0$
- Perform a SQP step on $\min_{x \in \mathbb{R}^n} g(c(x))$ s.t. $s_k(x) = 0$ smooth minimization along, Newton-Raphson across

Perspective Writing a generic optimizer for composite problems when $\mathbf{prox}_{\nu\sigma}$ is explicit

with automatic differentiation for the map and benchmark against other nonsmooth methods

- Overton. On minimizing the maximum eigenvalue of a symmetric matrix. SIAM Journal on Matrix Analysis and Applications. (1988)
- Oustry. A second-order bundle method to minimize the maximum eigenvalue function. Mathematical Programming. (1999)
- Lewis and Wright. A proximal method for composite minimization. Mathematical Programming (2016)
- Lewis and Wylie. A simple newton method for local nonsmooth optimization. (2019)
- Bolte, Chen, Pauwels. The multiproximal linearization method for convex composite problems. Mathematical Programming. (2020)
- Han and Lewis. Survey Descent: A Multipoint Generalization of Gradient Descent for Nonsmooth Optimization. preprint (2021)

Two Current Directions & Perspectives

 β – Optimization beyond Minimization

Some optimization problems beyond minimization

Empirical Risk Minimization optimizes the average loss under $P_m = \frac{1}{m} \sum_{j=1}^m \delta_{(\mathbf{a}_j, b_j)}$

$$\min_{x \in \mathbb{R}^n} \underbrace{\frac{1}{m} \sum_{j=1}^m \ell(b_j, P_x(\mathbf{a}_j))}_{f(x)} = \mathbb{E}_{\xi \sim \mathsf{P}_m} \left[\ell_x(\xi) \right]$$

1. Online learning data is revealed in a sequential order

$$\min_{x \in \mathbb{R}^n} f_t(x) \text{ for } t = 1, \dots, T$$

2. Saddle-point problems Nash equilibria, adversarial examples, variational inequalities

 $\min_{x_1 \in C_1} \max_{x_2 \in C_2} f(x_1, x_2)$

3. Robust risk minimization distribution shifts between training and testing

 $\min_{x \in \mathbb{R}^n} \max_{\mu \in \mathcal{A}} \mathbb{E}_{\xi \sim \mu} \left[\ell_x(\xi) \right]$

1. Optimization in Open Networks as an Online Problem

Agents can join and leave so minimizing the *current loss* is out of reach $f_t(x) = \frac{1}{|\mathcal{V}|} \sum_{i \in \mathcal{V}_t} f^i(x)$ \mathcal{V}_{t} are the agents at time t Goal: minimize the running loss $\mathbf{Loss}(T) = \frac{1}{\sum_{i=1}^{T} |\mathcal{V}_i|} \sum_{i=1}^{I} \sum_{i \in \mathcal{O}} f^i(x_t^{\text{ref}})$

 x_t^{ref} is the value of any agent at time t

Idea Use the framework of *online optimization* to analyze (offline) minimization over *open networks*

- with subgradient exchanges, we obtain $Loss(T) = O(1/\sqrt{T})$ without a global clock or current network state ⊳
- by extending *dual averaging* $x_t = \operatorname{proj}_C \left(x_1 \gamma_{i,t} \sum_{s \in S_t} g_{i,s} \right)$ to incorporate all gradients "equally" ⊳

Hsieh, I, Malick, Mertikopoulos: *Optimization in Open Networks via Dual Averaging*, CDC 2021. -: *Multi-Agent Online Optimization with Delays: Asynchronicity, Adaptivity, and Optimism*, preprint Dec. 2020.

Examining the behavior of a flock of agents wishing to regroup and learn simultaneously **Perspective**

2. Rates of Mirror Descent for Border Solutions in Variational Inequalities

Find $x^* \in C$ such that $\langle v(x^*), x - x^* \rangle \ge 0$ for all $x \in C$

 $\boldsymbol{\nu}$ is Lipschitz and strongly monotone

$$\begin{aligned} x_{k+1} &= \operatorname{argmin}_{u \in C} \left\{ -\gamma \left\langle \nu(x_k), x_k - u \right\rangle + D^h(u, x_k) \right\} \\ \text{with } D^h(u, x) &= h(u) - h(x) - \left\langle \nabla h(x), u - x \right\rangle \end{aligned}$$

▷ If x^* is on the border of *C*, the observed rate depends on the regularizer *h*

2. Rates of Mirror Descent for Border Solutions in Variational Inequalities

Find $x^{\star} \in C$ such that $\langle v(x^{\star}), x - x^{\star} \rangle \ge 0$ for all $x \in C$ v is Lipschitz and strongly monotone

$$\begin{aligned} x_{k+1} &= \operatorname{argmin}_{u \in C} \left\{ -\gamma \left\langle v(x_k), x_k - u \right\rangle + D^h(u, x_k) \right\} \\ \text{with } D^h(u, x) &= h(u) - h(x) - \left\langle \nabla h(x), u - x \right\rangle \end{aligned}$$

▶ If x^* is on the border of *C*, the observed rate depends on the regularizer *h*

Idea Upper-bound the Bregman divergence locally around a border solution

Find the smallest
$$\beta^{\star} \in [0, 1]$$
 such that $D^{h}(x^{\star}, x) \leq \frac{\kappa}{2} ||x - x^{\star}||^{2(1-\beta^{\star})}$ for all x close to x^{\star} in C

For border solutions, the convergence rate of $D^h(x^*, x_k)$ for Mirror Descent depends on the value of β^*

	Domain (C)	Regularizer (h)	Legendre Exponent (β^{\star})	Convergence Rate
Euclidean	arbitrary	$x^{2}/2$	0	$\exp(-O(t))$
Entropic	[0, ∞)	$x \log x$	1/2	O(1/t)
TSALLIS	[0, ∞)	$[q(1-q)]^{-1}(x-x^q)$	$\max\{0, 1 - q/2\}$	$O(1/t^{q/(2-q)})$
Hellinger	[-1, 1]	$-\sqrt{1-x^2}$	3/4	$O(1/t^{1/3})$

> Can be extended to Mirror Prox, Optimistic Mirror Descent, and stochastic variants

Perspective Exploiting the structure of constraint sets in variational inequalities

3. Regularization in Distributionally Robust Optimization

Distributionally robust risk minimization

 $\min_{x \in \mathbb{R}^n} \sup_{\mu \in \mathcal{U}(\mathbb{P}_m)} \mathbb{E}_{\xi \sim \mu} \left[\ell_x(\xi) \right]$

- ▶ Ambiguity set $\mathcal{U}(P_m)$: distributions in a neighborhood of the observed samples P_m discrete distribution
- ▶ This neighborhood depends on a *chosen metric* on distributions
 - Wasserstein distance has many good properties includes continuous distributions, statistical guarantees
 - ♦ but the resulting problem may be difficult to optimize dual approach

Idea Regularize the Wasserstein distance with Kullback-Liebler divergences for a more tractable objective

Perspective Going towards statistical guarantees & non-convex objectives not only for neural networks!

Esfahani and Kuhn: Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable reformulations. Mathematical Programming (2018)

Blanchet, Murthy, Zhang. Optimal transport-based distributionally robust optimization: Structural properties and iterative schemes. Mathematics of Operations Research (2021)

[◊] Gao and Kleywegt. Distributionally Robust Stochastic Optimization with Wasserstein Distance. preprint (2016)

Conclusion

Hokusai

Fine Wind, Clear Morning (Gaifū kaisei) in Thirty-six Views of Mount Fuji (1830-1832)

Conclusion

- ▶ Data Science problems offer a vast playground for optimizers
- ▶ I particularly enjoy the theory & practice of
 - ♦ Structure stability
 - ♦ Distributional robustness
 - ◊ Resilience in multi-agent systems

▶ Many thanks to all the collegues, students, and friends that made all this possible.

Thank you!

Motivating the Riemannian manifold nature of the observed structures: partial smoothness

A function g is (C^2 -)*partly smooth* at a point \bar{x} relative to the C^2 manifold \mathcal{M} around \bar{x} if:

- ▷ (smoothness) the restriction of *g* to \mathcal{M} is a C^2 function near \bar{x} ;
- ▷ (regularity) *g* is (Clarke) regular at all points $x \in \mathcal{M}$ near \bar{x} , with $\partial g(x) \neq \emptyset$;
- ▷ (sharpness) the affine span of $\partial g(\bar{x})$ is a translate of $N_{\bar{x}}\mathcal{M}$;
- ▷ (sub-continuity) the set-valued mapping ∂g restricted to \mathcal{M} is continuous at \bar{x} .

Lewis: Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization (2002)

- Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis (2004)
- Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems. Optimization (2006)

Motivating the Riemannian manifold nature of the observed structures: partial smoothness

A function g is (C^2 -)*partly smooth* at a point \bar{x} relative to the C^2 manifold \mathcal{M} around \bar{x} if:

- ▷ (smoothness) the restriction of *g* to \mathcal{M} is a C^2 function near \bar{x} ;
- ▷ (regularity) *g* is (Clarke) regular at all points $x \in \mathcal{M}$ near \bar{x} , with $\partial g(x) \neq \emptyset$;
- ▷ (sharpness) the affine span of $\partial g(\bar{x})$ is a translate of $N_{\bar{x}}\mathcal{M}$;
- ▷ (sub-continuity) the set-valued mapping ∂g restricted to \mathcal{M} is continuous at \bar{x} .

If *g* is p.s. and
$$\frac{\overline{y}-\overline{x}}{\gamma} \in \operatorname{ri} \partial g(\overline{x})$$
,
then for all *y* close to \overline{y} , **prox**_{*y*g}(*y*) $\in \mathcal{M}$

In the non-convex case, additional conditions are needed on *prox*_{vg}

Lewis: Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization (2002)

- Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis (2004)
- Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems. Optimization (2006)

Asynchronous Level Bundle

- > The disaggregated bundle accumulates information asynchronously no need to query all functions at all points
- \triangleright We can design a level bundle method to minimize *F*

Multi-agent Online Optimization with Delays

At time t:

- ▶ an agent i(t) becomes actives
- > plays a point x_t
- \triangleright suffers loss $f_t(x_t)$
- ▶ receives feedback $g_t \in \partial f_t(x_t)$

Asynchronously: agents exchange feedback vectors $g_s \rightsquigarrow$ delay bounded by τ

Goal: minimize the regret $\operatorname{Reg}_{T}(u) = \sum_{t=1}^{T} f_{t}(x_{t}) - \sum_{t=1}^{T} f_{t}(u)$

Idea active agent i(t) only has some subgradients $\{g_s : s \in S_t\}$ at time t

- ▶ we extend *dual averaging* to incorporate all gradients "equally" $x_t = \operatorname{argmin}_{x \in C} \left\{ \sum_{s \in S_t} \langle g_s, x \rangle + \frac{\|x\|^2}{2\gamma_t} \right\}$
- ▶ even without a global clock, we obtain $\operatorname{Reg}_T(u) = O(\sqrt{T \times \tau})$

