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Preface

The aim of this manuscript is to provide an overview of my research activities during
the last five years (or so), i.e. 2016–2021. During this period, I was an assistant

professor (Maître de conférences) at Univ. Grenoble Alpes, in the applied mathematics
& computer science “Jean Kuntzmann” laboratory.11and still am, as I write these lines.

In the present document, I highlight some of my favorite works in the field of
mathematical optimization. Doing so, I focused on two directions: (A) Utilizing the
nonsmooth patterns arising in certain data science problems, and (B) Handling multiple
asynchronous oracles in distributed minimization. The common thread unifying these
two parts lies in the observation that some notion of structure can be observed in these
problems and, furthermore, can be used to accelerate the convergence of optimization
algorithms.

The organization of the document is straightforward. Chapter 1 provides a general
introduction and Chapter 2 recalls the technical tools that will be used throughout the
manuscript. Then, Parts A and B contain the core chapters corresponding to the two
directions above. Ultimately, Chapter 9 provides some perspectives for future works.

Finally, I adopted a more personal tone during this manuscript compared to my
other scientific works. Thus, I included some thoughts and comments on the presented
results as well as… disparate quotes and puns. I hope you will enjoy this document in
spite of them.
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Abstract

Mathematical optimization is becoming more and more important in data science. This
is partly due to the increasing difficulty of learning tasks but also to the particular
structure of the associated minimization problems which makes them often tractable,
sometimes distributable, but always interesting. This is the central thread of this
habilitation.

In the first part, I study the mathematical characterization of the underlying struc-
ture of the solutions of regularized problems (e.g. when a sparsity prior is added
to the problem) as well as in the algorithmic exploitation of this phenomenon. The
second part of this work deals with the resolution of minimization problems by several
machines coordinated asynchronously by a central entity; this type of computation
is again made possible by the particular structure of data science problems. Finally,
some perspectives conclude this work.

Résumé

L’optimisation mathématique tient une place de plus en plus importante en science des
données. Ceci est dû en partie à la difficulté croissante des taches d’apprentissage mais
aussi à la structure particulière des problèmes de minimisation associés qui les rend
souvent tractables, parfois distribuables, mais toujours intéressants. C’est le thème
central de cette habilitation.

Dans un premier temps, je m’intéresse à la caractérisation mathématique de la
structure sous-jacente des solutions de problèmes régularisés (par exemple, lorsqu’un a
priori de parcimonie est ajouté au problème) ainsi qu’a l’exploitation algorithmique de
ce phénomène. La seconde partie de ce document traite de la résolution de problèmes
de minimisation par plusieurs machines coordonnées de manière asynchrone par une
entité centrale; ce type de calculs est une nouvelle fois rendu possible par la structure
particulière des problèmes en science des données. Finalement, quelques perspectives
viennent conclure ce travail.
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1 Introduction

Musée des Beaux-Arts et d’Archéologie de Besançon –
Mosaic of Neptune (IInd century)

Mathematical optimization can be very broadly defined as the “mathematics
of decision making” or the “mathematics of doing better”.2 2as per the words of Jérôme Malick

and Jean-Baptiste Hiriart-Urruty
respectively.

More precisely, an
optimization problem consists in selecting a good element from some set of possibilities
with respect to some criterion. Usually, this criterion is the minimization of some
function that encodes the badness of the possible points while the searching space is a
subset of an Euclidean or Hilbert space. The field of mathematical optimization then
consists in analyzing and numerically solving such problems.

1.1 Context & Motivation

Optimization plays a central role inmany disciplines such as signal processing, machine
learning, statistics, game theory, economics, control, computer science, etc. Among this
very diverse landscape, we will focus in this part on some specific forms of optimization
problems that arise in “data science at large” (i.e. some convex hull of signal processing,
machine learning, and statistics). For these problems, we will show that their specific
structure can be used in order to produce a finer analysis as well as better numerical
solutions.
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1.1.1 Optimization problems in data science…

A common problem in data science is, given some dataset S< consisting of< points
(a8 , 18 ) ∈ A × B (often supposed i.i.d. from some distribution D), to find a prediction
function % : A → B that minimizes some risk function ' measuring the adequation
of % to the data distribution. This general problem encompasses standard tasks such
as regression, classification, or clustering (see e.g. the textbook (Shalev-Shwartz and
Ben-David, 2014)).

In practice, this problem has to be approximated to be computationally tractable.
Indeed, the set of all possible prediction functions is hardly tractable and the risk func-
tion depends on a potentially unknown data distribution. Thus, we restrict ourselves
to parametrized prediction functions %G : A → B where G ∈ Θ ⊂ ℝ= . Typically, the
prediction may be taken linear: %G (a) = Φ(a)>G where Φ is a mapping from A → ℝ=

and Θ is some compact set so that the prediction does not overfit the data. The problem
can then be reformulated as finding a parameter that minimizes the empirical risk:

min
G ∈Θ

'̂(%G ) =
1

<

<∑
8=1

ℓ (18 , %G (a8 )) (ERM)

where the loss ℓ : B × B → ℝ+ measures the difference between a true and a
predicted output (e.g. ℓ (1, 1 ′) = 1

2 ‖1 − 1
′‖2, 111′<0, or log(1 + exp(−11 ′))). These loss

functions often depend either on i) the statistical modelling of the problem through
the (log) likelihood (squared 2-norm for linear regression of points corrupted by a
Gaussian noise, 1-norm for Laplace noise); or ii) directly from applications (0/1 for
“correct”/“incorrect” predictions in classification, eventually convexified/smoothed to
improve stability and tractability).

The empirical risk minimization problem (ERM) thus enables us to obtain a good/op-
timal parameter G★ ∈ Θ and thus a good prediction function %G★ for our task. This
modelling step enabled us to replace a minimization of an implicit objective over a set
of functions to the minimization of a real valued function.

1.1.2 … and their structure

Let us take a closer look at the form of empirical risk minimization problems.

Smooth objective First of all, the objective of the (ERM) problem is often differentiable.
For example, this is the case if the prediction function is linear (or at least differentiable)
in the parameter and the loss is taken differentiable. These are common modelling
choices. However, this may not always be true. The prediction may be nonsmooth
when it relies on some specific architecture, for instance in neural networks. In terms
of loss, smooth surrogates are often used when the natural one would be nonsmooth,
as in classification. A great advantage of this smoothness is the possibility to rely on
gradient-based methods which offer good performance in practice and theory in many
situations, especially when the dimensions of the problem are large.

Sum form The independence of the data points and the objective of minimizing the
average error encoded by the empirical risk naturally result in a sum over the examples.
An advantage of this form is that gradients over different parts of the dataset can be
computed separately and then recombined. This structure is for instance explicitly
used in the variance-reduced stochastic gradient methods (e.g. SAGA, SVRG, MISO,
etc.) which are state-of-the-art solvers for a variety of machine learning problems.
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Nonsmooth contraints/regularization With the ever-growing collection of data,
the size of learning problems has significantly increased, both in terms of number of
examples,<, as well as in size of optimized parameter, =. While the increase in number
of examples is generally beneficial for the general conditioning of the problem, the
increase of the parameter space often makes the problem ill-conditioned and reduces
both the interpretability and stability of the model. In order to overcome this issue, a
generally admitted solution is to introduce a prior on the structure of the model G (e.g.
low norm, low rank, sparsity) and encode it in the constraint set Θ.

However, carefully choosing the constraint set may be difficult since one may not
want to enforce a prior at all cost, regardless of the model performance of the implied
prediction. A possible remedy is to drop the constraint set and regularize the (ERM)
in order to promote the prior structure. This consists in adding to the objective a
nonsmooth function Ω enforcing the sought structure. Indeed, nonsmoothness of
functions traps optimal solutions in low-dimensional manifolds: small perturbations
in the risk around these points would not break down optimal structure as illustrated
by Fig. 1.1. Mathematically, this is due to subdifferentials being set-valued and normal
to the associated structure. For instance, the subdifferential of the ℓ1-norm at a point G
is set-valued when G lies on the axes and normal to the set of vectors with the same
sparsity pattern as G . This means that by adding a ℓ1-norm to the (ERM), the minima
that are close to an axis will be shifted exactly to the axis, the ℓ1-norm thus promotes
sparsity.
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Figure 1.1: Illustration of the stability of optimal solutions of the lasso in ℝ2. We
plot the level sets of ‖�G − 1‖22 for two problems of (lasso) with different but close
design matrices �. We see that while the solutions of the (unregularized) least-squares
problem (marked by a ×) are different, the solutions of the lasso (marked by a circled
cross), although different, lie on the same axis, corresponding to the nonsmoothness
loci of the ℓ1-norm.

Structure of regularized empirical risk minimization At this point, a regularized
version of (ERM) can be formulated as

min
G ∈ℝ=

1

<

<∑
8=1

sum form
=:5 8 (G)︷         ︸︸         ︷

ℓ (18 , %G (a8 ))︸                  ︷︷                  ︸
=:5 (G)

minimizes the risk '̂ (%G )

+ _ Ω(G)︸  ︷︷  ︸
=:6 (G)

enforces structure

(Regularized ERM)
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for some parameter _ > 0 that controls the balance between fit and structure.
Example 1.1. To make it more concrete, let us consider the popular example of ℓ1-
regularized least-squares problems (often called lasso (Tibshirani, 1996)): take a linear
prediction function, a quadratic loss, and the ℓ1-norm as a regularizer, the regularized
empirical risk minimization problem becomes

min
G ∈ℝ=

1

2
‖�G − 1‖22 + _ ‖G ‖1 . (lasso)

Optimal solutions are then sparser than the ones of the original least-squares, and
their sparsity pattern is stable under small perturbations; see Fig. 1.1. J

1.2 Contributions presented in this manuscript

Motivated by the problems mentioned above, the central thread of this habilitation
will be:33These works correspond to the

core of my research since 2016. My
other contributions are summarized

in Appendix A and a full
publication list can be found in

Appendix B.

How to harness the
���� =>=B<>>CℎBD<

structure in optimization problems?

The center of the manuscript is divided in two parts, corresponding to the two
types of structure presented above:

Part A focuses the nonsmooth structure revealed by proximal methods. We start from
the observation that in most cases of interest, the proximity operator of the
nonsmooth function is explicit as well as its non-differentiability points. This
means that under some standard conditions, proximal methods will reach this
structure, which is exploitable both numerically and as side-information on the
problem. Then, we observe that not all proximal methods are equal with respect
structure and provide several ideas to preserve and further numerically exploit
this valuable knowledge.

Part B is dedicated to problems with sum structure. Motivated by distributed opti-
mization, we place ourselves in the case where a coordinator can communicate
with several workers, each having access to one term of the sum. We focus on
the problem of asynchronicity where the workers perform their computation
independently and communicate individually with the coordinator as soon as
their update is ready, without synchronization. In this setting, we propose ef-
ficient methods that explicitly handle delayed information without relying on
any information about the computing system such as response times.

Finally, we give in Chapter 9 some perspectives for future research.

1.2.1 Part A– Structure Identification in Data Science

In data science problems, the nonsmoothness often comes from a chosen regularization
that enforces some structure. To tackle this specific structure, we formalize three
“requirements”:

• the proximity operator of the regularization function is computable exactly;
• the structure enforced by the regularization can be described as a collection of
Riemannian manifolds;

• as a by-product of the proximity operator computation, the membership to the
structure manifolds is also obtained.
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These properties are verified by many regularizations/structure couples in practice,
the most well-known of which are the ℓ1-norm/sparsity and the nuclear norm/low
rank. The interest of these requirements is that they put us in a favorable case where
structure identification and exploitation can be explicitly formulated and put in action.

Chapter 3 draws the mathematical foundations of structure identification for
proximal methods. Its goal is to give a simple and intuitive analysis of the process that
draws the iterates of an algorithm to a structure-encoding manifold thanks to the use
of proximal operations. This chapter contains mostly (variations of) known results; we
tried to present them in the most direct and useful way considering the global objective
of this part. We start by giving simple conditions for identifying the structure at the
limit in a finite number of iterations (either partially or exactly) as well as examples
for popular regularizations in data science. However, in order to fully benefit from
identification, we also need to control the smoothness of the objective when restricted
to the identified structure. This naturally calls for the notion of partial smoothness.
After exploring the link between partial smoothness and proximal identification as
formulated before, we also show how this property also brings smoothness to the
proximity operator.

M

auxiliary sequence•
~:•

•

main iterates sequence
• G:

••

proximity operator

Chapter 4 focuses on variants of the proximal gradient algorithm. This method is
the natural baseline when minimizing the sum of a smooth and a nonsmooth function
commonly arising in data science. It is also the starting point for many stochastic and
distributed algorithms. The goal of this chapter is to give a practical viewpoint on
identification for the main variants of the proximal gradient, focusing on accelerated
and monotonous methods. Using the results of the previous chapter, we show that all
these methods appear equivalent with respect to finite-time identification. However,
numerical experiments reveal striking differences: the fastest methods sometimes have
trouble identifying the final structure as they are carried away by their inertia. To
combine speed and identification, we propose an inertial proximal gradient method
which cancels the inertial acceleration as soon as the current structure is in jeopardy.
This kind of methods benefits from the same optimal rate as the accelerated proximal
gradient while being much more stable in terms of structure identification as illustrated
numerically.
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Now that we have both a theoretical and practical intuition about structure identi-
fication, a natural question is:

How can we harness the identified structure?

Taking advantage of some given structure can be quite direct by restricting our
search space. However, even though the iterates’ structure can be observed along
the way (as per our “requirements”), we do not know if some structure is final or not.
Adaptivity is thus key in our context. Nevertheless, if a manifold is currently identified
(e.g. some coordinates are null), it is reasonable to postulate that it may be stable at
least for some time (e.g. these coordinates remain null). Thus, favoring the current
structure can provide a numerical boost (e.g. updating preferentially the non-null
coordinates). Our objective is then to provide methods that adaptively exploit the
iterates’ structure without putting the theoretical convergence guarantees at risk.

Chapter 5 investigates how identification can be used to update the sampling
probabilities in coordinate descent methods. For this chapter, we restrict ourselves to
the identification of linear subspaces. We first show how the usual proximal coordinate
descent algorithm can be extended to randomly sample along our linear subspaces of
interest and investigate its convergence and identification properties. Then, we observe
theoretically and in practice that constantly adapting the sampling probabilities to the
identified structure leads to a chaotic non-converging algorithm. To overcome this
erratic behavior, we devise an adaptive sampling strategy that introduces a waiting
time between two consecutive adaptations depending on the amount of change. This
restores the convergence and provides a numerical gain in practice compared to non-
adaptive methods.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·105

10

15

20

25

30

Iteration

Ite
ra
te
ss

pa
rs
ity

adapting the structure at each iteration
with prescribed waiting time

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·105

10−10

10−7

10−4

10−1

102

Iteration

Su
bo

pt
im

al
ity

adapting the structure at each iteration
with prescribed waiting time



1.2 Contributions presented in this manuscript 7

Chapter 6 puts into practice a finer approach to structure exploitation. Previously,
we used the fact that the output of a proximity operator is structured. In this chapter,
we additionally rely on the notion of partial smoothness which makes the full objective
is smooth along the identified manifold. Hence, in order to fully exploit this situation,
we turn to Riemannian second-order methods. We show that alternating proximal
gradient steps and Riemannian (truncated) Newton steps leads to a structure adaptive
methods with super-linear convergence. In practice, we observe a nice numerical
boost as soon as a low-dimensional structure is reached.
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1.2.2 Part B – Distributed Structure & Asynchrony

In many optimization problems involving data, the objective features a sum over all the
available data. It is the case for empirical risk minimization as mentioned above but also
for Lagrangian relaxations for instance. In addition, inmodern computing architectures,
the data is often scattered over several machines. This means that each machine only
has access to part of the data and can produce oracles (e.g. gradients) associated with
its local batch. When the number of machines grows, the communication between
them may become a bottleneck since synchronization implies handling simultaneous
access to the medium and waiting for lagging agents. Our key concern is thus:

How to efficiently harness asynchronous oracles?

An important point to be resilient to the heterogeneous that appear in practice is
how to incorporate information at outdated points. Instead of treating it as a delay-
induced noise, our viewpoint is to explicitly handle the older points in the algorithm.
As a consequence, we are able to propose methods whose parameters or convergence
does not depend on any kind of bound or structure on the delays. The chapters of this
part respectively deal with the case where the worker produce subgradient oracles (i.e.
the nonsmooth case) and gradient oracles.

Chapter 7 deals with the minimization of a sum of nonsmooth functions, each
associated with a worker able to produce a subgradient oracles. These kind of problems
are typically solved by bundle methods which construct iteratively piecewise-linear
lower-approximations of the global function based on (total) subgradient and functional
value information. We first show that such approximations can still be obtained from
individual information even if the points of query are different (which means that the
total functional value or subgradient is not computed at these points so this model
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does not “touch” the function graph in general). Thanks to this disaggregated model,
we are able to provide two asynchronous bundle methods for which converge can be
guaranteed for any kind of delays. The difference between the two aforementioned
methods lies in the estimation of an upper-bound on the optimal value: we show that
querying all worker at the same point from time to time is highly beneficial in theory
and in practice.

•

•
Bundle model
from 2 queries

Disaggregated Bundle
model for a sum of 2
functions from 2 queries
per function

•
•

•

•

Chapter 8 consider the setting of Regularized ERM as a sum of smooth functions,
each assigned to one worker, plus a shared nonsmooth function. We present a variant
of the proximal gradient that is able to deal with any kind of delays in the response of
the asynchronous workers. Beyond the flexibility with respect to the computing setup,
we pay a special attention to reducing the communications between the workers and
the coordinator. For instance, we allow the workers to perform several gradient steps
before communicating their result. Also, when the nonsmooth function is sparsity-
inducing, we show how to use the identification properties of the method to sparsify
all communications and attain a better performance in terms of communications which
is observable both in theory and in practice.

•G2
•G3

•G1
•G̃3

Combining 3 separate
directions and moving
from the last point or
an averaged point
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1.3 Reading guide

We end this introduction chapter by a reading guide to help the reader navigate
through this document gathering several years of work and around ten papers. The
main chapters of the manuscript are divided into two parts (corresponding to the
two topics presented above), each featuring a specific introduction to its themes and
literature. Inside these parts, the content of the articles are sometimes split in order to
factorize the common elements or ideas and to insist on their respective algorithmic
or technical contributions.4 4This is also the occasion for

additional numerical and graphical
illustrations.

For clarity, each chapter features a short abstract pointing
to the associated contributions.

In Chapter 2, we review the mathematical tools that will be central to our fur-
ther results. They are mostly recalls of standard variational analysis results with a
special focus on nonsmoothness (subgradients, proximity operators) and Riemannian
manifolds (retractions, functional analysis) that enables this manuscript to be almost
self-contained. Most readers may probably skip this part or come back to specific
results when they are called later in the manuscript.

� Part A consist in four chapters regrouping my contributions around proximal identi-
fication, which corresponds to the following papers:
A-i F. Iutzeler, J. Malick: Nonsmoothness in Machine Learning: specific structure,

proximal identification, and applications, Set-Valued and Variational Analysis,
vol. 28, no. 4, pp. 661–678, 2020.

A-ii G. Bareilles, F. Iutzeler: On the Interplay between Acceleration and Identifi-
cation for the Proximal Gradient algorithm, Computational Optimization and
Applications, vol. 77, no. 2, pp. 351–378, 2020.

A-iii F. Iutzeler, J. Malick : On the Proximal Gradient Algorithm with Alternated
Inertia , Journal of Optimization Theory and Applications, vol. 176, no. 3, pp.
688-710, 2018.

A-iv D. Grishchenko, F. Iutzeler, J. Malick: Proximal Gradient methods with Adaptive
Subspace Sampling, Mathematics of Operations Research, to appear, 2021.

A-v G. Bareilles, F. Iutzeler, J. Malick: Newton acceleration on manifolds identified
by proximal-gradient methods, preprint 2021.

Chapter 3 is a tutorial/review chapter on identification for proximal methods,
borrowing its viewpoint from A-i. The results and intuitions presented there
will be the base for the next chapters.
Chapter 4 illustrates the notions introduced in Chapter 3 for the specific case of
the proximal gradient and its accelerated variants. In particular, it is the occasion
to compare theory and practice, with some remarks and results stemming from
A-ii and A-iii.
Chapter 5 and Chapter 6 correspond to the numerical methods presented in A-iv
and A-v respectively.

� Part B has two chapters centered around asynchronous distributed methods which
were developed in the following papers:

B-i F. Iutzeler, J. Malick, and W. de Oliveira : Asynchronous level bundle methods,
Mathematical Programming, vol. 184, pp. 319-348, 2020.

B-ii K. Mishchenko, F. Iutzeler, J. Malick, M.-R. Amini: A Delay-tolerant Proximal-
Gradient Algorithm for Distributed Learning, 35-th International Conference on
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Machine Learning (ICML), PMLR 80:3584-3592, Stockholm (Sweden), July 2018.
B-iii K. Mishchenko, F. Iutzeler, and J. Malick : A Distributed Flexible Delay-tolerant

Proximal Gradient Algorithm , SIAM Journal on Optimization, vol. 30, no. 1, pp.
933-959, 2020.

B-iv D. Grishchenko, F. Iutzeler, J. Malick, and M.-R. Amini: Distributed Learning
with Sparse Communications by Identification , SIAM Journal on Mathematics
of Data Science, vol. 3, no. 2, pp. 715-735, 2021.

Chapter 7 corresponds to an asynchronous variant of the (level) bundle method
presented in B-i.
Chapter 8 focuses on the asynchronous proximal gradient method introduced in
B-ii and studied in B-iii. It also discusses the identification-based communication
sparsification presented in B-iv .

Finally, Chapter 9 presents some perspectives for future research building on the
results presented in the manuscript.

��



2 Preliminaries

Hieronymus Bosch – The Garden of Earthly Delights
(1490-1500)

The purpose of this chapter is to define the objects and notions at play in
the rest of the document. There is no particular contribution in this part

and the experienced reader can shamelessly skip part or all of this.

2.1 Variational analysis

In the first page of the renowned book “Variational analysis” by R. Tyrrell Rockafellar
and Roger J-B Wets (Rockafellar and Wets, 2009), we are told that “it’s convenient for
many purposes to consider functions � that are allowed to be extended-real-valued,
i.e. to take values in ℝ = [−∞, +∞] instead of just ℝ = (−∞, +∞)”, we will thus adopt
this convention ourselves.
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A fundamental question in variational analysis is the study of the minimum (or
equivalently maximum) of functions defined over a Euclidean spaceℝ= . For a function
� : ℝ= → ℝ, we define its domain as dom � := {G ∈ ℝ= : � (G) < +∞}, and its
infimum as

inf � := inf
G ∈ℝ=

� (G) = inf
G ∈dom �

� (G).

Whenever this infimum is attained, i.e. there is some G such that � (G) = inf � , then it
is called a minimum and is denoted by min � . We further define

argmin � := {G ∈ ℝ= : � (G) = inf � } .

Additionally, a function � is lower semi-continuous if for any G ∈ ℝ= ,

lim inf
D→G

� (G) := min{C ∈ ℝ : ∃DA → G with � (DA ) → C} = � (G).

Finally, a function � is said to be proper if � (G) < +∞ for at least one G ∈ ℝ= and
� (G) > −∞ for all G ∈ ℝ= . This means that the domain of a proper function is a
nonempty set over which � is finite-valued.

2.1.1 Subgradients

In order to investigate the local behavior of a function with respect to minimization, a
first natural step is to consider local affine lower approximations. This first-order in-
formation is captured by the notion of subgradients. There is a variety of subgradients
and several ways to express them, see (Rockafellar and Wets, 2009, Chap. 7,8), (Mor-
dukhovich, 2006, Chap. 1) for general references. We give here only the notions that
will be used for our purposes following the terminology and notations of (Rockafellar
and Wets, 2009, Chap. 8).

Definition 2.1 (Subgradients). Consider a function � : ℝ= → ℝ and a point G ∈ ℝ=
at which � (G) is finite:

• the set of regular subgradients is defined as

m̂� (G) = {{ : � (D) ≥ � (G) + 〈{,D − G〉 + > (‖D − G ‖) for all D ∈ ℝ=} , (2.1)

• the set of (general or limiting) subgradients is defined as

m� (G) =
{
lim
A
{A : {A ∈ m̂� (DA ), DA → G, � (DA ) → � (G)

}
.

If � (G) is infinite, m̂� (G) = m� (G) = ∅.

While the regular subgradient seems simpler and more appealing at first, we will
use the general subgradient in all the following, simply referenced under the name
subgradient for simplicity. The reason for this is its superior continuity properties as
stated in the following lemma.
Lemma 2.2 (Rockafellar and Wets 2009, Th. 8.6, Prop. 8.7). Consider a function
� : ℝ= → ℝ and a point G ∈ ℝ= at which � (G) is finite, then the sets of regular
subgradients m̂� (G) and general subgradients m� (G) are closed. Furthermore, the set of
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general subgradients m� is outer semi-continuous at G , ie.

lim sup
D→G with � (D)→� (G)

m� (D) := {{ : ∃DA → G, ∃ {A → { with {A ∈ m� (DA )} ⊂ m� (G)

Note that the regular and limiting subgradients may coincide at some point G , we
then say that the function is (Clarke) regular at G (Rockafellar and Wets, 2009, Def.
7.25, Cor. 8.11). While less natural in its definition, the outer semi-continuity property
of the general subgradient allows us, for example, to deduce that any limit point G of a
sequence (G: ) satisfies 0 ∈ m� (G) if the distance from m� (G: ) to 0 vanishes.

The condition 0 ∈ m� (G) is particularly interesting since it is related to local
minimas by Fermat’s rule (see (Rockafellar and Wets, 2009, Th. 10.1)).
Theorem 2.3 (Fermat’s rule). If a proper function � : ℝ= → ℝ has a local minimum
at G ( i.e. if there is a neighborhoodU of G such that � (G) ≤ � (D) for all D ∈ U) then
0 ∈ m� (G).

2.1.2 Gradient and smoothness

If a function � : ℝ= → ℝ is differentiable at a point G , its gradient is the vector of ℝ=
comprised of its partial derivatives. In line with the regular subgradient notation, it
can also be defined as

∇� (G) = {{ : � (D) = � (G) + 〈{,D − G〉 + > (‖D − G ‖) for all D ∈ ℝ=} .

From this definition, the following lemma directly follows.
Lemma 2.4. Consider a function � : ℝ= → ℝ and a point G ∈ ℝ= at which � is differ-
entiable, then ∇� (G) = m̂� (G) ⊂ m� (G). If, in addition, � is continuously differentiable
around G , then ∇� (G) = m� (G).
Furthermore, if � = 5 + 6 with 5 continuously differentiable around G and 6(G) finite,
then m� (G) = ∇5 (G) + m6(G).

Remark 2.5. In terms of notations, 5 will indicate a continuously differentiable (i.e. C1)
function, while 6 will indicate a function that may present non-differentiability points
(i.e. a nonsmooth function). Finally, when smoothness plays no role, the notation �
will be used. J

Note that there is slight discrepancy of terminology in the literature concerning
the notion of smoothness for functions. In (Rockafellar and Wets, 2009), it is used
for continuously differentiable functions while in numerical optimization (e.g. (Beck,
2017)), it is used for functions with Lipschitz-continuous gradients. We will adopt the
latter viewpoint. The reason for this is that it allows us to have a quadratic upper
approximation of our function, obtained directly from the fundamental theorem of
calculus.
Lemma 2.6. Consider a function 5 : ℝ= → ℝ with a !-Lipschitz continuous gradient,5

5In the following, we will call such a
function “!-smooth”.

then for any G,D ∈ ℝ= , one has

| 5 (G) − 5 (D) − 〈∇5 (D), G − D〉| ≤ !
2
‖G − D‖2

Such a quadratic approximation is often used for gradients steps, i.e. taking

G = D − W∇5 (D)
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for some W > 0. Indeed, in that case, Lemma 2.6 gives use

5 (G) ≤ 5 (D) −
(
1

W
− !
2

)
‖G − D‖2 (2.2)

which provides functional descent whenever W < 2/!.

2.1.3 Convexity

In minimization problems, the notion of convexity plays a major role with respect to
the localization of minimas.
Definition 2.7. A subset� ofℝ= is convex if and only if for anyG,D ∈ � , (1−U)G+UD ∈
� for any U ∈ (0, 1).
A function � : ℝ= → ℝ is convex if and only if for any G,D ∈ ℝ= , � ((1 − U)G + UD) ≤
(1 − U)� (G) + U� (D) for any U ∈ (0, 1).

This class of functions comes with several interesting properties, for instance
dom � and argmin � are convex if � is convex. Furthermore, every local minimum is
a global one. This is again captured by the notion of subgradients.
Lemma 2.8 (Rockafellar and Wets 2009, Prop. 8.12). Consider a convex proper function
� : ℝ= → ℝ and a point G ∈ dom � . Then,

m� (G) = {{ : � (D) ≥ � (G) + 〈{,D − G〉 for all D ∈ ℝ=} = m̂� (G) ≠ ∅.

Thus, � is regular at any point and 0 ∈ m� (G) if and only if G ∈ argmin � .

If, in addition, � is differentiable, convexity can be seen directly as a property on
the gradient mapping.
Theorem 2.9 (Bauschke and Combettes 2011, Prop. 17.10). Let 5 : ℝ= → ℝ be a proper
function with open domain. Suppose that 5 is differentiable on dom 5 . Then the following
are equivalent:

i) 5 is convex;

ii) 5 (D) ≥ 5 (G) + 〈∇5 (G), D − G〉 for all G,D ∈ dom 5 ;

iii) 〈∇5 (G) − ∇5 (D), G − D〉 ≥ 0 for all G,D ∈ dom 5 , i.e. ∇5 is monotone.
Furthermore, if 5 is twice differentiable on dom 5 , any of the above is equivalent to

iv) 〈D,∇2 5 (G)D〉 ≥ 0 for all G,D ∈ dom 5 , i.e. ∇2 5 is positive semi-definite.

Finally, while convexity provides affine lower bounds, having (convex) quadratic
lower-bounds enable to get a better control that may have a great impact on the con-
vergence of optimization methods; this is captured by the notion of strong convexity.

Definition 2.10. For some ` > 0, a function � : ℝ= → ℝ is `-strongly convex if and
only if � − `

2 ‖ · ‖
2 is convex.

Using the fact that �̃ := � − `2 ‖ · ‖
2 is convex and verifies m�̃ = m� −`· by Lemma 2.4,

we get that for any G ∈ ℝ= and any { ∈ m� (G)

� (D) ≥ � (G) + 〈{,D − G〉 + `
2
‖D − G ‖2 for all D ∈ ℝ= (2.3)

which directly implies that a strongly convex function has at most one minimizer
by taking G such that 0 ∈ m� (G). The following lemma then adds the existence (see
(Bauschke and Combettes, 2011, Chap. 11.4) for a more general take).
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Lemma 2.11. Let � : ℝ= → ℝ be a strongly convex lower semi-continuous proper
function, then � has exactly one minimizer.

Proof. From (2.3), we get that for all D ∈ ℝ= ,

� (D) ≥ � (G) + `
2
‖G ‖2 − 〈{, G〉 + 〈{ + `G,D〉 + `

2
‖D‖2

≥ � (G) + `
2
‖G ‖2 − 〈{, G〉 − ‖{ + `G ‖‖D‖ + `

2
‖D‖2

hence � (D)/‖D‖ → +∞when ‖D‖ → +∞, i.e. � is supercoercive. Thus, this means that
for any C , the level set {G : � (G) ≤ C} is bounded (this is direct by contradiction, see
(Bauschke and Combettes, 2011, Prop. 11.11)). This means that since � is proper, we can
take C sufficiently large so that the corresponding level set is non-empty and bounded.
Finally, since � is lower semi-continuous, applying Weierstrass extreme value theorem
(see (Bauschke and Combettes, 2011, Th. 1.28) in our case) to this compact set gives
us the existence of a minimal value, which is unique from the quadratic lower bound
expressed in (2.3). �

2.2 The proximity operator

A central tool to tackle non-differentiable functions is the proximity operator introduced
by Jean-Jacques Moreau in (Moreau, 1962, 1965). For a (nonsmooth) function 6 : ℝ= →
ℝ and a step-size W > 0, the proximity operator proxW6 is defined as the set-valued
mapping

proxW6 (~) := argminD∈ℝ=

{
6(D) + 1

2W
‖D − ~‖2︸                  ︷︷                  ︸

:=d~ (D)

}
. (2.4)

In the same flavor as for the gradient step, if one takes a proximal step, i.e.

G = proxW6 (~)

for some W > 0, the definition directly gives us

6(G) ≤ 6(~) − 1

2W
‖G − ~‖2 (2.5)

which mirrors (2.2) (the descent inequality of a gradient step on a smooth function)
but for a potentially nonsmooth function. Actually, this link can be made formal
since a proximal step is equivalent to a gradient step on the Moreau envelope defined
for all ~ ∈ ℝ= as 4W6(~) = infD∈ℝ= d~ (D) (Moreau, 1965; Yosida, 1988). Another
possible viewpoint is to notice that G = ~ − Wm6(G) which is sometimes called an
implicit gradient step to emphasize its relation with numerical integration methods
for ordinary differential equations.

In that respect, the proximity operator provides an alternative to the use of subgra-
dients since they are not able to provide sufficient descent inequalities such as (2.2) and
(2.5). However, this comes with the cost of having to solve a minimization subproblem,
which in turn raises questions about the existence and uniqueness of the subproblem
solutions.
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Remark 2.12 (Convex case). When 6 : ℝ= → ℝ is a convex lower semi-continuous
proper function, everything is made easy since Lemma 2.11 guarantees the existence
and uniqueness of the minimizers of d~ (D) for any D, which means that proxW6 (~) is
well-defined and unique. J

Contrary to the convex case, the existence and even more, the unicity in the general
case mainly comes from scattered results in the literature. Hence, we try to regroup
them here in a self-contained manner.

2.2.1 Existence

Proximity operators exist as soon as the minimization subproblem has a solution.
For this, the function 6 needs to be proper (to have finite values) and lower semi-
continuous (so that the infimum over a compact set can be attained). But that is
not sufficient, the function 6 must not decrease to −∞ too fast: if 6(~) = − exp(~),
the problem has no solution; if 6(~) = −A ‖~‖2, the problem may or may not have
a solution, depending on the value of A , finally if 6(~) ≥ V > −∞ then the problem
always has a solution. This behavior with respect to quadratic functions is captured
by the notion of prox-boundedness (see (Rockafellar and Wets, 2009, Chap. 1.G) for a
detailed treatment).

Definition 2.13. A proper lower semi-continuous function 6 : ℝ= → ℝ is A?1-prox-
bounded if either of the equivalent conditions hold:

• 4W6(~) > −∞ for some ~ ∈ ℝ= and all 0 < W ≤ 1/A?1 ;
• 6 + 1

2W ‖ · ‖
2 is bounded from below on ℝ= for all 0 < W < 1/A?1 .

In particular, if 6 is bounded from below onℝ= , i.e. inf 6 > −∞, then 6 is prox-bounded
with threshold A?1 = 0.

This definition allows us to show the existence of the proximity operator.

Theorem 2.14. Let 6 : ℝ= → ℝ be a proper lower semi-continuous function. If 6 is
A?1-prox-bounded, then for any W ∈ (0, 1/A?1), proxW6 (~) is non-empty and compact for
all ~ ∈ ℝ= .

Proof. Following the same line as (Rockafellar and Wets, 2009, Th. 1.25), we use the
prox-boundedness to show that for any ~, and any W ∈ (0, 1/A?1), d~ (D) ≥ V + 2 ‖~ −
D‖2 for any ~ and some V ∈ ℝ, 2 > 0. The surrogate d~ is thus coercive (that is
d~ (D) → +∞ whenever ‖D‖ → +∞) and thus has bounded level sets (see (Bauschke
and Combettes, 2011, Prop. 11.11)). These level sets are non-empty above some value
since d~ is proper (which is directly implied by 6 being proper) and closed since d~
is lower semi-continuous (Bauschke and Combettes, 2011, Lem. 1.24) (as 6 is lower
semi-continuous, the squared norm is continuous and the positive sum of lower semi-
continuous functions is lower semi-continuous (Bauschke and Combettes, 2011, 1.27)).
Finally, restricting d~ to a non-empty closed level set, the infimum is attained by the
extreme value theorem (Bauschke and Combettes, 2011, Th. 1.28) which means that
proxW6 (~) is non-empty. The closedness comes from the lower semi-continuity of 6
and the boundedness from the coercivity of d~ . �

From this result, we see that the existence of proximity operators is usually direct
for the user. The only point on which one has to be careful is the potential limit on the
range of stepsizes whenever 6 is not lower bounded.
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2.2.2 Prox-regularity

Once existence is taken care of, the next natural question is the uniqueness and the
stability of proximal point, at least locally. For this, it is natural to express the fact that
6 locally has a quadratic lower model so that the sensitivity of the minimizers of d~ is
locally controlled.6 6Here, opposedly to strong

convexity, this is a concave
quadratic lower model.

Otherwise said, one has to add a bit of control in the small > of the
regular subgradient inequality (2.1) locally around some point. This is captured by the
notion of prox-regularity (Rockafellar and Wets, 2009, Chap. 13.F).

Definition 2.15. A function 6 : ℝ= → ℝ is A -prox-regular at Ḡ for {̄ ∈ m6(Ḡ) if 6 is
finite and locally lower semi-continuous at Ḡ and there exists Y > 0 such that

6(D) ≥ 6(G) + 〈{,D − G〉 − A
2
‖D − G ‖2 for all D ∈ B(Ḡ, Y) (2.6)

when { ∈ m6(G), ‖{ − {̄‖ < Y, ‖G − Ḡ ‖ < Y, and 6(G) < 6(Ḡ) + Y.
When the above holds for all {̄ ∈ m6(Ḡ), 6 is said to be A -prox-regular at Ḡ .

The first thing to notice is that it is a local property around Ḡ but also for close
values of the subgradients and the functions. For instance, one can check that the
ℝ→ ℝ function ind{0} defined as ind{0} (G) = 1 for all G ≠ 0 and ind{0} (0) = 0 is
prox-regular with any threshold, but G can only be taken equal to Ḡ in (2.6). We note
also that if a function is A -prox-regular then it is A ′-prox-regular for all A ′ ≥ A .

In addition, taking G = Ḡ in (2.6), we deduce that if 6 is A -prox-regular at Ḡ , it is
also (Clarke, or subdifferentially) regular7 7However, this does not hold if 6 is

A -prox-regular at Ḡ only for some
subgradients.

at Ḡ .

2.2.3 Unicity and Lipchitz continuity

Now, given some point ~ ∈ ℝ= and coming back to the definition of the proximity
operator,

G ∈ proxW6 (~)

⇔ 6(G) + 1

2W
‖G − ~‖2 ≤ 6(D) + 1

2W
‖D − ~‖2 for all D ∈ ℝ= (2.7)

⇔ 6(D) ≥ 6(G) + 〈(~ − G)/W︸     ︷︷     ︸
:={

, D − G〉 − 1

2W
‖D − G ‖2 for all D ∈ ℝ= (2.8)

⇔ G ∈ proxW6 (G + W{)

⇒ { =
~ − G
W
∈ m6(G) (2.9)

where the last implication comes from the generalized Fermat’s rule (Rockafellar and
Wets, 2009, 10.1) since G is a minimum of d~ .8 8Fermat’s rule implies that

0 ∈ md~ (G) = m6 (G) + 1/W (G − ~) .A natural question is thus, given two points G,~ ∈ ℝ= such that (~ − G)/W ∈
m6(G), do we have G = proxW6 (~) (with unicity)? The notion of prox-regularity seems
particularly helpful here. However, looking at (2.6) and (2.8), we see that the former
is local while the later is global; this means that prox-regularity ensures only (2.8)
around some Ḡ . The inequality thus has to be globalized.

This question has been widely addressed in the literature, stemming mainly from
(Poliquin and Rockafellar, 1996, Th. 4.4) (see also (Hare and Sagastizábal, 2009, Th.
4) for a more recent take). However, a less known fact is that the range of proximal
stepsizes allowed depends if the points are around a proximal output (i.e. a point Ḡ
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such that there is some ~̄ and W̄ such that Ḡ = proxW̄6 (~̄)). If such a point exists, W
can be taken in (0,min(1/A, W̄)), otherwise it has to be taken sufficiently small. The
following example illustrates this difference.

Example 2.16 (Prox-regularity does not necessarily imply single-valued and Lipschitz
continuity). We consider the ℝ→ ℝ function

6(G) = max

(
−2,min

(
−G

2

2
, 1 − 3|G |

2

) )
=


−2 G ≤ −2
1 + 3G

2 G ∈ [−2,−1]
−G2

2 G ∈ [−1, 1]
1 − 3G

2 G ∈ [1, 2]
−2 G ≥ 2

G

6(G)

W

proxW6 (−0.1)

W0.1 ≈ 0.77

W

proxW6 (0)

W0 = 8
9

~

prox0.86 (~)

~

prox0.96 (~)

6 is A = 1-prox-regular at 0 for 0 ∈ m6(0) = {0} (and Y = 1). Thus, one can expect
taking W ∈ (0, 1). However, we can show that for any ~ ∈ [−1 + W, 1 − W], there is a
threshold stepsize

W~ =
17 − 12|~ | −

√
24|~ | + 1

18
∈

[
2

3
,
8

9

]
such that for ~ ≠ 0

proxW6 (~) =


~

1−W for W < W~

~ + sign(~) 32W for W > W~
{ ~

1−W , ~ + sign(~)
3
2W} for W = W~
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and for ~ = 0

proxW6 (0) =


0 for W < 8
9

{− 3
2W,

3
2W} for W > 8

9
{− 3

2W, 0,
3
2W} for W = 8

9

.

This means that when 0 < W < 8
9 , one can find a neighborhood of 0where the proximal

operator is Lipschitz continuous: {~ : |~ | < (3(1 − W) −
√
1 − W)/2}. However, this is

not the case for 8
9 ≤ W < 1 where Lipschitz continuity does not hold and the proximity

operator may not be single valued. J

Thus, without assuming a neighboring proximal point, the following result can be
found in (Rockafellar and Wets, 2009, Prop. 13.37).
Theorem 2.17. Suppose that 6 : ℝ= → ℝ is A -prox-regular at Ḡ for {̄ = 0 and that 6
is prox-bounded. Then, for all W > 0 sufficiently small, there is a neighborhood of Ḡ on
which ?A>GW6 is single-valued and (1 − WA )−1-Lipschitz-continuous.

Since we will need Lipschitz continuity and the subdifferential characterization of
(2.9) for a wider range of proximal stepsizes, we will require the existence of a close
proximal point and the following theorem.9 9While not new per se, this

theorem extends several results of
the literature. Additionally, we
present an original self-contained
proof.

Theorem 2.18. Consider a function 6 : ℝ= → ℝ, a pair of points Ḡ, ~̄ and a stepsize
W̄ > 0 such that

i) Ḡ = proxW̄6 (~̄);
ii) 6 is A -prox-regular at Ḡ for subgradient {̄ := (~̄ − Ḡ)/W̄ ∈ m6(Ḡ).10 10Note that Ḡ = proxW̄6 (~̄) implies

that (~̄ − Ḡ)/W̄ ∈ m6 (Ḡ) , see (2.9).
Then, for any 0 < W < min( 1

A
, W̄) there exists Y > 0 such that when ‖~̄ − Ḡ ‖

(
1
W
− 1
W̄

)
≤ Y:

a) for all G ∈ B(Ḡ, Y), ~ ∈ B(~̄, Y), 6(G) ≤ 6(Ḡ) + Y and ‖(~ − G)/W − {̄‖ < Y,

{ =
~ − G
W
∈ m6(G) ⇔ G = proxW6 (G + W{) ⇔ G = proxW6 (~);

b) proxW6 is locally (1 − WA )−1-Lipchitz continuous on B(~̄, Y).

Note here that the condition W ∈ (0,min(1/A, W̄)) may be misleading since for the
result to hold, the conditions ‖(~ − G)/W − {̄‖ < Y and ~ ∈ B(~̄, Y) also have to be
fulfilled. This means that the quantity ‖~̄ − Ḡ ‖ (1/W − 1/W̄) also has to be small, we
chose to put it explicitly in the above result to emphasize this point. This can be done
either by taking W sufficiently close to W̄ (which may not be possible since W has to be
smaller than 1/A ); or when ‖~̄ − Ḡ ‖ are sufficiently small, i.e. around fixed points of
the proximal operator.

Proof. The proof is divided in several parts. First, we show that { = ~−G
W
∈ m6(G) ⇒ G =

proxW6 (G +W{); since the converse is immediate by (2.9), this gives the first equivalence.
Then, we show how to convert ~ into G + W{ to get the second equivalence. Finally, we
show the local Lipschitz continuity.

Step 1: { = ~−G
W
∈ m6(G) ⇒ G = proxW6 (G + W{)

Let W denote a scalar in (0,min(1/A, W̄)), and G, { ∈ m6(G) denote a pair close to Ḡ, {̄ in
the sense that ‖G − Ḡ ‖ ≤ YG , 6(G) ≤ 6(Ḡ) + Y6 , and ‖{ − {̄‖ ≤ Y{ . We want to show that,
for small enough values of YG , Y6, Y{, we have G = proxW6 (G + W{), that is

6(G) + 〈{,D − G〉 − 1

2W
‖D − G ‖2 < 6(D) for all D ∈ ℝ= (2.10)
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where the inequality is strict to indicate that G is the unique output of proxW6 (G + W{).
Note that if D lies in a ball of radius Y centered at Ḡ , (2.10) holds since −1/W < −A

and 6 is A -prox-regular at Ḡ for subgradient {̄ (see (2.6)). We thus focus on the case
D ∉ B(Ḡ, Y).

First,

〈{,D − G〉 = 〈{ − {̄, D − G〉 + 〈{̄, D − G〉
≤ Y{‖D − G ‖ + 〈{̄, D − Ḡ〉 + 〈{̄, Ḡ − G〉
≤ Y{YG + Y{‖D − Ḡ ‖ + 〈{̄, D − Ḡ〉 + ‖{̄‖YG .

Using this inequality along with 6(G) < 6(Ḡ) + Y6 yields:

6(G) + 〈{,D − G〉 − 1

2W
‖D − G ‖2

≤ 6(Ḡ) + Y6 + Y{YG + Y{‖D − Ḡ ‖ + 〈{̄, D − Ḡ〉 + ‖{̄‖YG −
1

2W
‖D − G ‖2

The global optimality of Ḡ = proxW̄6 (~̄) writes 6(Ḡ) + 〈{̄, D − Ḡ〉 − 1
2W̄ ‖D − Ḡ ‖

2 ≤ 6(D)
for all D ∈ ℝ= (see (2.8)). Thus, we have

6(G)+〈{,D−G〉− 1

2W
‖D−G ‖2 ≤ 6(D)+Y6+Y{YG+Y{‖D−Ḡ ‖+‖{̄‖YG−

1

2W
‖D−G ‖2+ 1

2W̄
‖D−Ḡ ‖2,

and conclude using that −‖D − G ‖2 = −‖D − Ḡ ‖2 − ‖Ḡ − G ‖2 − 2〈D − Ḡ, Ḡ − G〉 ≤
−‖D − Ḡ ‖2 + 2‖D − Ḡ ‖YG to get

6(G) + 〈{,D − G〉 − 1

2W
‖D − G ‖2

≤ 6(D) + Y6 + Y{YG + Y{‖D − Ḡ ‖ + ‖{̄‖YG −
1

2W
‖D − Ḡ ‖2 + 1

W
‖D − Ḡ ‖YG +

1

2W̄
‖D − Ḡ ‖2

= 6(D) +
(
1

2W̄
− 1

2W

)
‖D − Ḡ ‖2 +

(
YG

W
+ Y{

)
‖D − Ḡ ‖ + Y6 + Y{YG + ‖{̄‖YG︸                                                                           ︷︷                                                                           ︸

:= @YG ,Y6,Y{ ( ‖D−Ḡ ‖)

As a second step, we show that for small enough values YG , Y6, Y{, the value of
@YG ,Y6,Y{ is strictly negative over [Y, +∞[ (that is if ‖D − Ḡ ‖ ≥ Y which corresponds to
our case D ∉ B(Ḡ, Y)). This is equivalent to restricting the size of the neighborhood
of Ḡ, {̄ on which G and { can be chosen. First, note that @ is strictly concave since
1
2W̄ −

1
2W < 0, or equivalently 0 ≤ W < W̄ . Negativity of @ over [Y, +∞) is thus ensured if

the maximum of @ is attained below Y, and @(Y) < 0, which writes{
( YG
W
+ Y{) (W−1 − W̄−1)−1 ≤ Y(

1
2W̄ −

1
2W

)
Y2 +

(
YG
W
+ Y{

)
Y + Y6 + Y{YG + ‖{̄‖YG < 0

As we know that 1
2W̄ −

1
2W < 0, these equations hold for small enough values of YG , Y6, Y{ .

We have thus proved strict negativity of @YG ,Y6,Y{ which implies that, for all D ∈ ℝ= :

6(G) + 〈{,D − G〉 − 1

2W
‖D − G ‖2 < 6(D),
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or equivalently, G = proxW6 (G + W{) and in particular proxW6 (G + W{) is unique.
Step 2: Correspondance between G + W{ and ~
Let G ∈ proxW6 (~). We have by (2.9) that { = ~−G

W
∈ m6(G). Using (2.7) at Ḡ , and doing

the same for Ḡ = proxW̄6 (~̄) at G , we get:

6(G) + 1

2W
‖G − ~‖2 ≤ 6(Ḡ) + 1

2W
‖Ḡ − ~‖2 (2.11)

6(Ḡ) + 1

2W̄
‖Ḡ − ~̄‖2 ≤ 6(G) + 1

2W̄
‖G − ~̄‖2

and adding these two inequalities, we get

W̄ − W
W̄W
‖G − Ḡ ‖2 ≤ 2〈G − Ḡ, (~̄ − Ḡ)

(
1

W
− 1

W̄

)
〉 + 2〈G − Ḡ, (~ − ~̄) 1

W
〉

⇒ ‖G − Ḡ ‖ ≤ 2
W̄W

W̄ − W

(
1

W
− 1

W̄

)
‖~̄ − Ḡ ‖ + 2

W
‖~ − ~̄‖

and thus ‖G − Ḡ ‖ can be made as small as one want by controlling Y for ~ close enough
to ~̄. Furthermore, this implies that { is close to {̄ and that 6(G) is close to 6(Ḡ) by
(2.11). Thus, the reasonning of Step 1 can be readily carried with G, {. Note finally that
we did not need any assumption on G or {.

Step 3: Local Lipchitz continuity
Finally, let G,D,~, I be four points such that G = proxW6 (~) and D = proxW6 (I). When
~, I are near ~̄, this implies that G and D are close to Ḡ and globally all assumptions for
prox-regularity are satified by the arguments of Step 2. Then, prox-regularity at point
Ḡ allows to write for points G , D and subgradients {G =

~−G
W
∈ m6(G), {D = I−D

W
∈ m6(D):

6(G) ≥ 6(D) + 〈{D, G − D〉 −
A

2
‖G − D‖2

6(D) ≥ 6(G) + 〈{G , D − G〉 −
A

2
‖D − G ‖2

Summing yields 〈{G − {D, G − D〉 ≥ −A ‖G − D‖2 and replacing the chosen subgradients
by their expressions gives 〈(~ − G) − (I − D), G − D〉 ≥ −AW ‖G − D‖2, which rewrites
〈~ − I, G − D〉 ≥ (1 − AW)‖G − D‖2 and applying Cauchy-Schwarz leads to

(1 − WA )‖G − D‖ ≤ ‖~ − I‖.

Since W < 1/A , this implies that ‖G − D‖ ≤ (1 − WA )−1‖~ − I‖, thus proxW6 is
(1 − WA )−1-Lipschitz continuous around ~̄. �

Remark 2.19 (Proof using directly (Poliquin and Rockafellar, 1996)). In the spirit of
(Hare and Sagastizábal, 2009, Th. 4), the above result can also be proved by directly
using (Poliquin and Rockafellar, 1996) but the proof bears less intuition as the one
provided above. First, one can easily check that prox-regularity of6 at Ḡ for subgradient
{̄ is equivalent to prox-regularity of function 6̃ around 0 for subgradient 0, with
6̃ = 6(· + Ḡ) − 〈{̄, ·〉 −6(Ḡ) and a change of variable G̃ = G − Ḡ . Similarly, Ḡ = proxW̄6 (~̄)
is characterized by its global optimality condition (2.8) which rewrites with our notation

6̃(G̃) > − 1

2W̄
‖G̃ ‖2 for all G̃ ≠ 0.
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Wemay thus applyTheorem 4.4 from (Poliquin and Rockafellar, 1996) to get the claimed
result on 6̃, which transfers back to 6 as our change of function and variable is bijective.
We thus obtain that for W ∈ (0,min(1/A, W̄)), on a neighborhood N~̄ of ~̄, proxW6 is
single-valued, (1 − WA )−1-Lipschitz continuous and proxW6 (~) = [� + W) ]−1 (~), where
) denotes the 6-attentive Y-localization of m6(Ḡ) (see (Rockafellar and Wets, 2009,
Chap. 13.F)). Taking ~ near ~̄ and G near Ḡ such that ‖G − Ḡ ‖ < Y, |6(G) −6(Ḡ) | < Y and
‖(~ − G)/W − {̄‖ < Y allows to identify the localization of m6(G) with m6(G), so that

~ − G
W
∈ m6(G) ⇔ ~ − G

W
∈ ) (G) ⇔ (� + W) ) (G) = ~ ⇔ G = proxW6 (~).

Note that the proof of (Poliquin and Rockafellar, 1996, Th. 4.4) has a minor error
relative to the Lipschitz constant computation, we report here the corrected value. J
Remark 2.20. Theorem 2.18 also implies the following inequality for two points ~, I
close to ~̄, with G = proxW6 (~), D = proxW6 (I):

(1 − 2AW)‖G − D‖2 ≤ ‖~ − I‖2 − ‖(G − ~) − (D − I)‖2 (2.12)

which generalizes the firm non-expansiveness characterization of the proximity opera-
tor of a convex function (Bauschke and Combettes, 2011, Prop. 12.27). J

2.2.4 Strong local minimizers

An additional property of prox-regular functions is that their critical points are strong
minimizers of their surrogate d . This property and the associated optimality conditions
will be important for proving the localization properties of proximal steps. These
results appear more or less explicitly in e.g. (Daniilidis et al., 2006).
Lemma 2.21. Let Ḡ , ~̄ be two points such that 6 is A prox-regular at Ḡ for subgradient
1
W
(~̄ − Ḡ) ∈ m6(Ḡ) with W ∈ (0, 1/A ). Then, Ḡ is a strong local minimizer of d~̄ : D ↦→

6(D) + 1
2W ‖~̄ − D‖

2, i.e. for all G near Ḡ ,

d~̄ (G) ≥ d~̄ (Ḡ) +
1

2

(
1

W
− A

)
‖G − Ḡ ‖2 .

Proof. Prox-regularity of 6 at Ḡ with subgradient 1
W
(~̄ − Ḡ) ∈ m6(Ḡ) writes

6(G) ≥ 6(Ḡ) + 1

W
〈~̄ − Ḡ, G − Ḡ〉 − A

2
‖G − Ḡ ‖2

for all G close to Ḡ . The identity 2〈1 −0, 2 −0〉 = ‖1 −0‖2 + ‖2 −0‖2 − ‖1 − 2 ‖2 applied
to the previous scalar product yields:

6(G) ≥ 6(Ḡ) + 1

2W
‖~̄ − Ḡ ‖2 + 1

2W
‖G − Ḡ ‖2 − 1

2W
‖~̄ − G ‖2 − A

2
‖G − Ḡ ‖2,

which rewrites

6(G) + 1

2W
‖~̄ − G ‖2︸                  ︷︷                  ︸

=d~̄ (G)

≥ 6(Ḡ) + 1

2W
‖~̄ − Ḡ ‖2︸                  ︷︷                  ︸

=d~̄ (Ḡ)

+1
2

(
1

W
− A

)
‖G − Ḡ ‖2 .

�
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2.2.5 Convex case

Let 6 : ℝ= → ℝ be a proper lower semi-continuous convex function. From Lemma 2.8,
we get that for any G ∈ dom6 and any { ∈ m6(G), we have

6(D) ≥ 6(G) + 〈{,D − G〉 for all D ∈ ℝ=

and adding 1
2W ‖D‖

2 on both sides, we get immediately get that 6 + 1
2W ‖ · ‖

2 is bounded
below on ℝ= for any W > 0. Thus, 6 is prox-bounded with threshold A?1 = 0. We also
immediately get that 6 is prox-regular with threshold A = 0 over the full domain.

Furthermore, proxW6 exists and is unique for any W > 0 by Lemma 2.11. Then,
Theorem 2.18 simply reduces to the link between first-order optimality conditions of
d~ and the proximity operator (see (2.4)) and (2.12) gives the firm non-expansivity of
the proximal mapping that now holds over ℝ= .

Theorem 2.22 (Proximity operator of convex functions). Let 6 be a convex proper
lower semi-continuous function and W > 0. Then, for any ~ ∈ ℝ= ,

G = proxW6 (~) ⇔
~ − G
W
∈ m6(G).

Fruthermore, for any ~, I ∈ ℝ= , G = proxW6 (~), and D = proxW6 (I), then

‖G − D‖2 ≤ ‖~ − I‖2 − ‖(G − ~) − (D − I)‖2 .

2.2.6 Examples of explicitly computable proximity operators

In this part, we list some of the most common functions for which the proximity
operator can be explicitly computed. In the general case, obtaining a proximity operator
requires solving (approximately) an optimization subproblem (which may have better
properties than the sole function). While a large literature investigates the properties of
inexact proximity operators (see (Martinet, 1970; Rockafellar, 1976) for early works and
(Güler, 1992; Lin et al., 2017; Solodov and Svaiter, 2000) for more recent contributions),
we will be interested in the exact, closed-form, value of the proximity operator in the
forthcoming chapters (see especially Chapter 3). A general reference for closed-form
proximity operators is the repository http://proximity-operator.net/. Besides, we
call the reader’s attention to the fact that the explicit computation of the proximity
operators displayed below is based on implementable tests that determine the structure
of the output.

In terms of analysis, the computation of proximity operators can often be carried
on by investigating the points G verifying the first order optimality condition 0 ∈
m6(G) + (G − ~)/W and comparing their functional values (in terms of d~).

Example 2.23 (Indicators and Projections). For the indicator of some set � (]� (G) = 0
if G ∈ � and +∞ elsewhere), we can directly notice that the proximity operator has
to belong to the set (otherwise the inner function is +∞), and thus corresponds to
minimizing the distance between the input and a point in � , i.e. projecting. J

Example 2.24 (ℓ1 norm). The ℓ1-norm is defined on ℝ= as ‖G ‖1 =
∑=
8=1 |G [8 ] |. This

function is convex (thus prox-regular at every point with A = 0). Besides, its proximity

http://proximity-operator.net/
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operator admits a closed form expression: for ~ ∈ ℝ= and W > 0, coordinate 8 writes

prox[8 ]
W ‖ · ‖1 (~) =


~ [8 ] + W if ~ [8 ] < −W
0 if − W ≤ ~ [8 ] ≤ W
~ [8 ] − W if ~ [8 ] > W

.

This operator is sometimes called soft-thresholding (see e.g. (Donoho, 1995)) as it puts
to 0 the coordinates corresponding to inputs smaller than W in absolute value. J

Example 2.25 (ℓ? norms for ? < 1). The ℓ0-“norm” is defined on ℝ= as ‖G ‖0 =∑=
8=1 indG [8 ] . This function is non-convex, prox-regular, and its proximity operator still

admits a closed form expression: for ~ ∈ ℝ= and W > 0, coordinate 8 writes

prox[8 ]
W ‖ · ‖0 (~) =


~ [8 ] if ~ [8 ] < −W
0 if − W ≤ ~ [8 ] ≤ W
~ [8 ] if ~ [8 ] > W

.

In analogywith the case of ℓ1 norm, this operation is sometimes called hard-thresholding.
Whereas the ℓ0-norm seems a natural way to threshold small values, it is in practice
quite unstable compared to the ℓ1 norm (which can be seen as its convexification).

Between these two extremes, the ?-th power of the ℓ? “norms” for ? ∈ (0, 1)
provide potentially useful intermediates in terms of sparsification (Chartrand and Yin,
2016). The proximity operators of these functions are not explicit, except for ? = 1/2
and ? = 2/3. Indeed, prox[8 ]

W ‖ · ‖??
(~) is the solution in G of the equation

G2−? + ~ [8 ]G1−? + 2? = 0

which is respectively a cubic equation in
√
G and a quartic equation in 3

√
G for ? = 1/2

and ? = 2/3; see (Xu et al., 2012) and (Cao et al., 2013) for the proximity operator
derivation. J

Example 2.26 (Maximal Value). When 6(G) = max8 G
[8 ] , the computation is slightly

different since some threshold have to be computed, which is closer to dynamic
programming than variational analysis. It is fairly easy to see that the function

d~ (D) = max
8
D [8 ] + 1

2W

∑
8

(D [8 ] − ~ [8 ])2

can be minimized by diminishing the largest value of D, which we note C . We can then
divide the coordinates between I which gather the coordinates for which ~ [8 ] ≥ C , and
its complementary. Our proximity candidate is thus D [8 ] = C for 8 ∈ I and D [8 ] = ~ [8 ]
elsewhere. The error for that threshold C is then

C + 1

2W

∑
8∈I
(C − ~ [8 ])2

and this cost is minimal if the first order conditions are satisfied i.e. if∑
8∈I
(~ [8 ] − C★) = W .

Then, if {8 : ~ [8 ] ≥ C★} coincides with I, our candidate solution with C★ is the
sought proximity operator. Otherwise, we have to decrease (resp. increase) C so that
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one coordinate more (resp. less) in included in I depending on C★. Finally, we obtain
that

prox[8 ]Wmax (~) = min{C ;~ [8 ]} where C is such that
=∑
8=1

max{0;~ [8 ] − C} = W .

J

Example 2.27 (Total variation). In the same spirit as for the maximal value, the total
variation in 1D 6(G) = ∑=−1

8=1 |G [8 ] − G [8+1] | does not have a closed form but can be
efficiently computed by dynamic programming. The fastest algorithm to do so seems
to be the one of (Condat, 2013). J

Example 2.28 (nuclear norm). The nuclear norm is defined on ℝ=1×=2 as ‖- ‖∗ =∑min(=1,=2)
8=1 f8 , where f8 denotes the 8-th singular value of - . This function is convex

(thus prox-regular at every point with A = 0). Its proximity operator admits a closed
form expression: for matrix . = * Σ+> and step W > 0,

proxW ‖ · ‖∗ (. ) = * diag(a8 )+> with a8 = proxW | · | (f8 ) =
{

0 if f8 ≤ W
f8 − W if f8 > W

A remarkable point is that even though two close matrices may have completely
different singular vectors, their singular values will be close (this is sometimes called
Weyl’s lemma, see (Stewart, 1998; Weyl, 1912)). Hence, while a new singular value
decomposition has to be computed at each application of the proximity operator of the
nuclear norm, the rank of the output will be somewhat stable to small perturbations,
which is of utmost importance in the present context. Thus, even though the problem
of checking the rank of a matrix can be problematic numerically, the rank of the output
of the proximity operator is known by construction. J

Example 2.29 (Other matrix functions). As previously considered, the “ℓ0-equivalent”
of the nuclear norm is simply the rank whose proximity operator involves a hard
thresholding of the singular values. The ℓ∞ pendent is the maximal eigenvalue, often
encountered in control problems, whose proximity operators is a cutoff of the greatest
eigenvalues.

A wide range of functions of matrices thus have explicit proximity operators. More
precisely, this is often the case for spectral functions, i.e. some function �̃ of the
eigenvalues (of real symmetric matrices) since in this case, the proximity operator of �̃
can be directly applied to the eigenvalues (see e.g. (Drusvyatskiy and Kempton, 2015,
Th. 4.1)). We refer the reader to (Benfenati et al., 2018; Drusvyatskiy and Kempton, 2015;
Lewis, 1999) for the analytical tools that enable the derivation of the corresponding
proximity operators by examining first-order optimality conditions. J

2.3 Numerical optimization methods

Now that we have introduced our core tools, we briefly cover how to use them itera-
tively to produce numerical methods for minimizing functions, leading to the basic
relations that will be ubiquitous in the present manuscript. The results presented here
are mainly taken from (Bauschke and Combettes, 2011; Beck, 2017; Bonnans et al., 2006;
Bubeck et al., 2015).
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2.3.1 The smooth case

Let us start with the problem of solving

min
G ∈ℝ=

5 (G)

where 5 is an !-smooth function (i.e. differentiable with a !-Lipschitz continuous
gradient). Recalling Lemma 2.6, we obtain our first basic inequalities.
Lemma 2.30. Let 5 : ℝ= → ℝ be an !-smooth function, then for any G,D ∈ ℝ= , one
has

| 5 (G) − 5 (D) − 〈∇5 (D), G − D〉| ≤ !
2
‖G − D‖2.

In particular, if G = D − W∇5 (D),

5 (G) ≤ 5 (D) − W
(
1 − W!

2

)
‖∇5 (D)‖2 .

Thus, taking a gradient step leads to a strict functional decrease (5 (D) < 5 (G))
as soon as W < 2/! and ∇5 (D) ≠ 0. This is the core idea behind the gradient descent
algorithm. Take G0 ∈ ℝ= andW > 0, the gradient descent algorithm consists in iterating

G:+1 = G: − W∇5 (G: ) (Gradient descent)

and Lemma 2.30 enables to show the following result.
Theorem 2.31. Let 5 : ℝ= → ℝ be an !-smooth function such that inf 5 > −∞. Assume
that Gradient descent is run with 0 < W < 2/!, then (5 (G: )) converges and any limit
point G of (G: ) satisfies ∇5 (G) = 0.

Now, if the function is in addition convex, we obtain a more precise control.
Lemma 2.32. Let 5 : ℝ= → ℝ be a convex !-smooth function, then for any G,D ∈ ℝ= ,
one has

5 (G) − 5 (D) ≤ 〈∇5 (G), G − D〉 − 1

2!
‖∇5 (G) − ∇5 (D)‖2

and thus
1

!
‖∇5 (G) − ∇5 (D)‖2 ≤ 〈G − D;∇5 (G) − ∇5 (D)〉 ≤ !‖G − D‖2

which in turn gives that for any W > 0,

‖G − W∇5 (G) − (D − W∇5 (D))‖2 ≤ ‖G − D‖2 − W
(
2

!
− W

)
‖∇5 (G) − ∇5 (D)‖2.

These are the ingredients for the following result where we see that convexity
grants us directly pointwise convergence and a functional rate.
Theorem 2.33. Let 5 : ℝ= → ℝ be a convex !-smooth function. Then, the iterates (G: )
generated by Gradient descent with W = 1/! satisfy:

• (convergence) G: → G★ for some minimizer G★ of 5 ;

• (rate) 5 (G: ) −min 5 ≤ 2!‖G0 − G★‖2
:

for any minimizer G★ of 5 .

If the function is additionally strongly convex, then the rate changes to a linear
one, for a slightly different stepsize. Another important point is that since the function
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is now bounded by quadratics from above (by smoothness) and below (by strong
convexity), the analysis is mostly done directly on the iterates rather than the functional
values. Lemma 2.32 can be improved straightforwardly as follows.
Lemma 2.34 (Bubeck et al. 2015, Lemma 3.11). Let 5 : ℝ= → ℝ be a `-strongly convex
!-smooth function, then for any G,D ∈ ℝ= , one has

1

` + ! ‖∇5 (G) − ∇5 (D)‖
2 + `!

` + ! ‖G − D‖
2 ≤ 〈G − D;∇5 (G) − ∇5 (D)〉 ≤ !‖G − D‖2

which in turn gives that for any W > 0,

‖G − W∇5 (G) − (D − W∇5 (D))‖2 ≤
(
1 − 2W`!

` + !

)
‖G − D‖2 (2.13)

− W
(

2

` + ! − W
)
‖∇5 (G) − ∇5 (D)‖2 .

Then, using that since 5 : ℝ= → ℝ is !-smooth, its minimizer G★ satisfies 5 (G) −
5 (G★) ≤ !

2 ‖G −G
★‖2, which allow to obtain directly a linear converge from the iterates.

Theorem 2.35. Let 5 : ℝ= → ℝ be a `-strongly convex !-smooth function. Then, the
iterates (G: ) generated by Gradient descent with W = 2

`+! satisfy:

• (convergence) G: → G★ for the minimizer G★ of 5 ;

• (rate) 5 (G: ) −min 5 ≤
(
^ − 1
^ + 1

) 2:
‖G0 − G★‖2 where ^ = !

`
≥ 1.

2.3.2 The proximal case

We now consider the problem

min
G ∈ℝ=

6(G)

where6 is not necessarily smooth but admits an exactly computable proximity operator.
In this case, the natural method is the proximal point algorithm:

G:+1 = proxW6 (G: ) (Proximal point)

The non-convex case can be difficult to analyze since existence and unicity may
not be ensured as covered in Section 2.2. Since there is no other particular inequality
to notice, we will only consider the convex case in this subsection.

In the convex case, the first thing to notice is that the fixed points of this algorithm
correspond to the minimizers of 6, i.e. G★ is a minimizer of 6 if and only if G★ =

proxW6 (G★) (for any W > 0); which comes directly from G★ = proxW6 (G★) if and only if
0 ∈ m6(G★) which is equivalent to G★ being a minimizer of 6 since it is convex.

Lemma 2.36 ((Bauschke and Combettes, 2011, Prop. 12.27)). Let 6 : ℝ= → ℝ be a
convex lower semi-continuous proper function, then for any G,D ∈ ℝ=

6(proxW6 (G)) +
1

W
‖proxW6 (G) − G ‖2 ≤ 6(D) +

1

W
‖D − G ‖2 − 1

W
‖proxW6 (G) − D‖2
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and

‖proxW6 (G) − proxW6 (D)‖2 ≤ 〈G − D, proxW6 (G) − proxW6 (D)〉
⇔‖proxW6 (G) − proxW6 (D)‖2 ≤ ‖G − D‖2 − ‖G − proxW6 (G) − D + proxW6 (D)‖2

(2.14)

Then, the analysis of the proximal point can be carried quite directly.

Theorem 2.37. Let 6 : ℝ= → ℝ be a convex lower semi-continuous proper function.
Then, the Proximal point method with W > 0 verifies 6(G:+1) ≤ 6(G: ) and

6(G: ) −min6 ≤ ‖G
★ − G0‖2
2W:

for any minimizer G★ of 6.

Remark 2.38 (Multiple functions). When the objective is a sum of functions 6 =
∑"
8=1 68 ,

the use of the proximity operator is less direct since the proximity operator of the sum
cannot be computed in general from the individual proximity operators. In order to
deal with that case, two techniques can be combined:

• Lifting the space from ℝ= to ℝ=×" and using the equivalence of

min
G ∈ℝ=

"∑
8=1

68 (G) and min
G̃=(G1,..,G" ) ∈ℝ=×"

"∑
8=1

68 (G8 )︸     ︷︷     ︸
6̃1 (G̃)

+ ]G1=G2=..=G" (G̃)︸            ︷︷            ︸
6̃2 (G̃)

;

• Using a splitting method to find a minimizer of 6̃1 + 6̃2.
For more details, see the review (Condat et al., 2019). J

2.3.3 The composite case

Finally, putting the two above problems together, we now address the minimization of
the sum of a smooth function and a nonsmooth one:

min
G ∈ℝ=

� (G) = 5 (G) + 6(G)

where 5 is accessible though its gradient (but its proximity operator is in general out
of reach) but the proximity operator of 6 can be computed.

In order to decouple these two functions, splitting methods have been developed.
They consist in finding a critical point of � by solving the fixed-point iteration

0 ∈ W∇5 (G: ) + Wm6(G:+1) + G:+1 − G:

⇔ 0 ∈ m6(G:+1) +
1

W
(G:+1 − (G: − W∇5 (G: )) )

⇔ G:+1 = proxW6 (G: − W∇5 (G: ))

and thus consists in alternating a proximal step and a gradient step.1111see Section 2.2 for the conditions
behind the last equivalence in the

non-convex case.
The proximal gradient algorithm then consists in iterating

G:+1 = proxW6 (G: − W∇5 (G: )) (Proximal gradient)
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for some W > 0 and starting point G0.
It is worth noticing that this composition can actually be seen as the minimization

of a first-order approximation of 5 plus 6. Indeed:

G:+1 = proxW6 (G: − W∇5 (G: ))

= argminD∈ℝ=

{
6(D) + 1

2W
‖D − G: + W∇5 (G: )‖2

}
= argminD∈ℝ=

{
5 (G: ) + 〈D − G: ,∇5 (G: )〉 + 6(D) +

1

2W
‖D − G: ‖2

}
.

By carefully expressing the fact the G:+1 is a minimizer of the function inside the
braces and using the functions properties, we get the following inequalities.

Lemma 2.39. Let 5 : ℝ= → ℝ be an !-smooth function, and 6 : ℝ= → ℝ be a lower
semi-continuous proper function. Take W > 0 and define the proximal gradient operator
as T(G) = proxW6 (G − W∇5 (G)) for all G ∈ ℝ= .
Then for any G ∈ ℝ= , supposing that T(G) is well defined,

� (T(G)) ≤ � (G) + 1

2

(
! − 1

W

)
‖T(G) − G ‖2.

If 5 is convex, for any G,D ∈ ℝ= , supposing that T(G) is well defined,

� (T(G)) ≤ � (D) + 1

2W
‖D − G ‖2 + 1

2

(
! − 1

W

)
‖T(G) − G ‖2.

If 6 is convex, for any G ∈ ℝ= ,

� (T(G)) ≤ � (G) + 1

2

(
! − 2

W

)
‖T(G) − G ‖2.

Finally, if both 5 and 6 are convex, for any G,D ∈ ℝ= ,

� (T(G)) ≤ � (D) + 1

2W
‖D − G ‖2 − 1

2W
‖D − T(G)‖2 + 1

2

(
! − 1

W

)
‖T(G) − G ‖2 (2.15)

and provided that W ∈ (0, 2
!
),

‖T(G) − T(D)‖2 ≤ ‖G − D‖2 − 1 − a
a
‖(I − T) (G) − (I − T) (D)‖2

with a = 2
1+2min{1,1/(W!) } .

In the fully convex case, this enables us to get the following result.

Theorem 2.40. Let 5 : ℝ= → ℝ be a convex !-smooth function and let 6 : ℝ= → ℝ be
a convex lower semi-continuous proper function. Then, the Proximal gradient method
with W ∈ (0, 1/!] verifies � (G:+1) ≤ � (G: ) and

� (G: ) −min � ≤ ‖G
★ − G0‖2
2W:

for any minimizer G★ of � .
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When 5 is additionally `-strongly convex, combining (2.13) and (2.14), enables to
show exactly the same results as for Gradient descent.

Finally, it is interesting to note that the difference between the input and output of
a proximity operator is linked to the subdifferential of the function.
Lemma 2.41 (Bolte et al. 2015, Prop. 13). Let 5 : ℝ= → ℝ be an !-smooth function,
and 6 : ℝ= → ℝ be a lower semi-continuous proper function. Take W > 0 and define the
proximal gradient operator as T(G) = proxW6 (G − W∇5 (G)) for all G ∈ ℝ= . Then, for all
G ∈ ℝ= ,

dist(0, m� (T(G))) ≤ W! + 1
W
‖G − T(G)‖.

We end this section with the words of Cauchy (Cauchy et al., 1847): “I’ll restrict
myself here to outlining the principles underlying [my method], with the intention to
come again over the same subject”.1212In the original text: “ Je me

bornerai pour l’instant à indiquer les
principes sur lesquels [ma méthode]

se fonde, me proposant de revenir
avec plus de détails sur le même

sujet.”. The translation and
reference is due to Claude

Lemaréchal (Lemaréchal, 2012).

2.4 Riemannian manifolds

We introduce below the tools of Riemannian optimization that will be used in this
manuscript. In particular, we restrict ourselves to C2 submanifolds of ℝ= . We refer
the reader to (Absil et al., 2009) and (Boumal, 2020) for more extensive presentations.

2.4.1 Manifolds

A subsetM of ℝ= is said to be a ?-dimensional C2 submanifold of ℝ= around G ∈ M if
there exists a local parameterization ofM around G , that is, a C2 functioni : ℝ? → ℝ=

such that i realizes a local homeomorphism between a neighborhood of 0 ∈ ℝ? and
a neighborhood of G ∈ M and the derivative of i at i−1 (G) = 0 is injective. A ?-
dimensional C2-submanifold of ℝ= can alternatively be defined via a local equation,
that is a C2 function Φ : ℝ= → ℝ=−? with a surjective derivative at Ḡ ∈ M that
satisfies for all G close enough to Ḡ , G ∈ M ⇔ Φ(G) = 0.

A basic tool to investigate approximations on manifolds is notion of the smooth
curves. A smooth curve onM is a C2 application 2 : � ⊂ ℝ→M ⊂ ℝ= , where � is an
open interval containing 0. At each point G ∈ M, the tangent space, noted )GM, can
be defined as the velocities of all smooth curves passing by G at 0:

)GM := {2 ′(0) | 2 : � →M is a smooth curve around 0 and 2 (0) = G} .

The tangent space is a ?-dimensional Euclidean space containing tangent vectors.
Thus, each tangent space)GM is equipped with a scalar product 〈·, ·〉G : )GM×)GM →
ℝ, and the associated norm ‖ · ‖G . In many cases, the tangent metric varies smoothly
with G , making the manifold Riemannian. In this following, we use the ambient space
scalar product to define the scalar product on tangent spaces; we will thus drop the
subscript in the tangent scalar product and norm notations when there is no confusion
possible. We will denote by projG the orthogonal projector from ℝ= to )GM. Finally,
we also define the normal space at G ∈ M as the orthogonal space to )GM and the
tangent bundle as )B :=

⋃
G ∈M (G,)GM).

A metric onM can be defined as the minimal length over all curves joining two
points G,D ∈ M, ie. distM (G,D) = inf2∈CG,D

∫ 1

0
‖2 ′(C)‖2 (C )dC , where �G,D is the set of

[0, 1] → M smooth curves 2 such that 2 (0) = G , 2 (1) = D. The minimizing curves
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generalize the notion of straight line between two points to manifolds. The constant
speed parametrization of any minimizing curves is called a geodesic.
Remark 2.42. Both tangent and normal spaces of at G ∈ M admit explicit expression
from local parametrizations i or local equations Φ definingM:

)GM = Im Di (0) = Ker DΦ (G) #GM = Ker Di (0)∗ = Im DΦ (G)∗

J

2.4.2 Functions on manifolds

The notion of differential and gradient can be extended to functions defined on man-
ifolds. Let � : M → ℝ. The Riemannian differential of � at G is the linear operator
D � (G) : )GM → ℝ defined byD � (G) [[] := d

dC � ◦ 2 (C)
��
C=0

, where 2 is a smooth curve
such that 2 (0) = G and 2 ′(0) = [. In turn, the Riemannian gradient grad � (G) is the
unique vector of)GM such that, for any tangent vector [,D � (G) [[] = 〈grad � (G), [〉.

If grad � (G) exists at any point ofM, then � said to be differentiable. In that case,
a first order Taylor development can be formulated. Let G ∈ M, [ ∈ )GM and 2 denote
a smooth curve passing by G , with velocity [ at 0 (abbreviated “passing by G , [” in the
following). Then, for C near 0,

� ◦ 2 (C) = � (G) + C 〈grad � (G), [〉 + > (C).

Before defining second order objects, we need a notion of derivation for vector
fields and of acceleration for curves. Consider a curve 2 : � → M and a smooth
vector field / on that curve, that is a smooth map such that / (C) ∈ )2 (C )M for C ∈ � .
The covariant derivative of / on the curve 2 , denoted D

dC/ : � → )B, is defined by
D
dC/ (C) := proj2 (C ) /

′(C), where / ′(C) denotes the derivative in the ambient space ℝ=
and projG corresponds to the orthogonal projector from ℝ= to )GM. The acceleration
of a curve 2 is defined as the covariant derivative of its velocity: 2 ′′(C) := D

dC 2
′(0). It

amounts to the tangential component of the second derivative of the curve in ℝ= .
The Riemannian hessian of � at G along [ is the linear operatorHess � (G) : )GM →

)GM defined by the relation Hess � (G) [[] := D
dC grad � (2 (C))

��
C=0

, where 2 is a smooth
curve such that 2 (0) = G , 2 ′(0) = [. The Riemannian hessian may be defined equiva-
lently by the relation 〈Hess � (G) [[], [〉 = d2

dC2
� ◦ W (C)

���
C=0

, where W is a geodesic curve
such that W (0) = G , W ′(0) = [. A second order Taylor development can now be formu-
lated. Let G ∈ M, [ ∈ )GM, and 2 be a smooth curve such that 2 (0) = G , 2 ′(0) = [.
Then, for C near 0,

� ◦ 2 (C) = � (G) + C 〈grad � (G), [〉 + C
2

2
〈Hess � (G) [[], [〉 + C

2

2
〈grad � (G), 2 ′′(0)〉 + > (C2).

If � :M → ℝhas a smooth extension onℝ= , the Riemannian gradient and Hessian
can be computed from their Euclidean counterparts: for a smooth function �̄ : ℝ= → ℝ

that coincides with � onM, we have

grad � (G) = projG (∇�̄ (G)), (2.16)

and, for �̄ : ℝ= → ℝ= a smooth mapping that coincides with grad � onM, we have

Hess � (G) [[] = projG
(
D �̄ (G) [[]

)
. (2.17)

2.4.3 Optimality on manifolds
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Lemma 2.43 (Optimality conditions). Consider a manifoldM embedded inℝ= , a point
Ḡ ofM and a function � defined on a neighborhood of Ḡ inM for which Ḡ is a strong
minimizer ie. for all G near Ḡ in" ,

� ()G) ≥ � (Ḡ) + 2
2
‖G − Ḡ ‖2.

Then, there holds

grad � (Ḡ) = 0 and Hess � (Ḡ) � 2� .

Proof. Let [ ∈ )ḠM and denote W a geodesic going through Ḡ with velocity [ at C = 0.
The quadratic growth assumption can be applied at G = W (C), which allows to write

1

C
(� ◦ W (C) − � ◦ W (0)) ≥ 2

2





W (C) − W (0)√
C





2 .
Taking the limit C → 0 yields 〈grad � (Ḡ), [〉 ≥ 0. The same reasoning holds with
G = W (−C) and yields the converse inequality, so that 〈grad � (Ḡ), [〉 = 0.

Besides, summing the quadratic growth conditions applied at W (C) and W (−C) pro-
vides

1

C2
(� ◦ W (C) − 2� ◦ W (0) + � ◦ W (−C)) ≥ 2

2





W (C) − W (0)C





2 + 22 



W (−C) − W (0)C





2 .
Taking the limit as C → 0 yields 〈Hess � (~̄) [[], [〉 ≥ 2 ‖[‖2. As [ is picked arbitrarily
in )ḠM, the results are obtained. �

2.4.4 Retractions

In practice, iterative methods require a way to produce curves onM given a point G and
tangent vector [. A geodesic curve passing at G, [, while attractive as the generalization
of the straight line, has a prohibitive computational cost. It thus common to replace
those with first or second-order approximations.
Definition 2.44. A retraction on a manifoldM is a smooth map R : )B →M such
that

i) RG (0) = G , and
ii) DRG (0) : )GM → )GM is the identity map: DRG (0) [[] = [,

where, for each G ∈ M, RG : )GM → M is defined as the restriction of R at G , so
that RG ([) = R(G, [). A second-order retraction is a retraction R such that, for all
(G, [) ∈ )B, the curve 2 (C) = RG (C[) has zero acceleration at 0: 2 ′′(0) = 0.

We will consider the retractions to be of second order in the remaining of the
manuscript.

With a second-order retraction, C ↦→ RG (C[) provides a practical and relatively
cheap curve passing by G, [ at 0, giving the following second order approximation:

� ◦ RG (C[) = � (G) + C 〈grad � (G), [〉 + C
2

2
〈Hess � (G) [[], [〉 + > (C2). (2.18)
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2.4.5 Euclidean spaces and manifolds, back and forth

In this document, we will use Riemannian and Euclidean methods in harmony to try
and take the best of both worlds; we thus need some control over the passage from
the Euclidean to the Riemannian geometry.
Lemma 2.45. Consider a point Ḡ of a Riemannian manifoldM, equipped with a retrac-
tion R such that RḠ is C2. For any Y > 0, there exists a neighborhoodU of Ḡ inM such
that, for all G ∈ U,

(1 − Y)distM (G, Ḡ) ≤ ‖R−1Ḡ (G)‖ ≤ (1 + Y)distM (G, Ḡ).

where R−1Ḡ :M → )ḠM is the smooth inverse of RḠ defined locally around Ḡ .

Proof. The retraction at Ḡ can be inverted locally around 0. Indeed, asDRḠ (0)ḠM) = �
is invertible and RḠ is C2, the implicit function theorem provides the existence of a C2

inverse function R−1Ḡ :M → )ḠM defined locally around Ḡ . Furthermore, one shows
by differentiating the relation RḠ ◦R−1Ḡ that the differential of R−1Ḡ at Ḡ is the identity.

We consider the function � :M → ℝ defined by � (G) = ‖ logḠ (G)‖ − ‖R−1Ḡ (G)‖.13
13The exponential and logarithmic
maps are respectively a retraction
and its inverse associated with a
particular geodesic, see (Boumal,
2020, Chap. 10.2)

Clearly � (Ḡ) = 0, and D � (Ḡ) = 0 as the differentials of both R−1Ḡ and logarithm at
Ḡ are the identity. In local coordinates Ĝ = logḠ G around Ḡ , � is represented by the
function �̂ = � ◦ expḠ : )ḠM → ℝ. As �̂ ( ˆ̄G) = 0, D �̂ ( ˆ̄G) = 0 and �̂ is C2, there exists
some � > 0 such that, over a neighborhood Û of ˆ̄G ,

−� ‖Ĝ − ˆ̄G ‖2 ≤ �̂ (Ĝ) ≤ � ‖Ĝ − ˆ̄G ‖2 .

For any Y > 0, by taking a small enough neighborhood Û ′ ⊂ Û, there holds

−Y‖Ĝ − ˆ̄G ‖ ≤ �̂ (Ĝ) ≤ Y‖Ĝ − ˆ̄G ‖ .

Thus for all G inU = RḠ (Û ′),

−Y‖ logḠ (G)‖ ≤ ‖ logḠ (G)‖ − ‖R−1Ḡ (G)‖ ≤ Y‖ logḠ (G)‖,

as Ĝ = logḠ (G), ˆ̄G = 0. The result’s equivalent form is obtained using that distM (G, Ḡ) =
‖Ĝ − ˆ̄G ‖ = ‖ logḠ (G)‖. �

We recall a slightly specialized version of (Miller and Malick, 2005, Th. 2.2), which
is essentially the application of the implicit function theorem around a point of a
manifold.

Proposition 2.46 (Tangential retraction). Consider a ?-dimensional C: -submanifold
M of ℝ= around a point Ḡ ∈ M. The mapping R : )B →M, defined for (G, [) ∈ )B
near (Ḡ, 0) by projG (R(G, [)) = [ defines a second-order retraction near (Ḡ, 0). The point-
wise retraction, defined as RG = R(G, ·), is locally invertible with inverse R−1G = projG .

Proof. Let Ψ : ℝ= → ℝ=−? denote a C: function definingM around Ḡ : for all G close
enough to Ḡ , there holds G ∈ M ⇔ Ψ(G) = 0, and DΨ(G) is surjective. Consider the
equation Φ(G, [C , [=) = 0 around (Ḡ, 0, 0), with

Φ : {G, [C , [= : G ∈ M, [C ∈ )GM, [= ∈ #GM} → ℝ

G, [C , [= ↦→ Ψ(G + [C + [=).
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The partial differential D[= Φ(Ḡ, 0, 0) is, for b= ∈ #ḠM,

D[= Φ(Ḡ, 0, 0) [b=] = DΨ(Ḡ) [b=] .

Since Ḡ ∈ M, D[= Φ(Ḡ, 0, 0) is surjective from #ḠM to ℝ=−? so its a bijection. The
implicit function theorem provides the existence of neighborhoods N1

Ḡ ⊂ M, N2
0 ⊂

∪G ∈M)GM, N3
0 ⊂ ∪G ∈M#GM and a unique C: function [= : N1

Ḡ × N2
0 → N3

0 such
that, for all G ∈ N1

Ḡ , [C ∈ N2
0 and [= ∈ N3

0 , [= (Ḡ, 0) = 0 and

Φ(G, [C , [= (G, [C )) = 0⇔ G + [C + [= (G, [C ) ∈ M .

It also provides an expression for the partial derivative of [= at (G, 0) along [C : for
bC ∈ )GM,

D[C [= (G, 0) [bC ] = −
[
D[= Φ(G, 0, 0)

] −1
D[C Φ(G, 0, 0) [bC ] .

As noted before, D[= Φ(G, 0, 0) is one-to-one since G ∈ M. Besides, D[C Φ(G, 0, 0) =
DΦ(G) [bC ] = 0 since )GM identifies as the kernel of DΦ(G). Thus D[C [= (G, 0) = 0.

Now, define a map R : N1
Ḡ × N2

0 →M by R(G, [C ) = G + [C + [= (G, [C ). This map
has degree of smoothness C: since [= is C: , satisfiesR(G, 0) = G since [= (G, 0) = 0 and
satisfiesD[C [= (G, 0) = � +D[C (G, 0) = � . ThusR defines a retraction on a neighborhood
of (Ḡ, 0).

We turn to show the second-order property of R. Consider the smooth curve 2
defined as 2 (C) = R(G, C[) for some G ∈ N1

Ḡ , [C ∈ )GM∩N2
0 . Its first derivative writes

2 ′(C) = [ +D[C [= (G, C[) [[] = [.

As 2 ′(C) ∈ )GM, and we consider a Riemannian submanifold of ℝ= , the acceleration of
the curve 2 is obtained by computing the derivative of 2 ′(·) in the ambient space and
then projecting onto )GM. Thus 2 ′′(C) = 0 and in particular, 2 ′′(0) = 0 which makes
R a second-order retraction. �

Lemma 2.47. Consider a point Ḡ of a Riemannian manifoldM. For any Y > 0, there
exists a neighborhoodU of Ḡ inM such that, for all G ∈ U,

(1 − Y)distM (G, Ḡ) ≤ ‖G − Ḡ ‖ ≤ (1 + Y)distM (G, Ḡ),

where ‖G − Ḡ ‖ is the Euclidean distance in the ambient space.

Proof. Let Ḡ , G denote two close points on M. Consider the tangential retraction
introduced in Proposition 2.46. As a retraction, it satisfies:

RḠ ([) = RḠ (0) +DRḠ (0) [[] + O(‖[‖2) = Ḡ + O(‖[‖2).

Taking G = RḠ ([) allows to write G = Ḡ + O(‖R−1Ḡ (G)‖2), so that for any small Y1 > 0,
there exists a small enough neighborhoodU1 ⊂ U of Ḡ inM such that

(1 − Y1)‖R−1Ḡ (G)‖ ≤ ‖G − Ḡ ‖ ≤ (1 + Y1)‖R−1Ḡ (G)‖ .

By Lemma 2.45, for Y2 > 0 small enough, there exists a neighborhoodU2 ⊂ U of
Ḡ such that,

(1 − Y2)distM (G, Ḡ) ≤ ‖R−1Ḡ (G)‖ ≤ (1 + Y2)distM (G, Ḡ).

By choosing Y1, Y2 such that 1 − Y = (1 − Y1) (1 − Y2), these two estimates can be
combined to get the result. �
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PART A
STRUCTURE IDENTIFICATION IN

DATA SCIENCE: THEORY,
PRACTICE, AND ACCELERATION
OF OPTIMIZATION METHODS

Many problems in Data Science (regression, classification, clustering, etc.) lead to the
minimization of some risk function that measures the adequation between a model
and the data. However, when the number of parameters of the model becomes large
and the difficulty of the problem increases, the risk minimization gets harder and the
stability of the obtained model is degraded.

In order to overcome this issue, a popular solution is to introduce a prior on the
structure of the model. For instance, we may want the obtained model to be sparse or
low-rank so that the number of (non-null) parameters of the model is not too large;
which is helpful in terms of interpretability, generalization, and for the minimization
itself.

In this part, we study how certain optimization methods can produce iterates that
recover partially or exactly this structure. Then, we show how this information can be
harnessed to numerically accelerate optimization algorithms.

Motivation: Regularized Learning Problems

As mentioned in the introduction, many task of interest in Data Science lead to an
empirical risk minimization problem

min
G ∈Θ

'̂(%G ) =
1

<

<∑
8=1

ℓ (18 , %G (a8 )) (ERM)

which is usually smooth (by modelling or by approximation).
On the contrary, regularization implies resorting to nonsmooth functions. Indeed,

there is a strong link between non-differentiability points and structure stability,14
14This will be explored in
Chapter 3.

which made the use of nonsmooth regularizers ubiquitous in machine learning and
signal processing for the nice recovery or consistency properties that they induce; see
e.g. (Vaiter et al., 2015) and recall Fig. 1.1.

In general, the structure priors in machine learning (e.g. sparsity, fixed rank,
piecewise constant, etc.) are subsets ofℝ= that are rather easy to express and to project
on. As mathematical objects, to comply with a vast part of the literature, we shall see
them as smooth manifolds. A regularizer can then be defined as a nonsmooth function



38

Ω whose non-differentiability points coincide with the sough structure (e.g. the ℓ1-
norm for sparsity, the nuclear norm for low-rank, the total variation for piecewise
constant signals, etc.). This leads to a regularized empirical risk minimization problem:

min
G ∈ℝ=

1

<

<∑
8=1

ℓ (18 , %G (a8 ))︸                  ︷︷                  ︸
=:5 (G)

minimizes the risk '̂ (%G )

+ _ Ω(G)︸  ︷︷  ︸
=:6 (G)

enforces structure

(Regularized ERM)

This problem has a composite form, involving two different parts: 5 which is linked
to the risk itself, and 6 which only promotes structure, with a hyperparameter _ > 0
controlling the balance between risk minimization and structure enforcement. In this
document, we will consider _ as a constant fixed by the user.1515In some situations, the exact

structure of the unknown original
can be recovered with some
probability by appropriately

choosing it; see e.g. (Bach, 2008;
Candès et al., 2006; Fadili et al.,

2019; Zhao and Yu, 2006)

We refer to (Bach et al.,
2012; Candes et al., 2008; Combettes and Pesquet, 2011; Vaiter et al., 2017) among a vast
literature, for references about the theoretical and practical aspects of regularization.

Finally, the nonsmooth structure-enforcing part 6 = _Ω is generally chosen so that
its proximity operator can be computed easily (with a closed form or efficiently); see
Section 2.2. This motivates our study of proximal optimization methods in view of
their structure recovery abilities.

Nonsmooth Optimization & Structure identification

In this part, we will consider problems of the form

min
G ∈ℝ=

� (G) := 5 (G) + 6(G) (PA)

where 5 is a smooth function and 6 is nonsmooth.1616The precise assumptions will vary
from one chapter to another but the

structure will stay the same.
This problem is nonsmooth but, in our applications of interest, it is structured:
S1 the points of non-differentiability of 6 follow a known structure (this is our

prior), and prox6 can be exactly computed;
S2 the properties of the problem (smoothness, conditioning) are often improved

when restricted to the local structure.
We will thus investigate in this part how these two properties can be harnessed to

provide theoretical structure identification results and numerical acceleration schemes
for optimization methods.

This course of action is rather original. Indeed, the investigation of functions
whose non-differentiability points and proximity operators are known beforehand was
scarcely studied in the optimization literature, where structurewas often known/reached
inexactly. Nevertheless, we build upon a long history of manifold identification theory.
We give below a partial overview of the concepts that paved our way.

Nonsmooth Optimization

Nonsmoothness naturally appears in various applications of optimization, e.g. in
decomposition methods in operations research (Briant et al., 2008; de Oliveira et al.,
2011), in addition to the examples mentioned above in data analysis.

However, non-differentiability is generally a burden in terms of optimization and is
often associated with algorithms based on subgradients (Shor, 2012), inexact proximal
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points (Rockafellar, 1976), gradient sampling (Burke et al., 2005), bundle models (Kiwiel,
2006; Oliveira and Sagastizábal, 2014), smoothing (Nesterov, 2005), etc.

In our context, the proximity operator can be computed explicitly (this is S1), we
will thus focus on proximal methods. Furthermore, since large scale applications in data
science have given a new youth to first-order optimization, we will particularly focus
on proximal gradient methods (see e.g. the recent (Teboulle, 2018)) and coordinate
descent algorithms (see e.g. the review (Wright, 2015)).

Notably, we wish to see how these methods numerically benefit from the presence
of structure (this is S2). This means studying the smooth substructure present in these
nonsmooth objectives functions. To do so, we first need to take a look at structure
identification.

Identification

Let us start with an example. The popular ℓ1-norm regularization (6 = ‖ · ‖1) promotes
optimal solutions with few nonzero elements, and its associated proximity operator
proxW6 (see Example 2.24) puts the entries with absolute value smaller than W exactly
to 0. Thus, if some algorithm produces a sequence ~: → ~, then proxW6 (~: ) will have
a sparsity pattern corresponding to the smaller coordinates of ~: . Moreover, as (~: )
converges, this pattern will become stable, close to the one ~. This is an example of
identification.

More generally, the iterates produced by proximal methods eventually reach some
low-complexity pattern close to the one of the optimal solution in a finite number
of iteration. This active-set identification property is typical of constrained convex
optimization (see e.g. (Wright, 1993)) and nonsmooth optimization (see e.g. (Hare and
Lewis, 2004)).

The study of identification dates back at least to (Bertsekas, 1976) who showed that
the projected gradient method identifies a sparsity pattern when using non-negative
constraints. Such identification has been extensively studied in more general settings
(Burke and Moré, 1988; Drusvyatskiy and Lewis, 2014; Lewis, 2002; Lewis and Liang,
2018) (among other references).

Along with structure identification comes the idea of structure stability, i.e. how
stable is the identified pattern. Coming back to (PA), a minimizer Ḡ of this problem
satisfies 0 ∈ ∇5 (Ḡ) + m6(Ḡ) ⇔ −∇5 (Ḡ) ∈ m6(Ḡ). The nonsmoothness of 6 at Ḡ deter-
mines how much 5 can be (smoothly) changed while keeping Ḡ a non-differentiability
point of 6, which means keeping the identified structure. Such study is part of the
general sensitivity analysis of optimization problems; we refer the reader to (Bonnans
and Shapiro, 2013; Dontchev, 1983; Mordukhovich, 1992) on that topic.

Harnessing structure

The lower dimensionality of the identified structure and the superior properties of
objective function on this subspace can be used numerically. However, this has to be
done with care since identification results guarantee that a pattern is identified after a
finite but unknown time.

In some situations, structure identification can be guaranteed by screening possible
patterns (see e.g. (Fercoq et al., 2015; Ogawa et al., 2013) for sparse structures). In
that case, the problem can be readily restricted to the identified pattern, and the
optimization procedure can continue on this lower dimensional problem or update the
parameters of the method (Liang et al., 2017a).
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We focus here on the general case where we do not have access to the identification
time. Hence, in order to harness the structure uncovered along the iterates, adaptivity
is key. Exploiting this underlying substructure to develop faster methods has attracted
a lot of attention in nonsmooth optimization, pioneered by the developments around
the so-calledU-Newton method (Lemaréchal et al., 2000) and the notion of partial
smoothness (Lewis, 2002). We refer to (Sagastizábal, 2018) for a recent review of these
nonsmooth Newton methods relying on an implicit smooth substructure.

However, these methods exploit inexact structure information. For instance, the
UV-Newton bundle method of (Mifflin and Sagastizábal, 2005) approximates the sub-
structure from first-order information, the recent :-bundle Newton method of (Lewis
and Wylie, 2019) refines the approximation from a partial second-order oracle.

In our case, the access to an exact proximity operator (S1) allows to exactly identify
the structure. This enables us to take full advantage of this conceptual idea of using
higher-order methods using the locally identified structure.

Objectives of the part

First, in Chapter 3, we will investigate the mathematics of proximal identification. In
particular, we will exhibit simple conditions for finite time identification, either partial
or exact. Then, we will show that together with partial smoothness, exact identification
also brings smoothness to the proximity operator itself. These results give overall
a rather complete analysis of the structure identification and local smoothness of
proximal methods.

Chapter 4 then focuses on the proximal gradient algorithm and investigates the inter-
play between convergence speed, monotonicity, and identification. The goal of this
chapter is to give a practical viewpoint on identification.

However, while we are able to observe the iterates structure along the way, we do
not know in general if this structure is optimal/final or even if it will remain stable.
The key question is then

How can we harness this identified structure?

As a general idea, once a manifold has been identified (e.g. some coordinates are
null), there is some hope that it will stay identified for all subsequent iterations (e.g.
the coordinates will remain null). It is thus natural to update preferentially along
this manifold (e.g. update preferentially the non-null coordinates). This leads to the
following conceptual algorithm:

• Perform a proximity operation G: = proxW6 (~:−1) to identify some structure;
• Observe the current manifoldM: 3 G: ;
• Update preferentially alongM: .
Hence, we present in the following chapters two types of strategies for exploiting

the knowledge of the currently identified structure to a numerical advantage without
jeopardizing convergence:

• In Chapter 5, we show how to do proximal coordinate descent with an adaptive
sampling that favors the directions within the identified manifold.

• In Chapter 6, we investigate how alternating proximal gradient steps and Rie-
mannian Newton steps on the identified manifold can bring super-linear con-
vergence.



3 Proximal Identification

& Partial Smoothness

Si l’on n’est plus que mille, eh bien, j’en suis ! Si même
Ils ne sont plus que cent, je brave encor Sylla ;

S’il en demeure dix, je serai le dixième ;
Et s’il n’en reste qu’un, je serai celui-là !

Victor Hugo – Ultima Verba in Les châtiments (1853)

The purpose of this chapter is to build the theory of proximal identification
that will be central in the next chapters. In particular, we review how

partial identification can happen with very few hypotheses; this will guide us
to investigate structure-adaptive methods in the following. Then, we lay the
theoretical grounding to show that optimization methods exhibit a boost in
performance if some manifold is exactly identified.

This chapter borrows its key ideas and results from:
• G. Bareilles, F. Iutzeler: On the Interplay between Acceleration and
Identification for the Proximal Gradient algorithm , Computational Opti-
mization and Applications, vol. 77, no. 2, pp. 351–378, 2020.

• F. Iutzeler, J. Malick: Nonsmoothness in Machine Learning: specific
structure, proximal identification, and applications, to appear in Set-
Valued and Variational Analysis, vol. 28, no. 4, pp. 661–678, 2020.

• G. Bareilles, F. Iutzeler, J. Malick: Newton acceleration on manifolds
identified by proximal-gradient methods, 2021.

The set of non-differentiability points of a function often has a null Lebesgue
measure (this is actually true for all Lipchitz functions by Rademacher’s theorem). In
fact, in most situations of interest in data science, these non-differentiability points
locally have a manifold structure.

Take a manifoldM, a sequence (G: ) is said to identify manifoldM if

G: ∈ M after some finite time

i.e. for all : ≥  for some finite  . Now, ifM corresponds to non-differentiability
points of 6, what kind of algorithm can produce a sequence that identifiesM? In other
words, which algorithms can recover the nonsmooth structure of 6?

Intuitively, it is not enough to get G: close toM, we want a method capable to get
G: exactly inM, which corresponds to having m6(G: ) not reduced to a singleton. Since
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we are considering a property on the subgradient at the output G: , it seems natural to
rely on an implicit subgradient step, i.e. a proximity operator.1717This is not the only alternative;

for instance, if 6 is polyhedral, a
sufficiently rich cutting plane

model can find non-differentiability
points.

A typical example of this phenomenon is the ℓ1 norm, for which the proximal
operator, also called soft-thresholding, induces sparse outputs (see Example 2.24) which
corresponds to the non-differentiability points of the function. This means that an
optimization method featuring a soft-thresholding operation can identify sparsity
patterns.

Moreover, the non-differentiability points of a nonsmooth function may locally
form a smooth manifold on which the function may be smooth. For instance, this is
the case for the distance to the ℓ2-ball, or the nuclear norm. This means that better
convergence guarantees and finer algorithms can be derived locally around identified
points.

3.1 Proximal Identification

In this part, we will focus on proximal identification, that is the identification properties
of sequences involving proximal step

G: = proxW6 (~: ) (3.1)

and especially converging ones i.e. when ~: → ~.
Nonsmoothness is again of utmost importance. Indeed, in ℝ= consider a point

Ḡ belonging to a ?-dimensional manifold M locally defined by the local equation
Φ(G) = 0 (withΦ aC2 mapping, see Section 2.4.1). Take a proper lower-semi continuous
function � : ℝ=−? → ℝ such that � (D) ≥ 0 with equality if and only if D = 0 and
define 6 = � ◦ Φ. Then, locally around Ḡ , proxW6 is well-defined and unique (since 6 is
prox-bounded and prox-regular for 0 ∈ m6(Ḡ) with thresholds 0, see Section 2.2), the
proximal step (3.1) then gives1818The chain rule holds since the

Jacobian of the local equation
� Φ(G: ) is of rank = − ? ; see
(Rockafellar and Wets, 2009,

Ex. 10.7).

~: − G:
W

∈ m6(G: ) = �Φ(G: )>m� (Φ(G: ))

which means that
• if 6 is differentiable around G: (i.e. if � is differentiable around Φ(G: )), then as
any point on the manifold G ∈ M is a local minimum, G: ∈ M ⇒ ∇6(G: ) =
0⇒ G: = ~: which means that the manifoldM is identified only if ~: already
belongs to it.

• on the contrary, if 6 is non-differentiable for all G ∈ M near G: (i.e. if � is
non-differentiable at 0), G: ∈ M ⇒ ~: − G: ∈ Wm6(G: ) ≠ {0} which means that
there is a closed set with non-empty relative interior around G: in ℝ= whose
points will be mapped onto the manifold, which is the desired property.

Remark 3.1 (subgradient identification). Identification can also be captured by a con-
verging sequence pair (G: , D: ) → (G,D) in terms of subgradients

D: ∈ m6(G: )

as considered in e.g. (Fadili et al., 2018; Hare and Lewis, 2004). Nonsmoothness is also
necessary (the same example as above can be used to see it). J



3.2 Identification under a proximal qualifying condition 43

3.2 Identification under a proximalqalifying condition

Let us focus on the identification properties of proximal algorithms and try to develop
the most direct theory possible.

3.2.1 A simple and direct condition for proximal identification

Consider a sequence (~: ) such that ~: → ~ and define a sequence (G: ) satisfying
G: ∈ proxW6 (~: ). For identification to happen, i.e. to have G: ∈ M after some finite
time, a sufficient condition is that for any ~ close to ~, the proximity operator maps ~
toM. Mathematically, this proximal qualifying condition writes19 19In particular, (PQC) implies that

proxW6 (~) belongs toM. We also
make a slight abuse of notation
here: if proxW6 is set-valued, then
proxW6 (~) ∈ M is to be
understood as D ∈ M for all
D ∈ proxW6 (~) .

∃ Y > 0 such that for all ~ ∈ B(~, Y), proxW6 (~) ∈ M . (PQC)

Notice that this condition only involves the antecedent ~ of G by the proximity
operator. We are interested in the convergence and identification of (G: ) but, in
contrast with the literature, the condition here lies on ~ which will be in general
different from G . This is because we are considering the proximity operator directly
and not only the subgradient of 6 in order to get a first straightforward result. In the
following, we will link this result to standard subgradent qualifying condition under
additional assumptions in Section 3.3.1 and later provide practical instantiations of this
result (specifying ~) in Section 3.4.

M

×
~

Y

proxW6

Under this condition, it suffices to say that since ~: → ~, after some finite but
unknown time, ~: ∈ B(~, Y) which directly implies that G: ∈ proxW6 (~: ) ∈ M.
Theorem 3.2 (Identification from (PQC)). Let (G: ) and (~: ) be a pair of sequences such
that G: ∈ proxW6 (~: ) andM be a manifold. If ~: → ~ and (PQC) holds, then, after
some finite time, G: ∈ M.

M

×
~

Y

proxW6

•
~:•

•

• G:
••
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iterations

-4 -3 -2 -1 0 1 2 3 4
•
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G2

•
G2

identification

×
~1

×
~2

×
~3

•
G0

•
G2

•
G2

•
G3

•
G4

×
~1

×
~2

×
~3

×
~4

×
~5

no identification

W W = ~̄

zone that maps ~: to 0

Figure 3.1: Depiction of the situation of Remark 3.3 with W = 0.5. The initials points
are chosen as G0 = −4 and G0 = 4.

A first comment that directly arises is that the identification time is unknown,
which is a property generally shared by identification results. Here, it depends on
both i) the radius Y of projection ontoM in (PQC) and ii) the time after which the
sequence (~: ) belongs to B(~, Y). The only results in that flavor come from postulating
that (PQC) holds for some known Y > 0 and then using the convergence rate of (~: )
(obtained externally by precising and studying the algorithm) to obtain a complexity
estimate of the identification time; see e.g. (Garrigos et al., 2020; Nutini et al., 2019;
Sun et al., 2019).

Remark 3.3 (Failure cases). If one cannot find a ball centered on ~ mapped toM by
proxW6, one can have G: → G with G ∈ M but G: ∉M for every iteration.

For example, with 5 = 1
2 (· − 1)

2 and 6 = | · |, the composite problemminG ∈ℝ
1
2 (G −

1)2 + |G | has solution G★ = 0 (as the optimality condition writes 0 ∈ G★ − 1 + m |G★ |).
The proximal gradient iterates are then ~: = G:−1 − W∇5 (G:−1) and G: = proxW6 (~: )
with W ∈ (0, 1).

If G:−1 > 0, ~: = (1 − W)G:−1 + W > W thus G: = ~: − W = (1 − W)G:−1. Hence, for a
positive starting point G0 > 0, G: = (1−W):G0 → G★ = 0. Therefore, when considering
the manifoldM = {0}, G★ belongs toM and yet none of the iterates do. This example
illustrates the failure of (PQC). Indeed, ~: = W + (1 − W):G0 → ~ = W but there is no
ball around ~ that is mapped toM = {0} since proxW6 (~ + Y) = Y ∉M for any Y > 0.

If G:−1 < 0, ~: = (1−W)G:−1 +W < W thus G: = min(0, ~: +W). Thus, if the starting
point is negative (G0 < 0), G: will increase at each iteration (by at least 2W ) as long as
G: ≤ −2W/(1 − W) and then G: = 0. This means that if G0 < 0, identification happens
in finite time, even though ~ = W as in previous case.

All in all, when proxW6 (~) belongs toM but (PQC) does not hold, identification
may or may hold depending on the algorithm, initialization, etc. This example is
represented by Fig. 3.1. J

3.2.2 Identification with multiples manifolds

The type of nonsmoothness encountered in machine learning objectives is often linked
to user-defined priors which means that it is chosen and relatively simple. However, it
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may be impossible to represent the whole structure at scrutiny as a single manifold.
In addition, it is often more in line with the target application to define a collection
of possible structures, and eventually consider their intersection. For instance, if one
seeks sparsity patterns, one can define for each coordinate the manifold corresponding
to the nullity of this coordinate, study identification on each of these manifold, and
finally intersect them20 20An alternative, developed in

(Fadili et al., 2018), would be to
generate a stratification of the
whole space, i.e. dividing the space
into non-overlapping sets, each
corresponding to a particular kind
of structure, and studying the local
properties around some point’s
strata.

.
Hence, let us define a finite collection of manifolds:

C = {M1, . . . ,M@}.

In order to properly study membership in this collection, let us define the structure of a
point G ∈ ℝ= relatively to the collection C as the mapping S : ℝ= → {0, 1}@ defined as

S[8 ] (G) = 0 if G ∈ M8 and 1 elsewhere

where S[8 ] (G) stands for the 8-th coordinate of S(G).
Using the same reasoning that leads to Theorem 3.2, we can consider the structure

of all points near the limit ~, then after some finite time, the iterates (G: ) will at least
have the minimal structure common to these neighboring points.
Theorem 3.4 (Partial identification). Let (G: ) and (~: ) be a pair of sequences such that
G: ∈ proxW6 (~: ). If ~: → ~ then, for any Y > 0 and any 8 = 1, .., @, after some finite time

S[8 ] (G: ) ≤ max
{
S[8 ]

(
proxW6 (~)

)
: ‖~ − ~‖ ≤ Y

}
If in addition, G: → G then, after some finite time S(G) ≤ S(G: ).21 21The inequality is elementwise here.

Proof. For the first part of the result, since ~: → ~, we have that for any Y > 0,
‖~: −~‖ ≤ Y for : large enough. This directly gives the inequality as S

(
proxW6 (~: )

)
≤

max
{
S
(
proxW6 (~)

)
: ‖~ − ~‖ ≤ Y

}
.

The second part of the result is a bit different. Consider the collection of sets to
which G belongs C = {M8 ∈ C : G ∈ M8 }. SinceM◦ :=

⋃{M ∈ C \ C} is a closed set
(given that it is a finite union of closed sets), its complementary set ℝ= \M◦ is open.
Since G ∈ ℝ= \M◦ by definition of C, there exists a ball of radius Y ′ > 0 around G that
is included in ℝ= \ M◦. Hence, as G: → G , it will reach this ball in finite time thus
belong to fewer subspaces than G which means that S(G) ≤ S(G: ) coordinate-wise. �

This result thus provides a “sandwich” inequality for converging sequence pairs
(G: ) and (~: ) with G: ∈ proxW6 (~: ), valid after some finite but unknown time:

S(G) ≤ S(G: ) ≤ max
{
S
(
proxW6 (~)

)
: ‖~ − ~‖ ≤ Y

}
(3.2)

where the max is taken over ~ coordinate-wise. In particular, this result comes with
the idea of partial identification where only a fraction of the final structure may be
recovered. More precisely, a point G: near G have:

• less structure than G . The left-hand inequality guarantees that only the optimal
manifolds can be identified, but some might be missed (which means that less
structure is identified, no matter which algorithm is used).

• some structure. The identified structure is not random: it is controlled by the
right-hand-side term, which encompasses how the structure changes around
the pair (G,~). This upper-bound is in general impossible to evaluate a priori
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M1

M2

×
~

•
G

•
~:•

•

• G:
••

Figure 3.2: Illustration of partial identification. There is a ball (in green) around ~ that
maps ontoM1 but not necessarily ontoM2. In this situation, there is a region (in
orange) containing ~ that maps ontoM2 but ~ is not in its interior; thus, depending
on the sequence (~: ),M2 may or may not be identified.

(for an exception, see (Duval and Peyré, 2017)). Intuitively, its size captures the
difficulty of reaching the structure of G .

Note that the structure mentioned here is relative to the point towards which the
algorithm is converging. If there are multiple solutions to a problem, they may have
different sparsity patterns, and thus identification, while still in place may lead to
different structures.

Remark 3.5 (How to handle intersections? Direct approach vs. Stratification). Theo-
rem 3.4 and its proof are largely inspired by the reasoning of (Fadili et al., 2018, Th. 1);
however, the mathematical objects at play are quite different.

In (Fadili et al., 2018), the authors consider a stratification of ℝ= , i.e. a partition
C = {M1, . . . ,M@} such that M ∩ cl(M ′) ≠ ∅ ⇒ M ⊂ cl(M ′), in which case
M ≤ M ′ (which defines a partial ordering). Placing themselves in the convex case, the
authors introduce the operators J(M) = ∪G ∈M ri m6(G) and J∗ (M) = ∪G ∈M ri m6−1 (G).
The stratification C corresponds to the nonsmooth structure of 6 ifM = J∗ (J(M)) and
M ≤ M ′⇔ J(M) ≥ J(M ′). Then, if (G: , D: ) → (G,D) with D: ∈ m6(G: ), we have

M(G) ≤ M(G: ) ≤ M∗∗ (D)

whereM∗∗ (D) = J∗ (M∗ (D)) withM∗ (D) = {J(M) :M ∈ C, D ∈ J(M)}. We notice
again this “sandwich-like” structure, with a right inequality harder to express.

The correspondence between the two families of results will become even clearer
in the discussion and figure of Section 3.3.3 which considers the identification of one
manifold in the convex case.

On a more personal notice, the results of (Fadili et al., 2018) gave rise to numerous
discussions with Jérôme Malick. The results of this subsection are actually an attempt
to provide a more practical version of these results by considering directly the proximal
operator (replacing J and the subgradient sequences, see also Remark 3.1) and directly
considering the proximity operator outputs instead of a stratification of the space
(see Section 3.2.3). In that respect, (Fadili et al., 2018) is an intermediate link between
the results presented in this section and the more stringent and classical results of
identification under partial smoothness presented in Section 3.3.1. J
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3.2.3 Examples and Structure scrutiny

Example 3.6 (Sparsity). Sparsity patterns can be described using the following collection
of manifolds:

C = {M1, . . . ,M=} with M8 = {G ∈ ℝ= : G8 = 0}.

Sparse vectors are typically obtained after application of the proximity operator of
the ℓ1-norm (see Example 2.24):

prox[8 ]
W ‖ · ‖1 (~) =


~ [8 ] + W if ~ [8 ] < −W
0 if − W ≤ ~ [8 ] ≤ W
~ [8 ] − W if ~ [8 ] > W

.

We notice that the structure of G = proxW ‖ · ‖1 is obtained explicitly during the
computation. Indeed, G ∈ M8 if and only if −W ≤ ~ [8 ] ≤ W . J

The observation that structure is explicitly obtained during the proximity operator
computation is actually ubiquitous for regularizers in data science problems. Most
results developed in the upcoming Chapters 4–6 will be based on the fact that

upon computation of G = proxW6 (~), we naturally obtain S(G)

for a large class of pertinent functions. For instance, the following examples fall into
that category.

Example 3.7 (Piecewise constant). The structure of piecewise constant vectors can be
described using the following collection:

C = {M1, . . . ,M=−1} with M8 =

{
G ∈ ℝ= : G [8 ] = G [8+1]

}
.

Such vectors can be obtained as the output of the proximity operator of the 1D
total variation (see Example 2.27). When computing this proximity operator (see e.g.
(Condat, 2013)), we obtain as a byproduct of the equivalent dynamic program the
structure of the signal. J

Example 3.8 (low rank). To express the rank of a matrix - ∈ ℝ=1×=2 , it is natural
to examine its singular values (f1, . . . , f@) (where @ = min{=1, =2}). A direct way
to promote low-rank matrices is through nuclear norm regularization, which is the
ℓ1-norm of the singular values vector: 6(- ) = ‖- ‖∗ =

∑@

8=1 f8 , see Example 2.28 for
the computation of the proximity operator. Naturally, the collection writes

C = {M1, . . . ,M@} with M8 = {rank(- ) = 8}

and the rank of the output is naturally known since the thresholding of the singular
values gave the exact number of non-null entries, hence the rank. J

3.2.4 Exact Identification

The partial identification result of Theorem 3.4 can be strengthened to an exact version
guaranteeing S(G: ) = S(G) after some time. To do so, a direct way mirroring the
proximal qualification condition (PQC) is to assume that both “buns” of the sandwich
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inequality in Theorem 3.4 are equal. This leads to the following proximal qualifying
condition for multiple manifolds:

∃ Y > 0 such that for all ~ ∈ B(~, Y) S(proxW6 (~)) = S(proxW6 (~)) (PQC-M)

Note thatwe can see from the proof ofTheorem 3.4 that S(proxW6 (~)) ≤ S(proxW6 (~))
holds on a sufficiently small neighborhood and thus the condition only enforces a
one-sided inequality. With this qualification condition, we have the following result.
Corollary 3.9 (Exact identification). Let (G: ) and (~: ) be a pair of sequences such that
G: ∈ proxW6 (~: ). If G: → G , ~: → ~, and (PQC-M) holds, then, after some finite time

S(G: ) = S(G).

Intuitively, getting back to our drawings, the qualification condition implies that
the two attractions balls forM1 andM2 intersect and ~ lies in the interior of the inter-
section. Then, the exact identification holds as depicted in the following illustration.

M1

M2

×
~

•
~:•

•

• G:
••

3.2.5 Identification for stochastic proximal algorithms

Some proximal methods lead to stochastic processes for their iterates, either coming
from some randomized “coordinate descent” (see e.g. (Bianchi et al., 2016; Combettes
and Pesquet, 2015; Iutzeler et al., 2013a; Richtárik and Takáč, 2014)) or from a stochastic
oracle, typically a noisy gradient coming from data sampling (see e.g. (Defazio et al.,
2014a; Duchi and Singer, 2009; Mairal, 2015)).

In order to benefit from identification with probability 1, stochastic proximal
algorithms have to converge almost surely. This is to ensure that for each event, there
is a finite time after which the iterates belong to a neighboring ball which leads to
identification. This is the case for most randomized and variance reduced methods
(Bianchi et al., 2016; Combettes and Pesquet, 2015; Defazio et al., 2014a; Iutzeler et al.,
2013a; Mairal, 2015). However, when convergence only holds in probability (e.g. for the
proximal stochastic gradient (Duchi and Singer, 2009)), the iterates may not recover
the structure of the problem as detailed in (Poon et al., 2018, Sec. 1.3).

3.3 Partial smoothness

A key element to study in more details the relationship between proximal points and
smooth manifolds is the notion of partial smoothness (Lewis, 2002, Def. 2.7). Broadly
speaking, a function 6 is partly smooth with respect to a smooth manifoldM at a
point Ḡ ∈ M if, near Ḡ , it is smooth along the manifoldM and nonsmooth acrossM.
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Definition 3.10 (Partial smoothness). A function 6 is (C2-)partly smooth at a point Ḡ
relative to the C2 manifoldM around Ḡ if:

• (smoothness) the restriction of 6 toM is a C2 function near Ḡ ;
• (regularity) 6 is (Clarke) regular at all points G ∈ M near Ḡ , with m6(G) ≠ ∅;
• (sharpness) the affine span of m6(Ḡ) is a translate of #ḠM;
• (sub-continuity) the set-valued mapping m6 restricted toM is continuous at Ḡ .

This definition may seem a bit stringent, notably on the smoothness side, but it will
actually bring us much more control in terms of continuity around Ḡ (see Section 3.4).
For now, let us simply notice that the sharpness condition was informally evoked
when discussing the necessity of non-smoothness in Section 3.1 and the smoothness
on the manifold ensures us that there are no other non-differentiability points that
could trap proximal points in the neighborhood. This notion is illustrated in Fig. 3.3.

M
•

G

)ḠM

G + Wm6(G)
{G + Wm6(G) : G ∈ M}

Figure 3.3: Illustration of partial smoothness.

3.3.1 Proximal identification under partial smoothness

Partial smoothness characterizes the function locally, but the point itself has to fulfill
some non-degeneracy condition as before. This is most commonly done though a
subgradient qualification condition, for a proximal method verifying (G: , ~: ) → (G,~)
with G: ∈ proxW6 (~: ), this gives:22 22Even though W , the stepsize for

the proximal operator used is
present in the equation, it will in
general disappear as soon as the
algorithm is made precise, see
Section 3.4

~ − G
W
∈ ri m6(G). (SQC)

Using this condition, we can show that the proximal qualification condition holds.
Theorem 3.11. Suppose that 6 is both A -prox-regular at Ḡ and partly-smooth relative to
manifoldM at Ḡ . Take W , W̄ such that 0 < W < W̄ ≤ 1/A and Ḡ = proxW̄6 (~̄). If either 1) W
is sufficiently close to W̄ , or 2) ~̄ is sufficiently close to Ḡ , then (SQC) implies (PQC).

To be more explicit, (SQC) implies (PQC) means that provided that the qualification
condition ~−G

W
∈ ri m6(G) holds, then proxW6 (~) ∈ M for all ~ sufficiently close to ~̄.

Proof. Adopting the same reasoning as in (Lewis, 2002, Sec. 5) and (Daniilidis et al.,
2006, Sec. 4.1), we consider the function

d : ℝ= ×ℝ= → ℝ=

(D,~) ↦→ 6(D) + 1
2W ‖D − ~‖

2,
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and denote by d~ = d (·, ~). Computing the proximal gradient proxW6 (~) can then be
seen as minimizing the parametrized function d~ as noticed in Section 2.2.

Step 1. As a first step, we study the minimizers of d~ restricted toM, for ~ near ~̄ and
show that they are actually strong minimizers, and evolve near Ḡ as a continuously
differentiable mapping of the parameter ~. We consider the parametric manifold
optimization problem, for ~ near ~̄:

min
G ∈M

d~ (G). (%M (~))

Since 6 is C2-partly-smooth relative toM, d~ is twice continuously differentiable
onM. The prox-regularity and W < 1/A implies that Ḡ is a strong local minimizer
of d~̄ (see Lemma 2.21), which in turn implies the following second-order optimality
condition onM (see Lemma 2.43):

grad d~̄ (Ḡ) = 0 Hess d~̄ (Ḡ) �
(
1

W
− A

)
� � 0.

We consider the equation� (G,~) = 0, for G,~ near Ḡ, ~̄, where� :M ×ℝ= → )B
is defined as � (G,~) = grad d~ (G). This function is continuously differentiable on a
neighborhood of (Ḡ, ~̄), and its differential relative to Ḡ at that point, Hess d~̄ (Ḡ), is
invertible. The implicit function theorem2323See e.g. (Halkin, 1974, Th. B). thus grants the existence of neighborhoods
NḠ , N~̄ of Ḡ , ~̄ inM,ℝ= , and a continuously differentiable function p : N~̄ → NḠ
such that, for any ~ in N~̄ , � (p(~), ~) = grad d~ (p(~)) = 0.

Step 2. As a second step, we turn to show that the minimizer p(~) of d~ |M is actually
a critical point of d~ . More precisely, we claim that, for ~ near ~̄ there holds 0 ∈
ri md~ (p(~)), that is

1

W
(~ − p(~)) ∈ ri m6(p(~)) .

This property holds at (Ḡ = p(~̄), ~̄) by assumption. By contradiction, assume there
exist sequences of points (~A ) with limit ~̄, (GA ) = (p(~A )) with limit Ḡ = p(~̄) and (ℎA )
of unit norm ‖ℎA ‖ = 1 such that for all A , ℎA separates 0 from md~A (GA ):

inf
ℎ∈md~A (GA )

〈ℎA , ℎ〉 ≥ 0.

Since (ℎA ) is bounded, a converging subsequence can be extracted from it, let ℎ̄ denote
its limit. At the cost of renaming iterates, we assume that limA→∞ ℎA = ℎ̄. The above
property still holds at the limit A → ∞. Indeed, let D̄ ∈ md~̄ (Ḡ). Since 6 is partly
smooth, the mapping (G,~) ∈ NḠ × N~̄ ↦→ md~ (G) = m6(G) + 1

W
(G − ~) is continuous.

Therefore, there exists a sequence (DA ) such that DA ∈ md~A (GA ) and limA→∞ DA = D̄.
We have for all A : 〈DA , ℎA 〉 ≥ 0, which yields at the limit 〈D̄, ℎ̄〉 ≥ 0. Thus ℎ̄ separates 0
from md~̄ (Ḡ), which contradicts our assumption that 0 ∈ ri md~̄ (p(~̄)).
Conclusion. We thus have a continuously differentiable function p defined on a neigh-
borhood of ~̄ with values onM such that 0 ∈ ri md~ (p(~)).

Thus, we have that (~ − p(~))/W ∈ m6(p(~)). The characterization of proximity by
the optimality condition (Theorem 2.18) finally gives that p(~) = proxW6 (~) for ~ close
enough to ~̄.

Therefore, we have that the existence of a neighborhood of ~̄ on which proxW6 (~) ∈
M which is exactly (PQC). �
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A drawback of this result is its hypotheses on W, Ḡ, ~̄ that are due to the need to
go from a point G ∈ M satisfying 0 ∈ d~ (G) to the fact that G = proxW6 (~). These
assumptions can be dropped in the convex case (see Section 3.3.3) or by paying a prize
on the admissible stepsizes (see the remark below and Section 2.2). Additionally, we
also bring the attention of the reader to the fact that the theorem can be readily applied
near qualified critical points i.e. when 0 ∈ ri m6(Ḡ), as detailed in Section 3.4.
Remark 3.12 (Additional assumptions and stepsize). The assumptions here are a bit
stronger than the ones in (Daniilidis et al., 2006). This is because we guarantee here
the result for a broad range of stepsizes, not for a sufficiently small one. Adding the
assumption that 6 is prox-bounded, the result can be directly modified to “Take W
sufficiently small, then (SQC) implies (PQC)”. This mirrors the difference between
Theorem 2.18 and Theorem 2.17. J

Now, that we have established the link with the proximal qualification condition,
we can readily apply Theorem 3.2 to get the following identification result.
Corollary 3.13 (Identification with partial smoothness). Let (G: ) → Ḡ and (~: ) → ~̄

be a pair of converging sequences such that G: ∈ proxW6 (~: ) andM be a manifold.
Suppose that 6 is both A -prox-regular at Ḡ and partly-smooth relative toM at Ḡ .
Take W , W̄ such that 0 < W < W̄ ≤ 1/A and Ḡ = proxW̄6 (~̄). If

i) (SQC) is verified, i.e. ~−G
W
∈ ri m6(G);

ii) either 1) W is sufficiently close to W̄ , or 2) ~̄ is sufficiently close to Ḡ ;
then, after some finite time

G: ∈ M .

3.3.2 Uniqueness of identified manifold

One of the counterparts of assuming smoothness locally on some manifold is the
implicit acknowledgement that Ḡ only belongs to one identified manifold. Thus, no
partial identification in the sense of the “sandwich inequality” (3.2) can be obtained.24 24This was one of the motivations

behind the notion of mirror
stratifiability in (Fadili et al., 2018).

This statement can be formalized as the following proposition, whose proof follows
the reasoning of (Hare and Lewis, 2004, Cor. 3.2).

Proposition 3.14 (Uniqueness of manifold). Consider a function 6, two manifoldsM1,
M2 and a point Ḡ ∈ M1 ∩M2 such that 6 is prox-bounded, A -prox-regular at Ḡ , and
partly-smooth relative to both manifoldsM1 andM2. Then, near Ḡ ,M1 =M2.

Proof. For the sake of eventual contradiction, let (G: ) denote any sequence converging
to Ḡ such that G: ∈ M1 \ M2 for all : . Since 6 is prox-regular, (Rockafellar and
Wets, 2009, Prop. 13.37) tells us that there is W̄ > 0 such that Ḡ = proxW̄6 (~̄) for some
~̄ ∈ Ḡ + W̄ ri m6(Ḡ) ∈ ℝ= (since 6 is partly smooth, m6(Ḡ) has non-empty relative interior,
and ~̄ can be taken as Ḡ + W̄ {̄ for any {̄ ∈ ri m6(Ḡ) by reasoning as in the proof of (Hare
and Sagastizábal, 2009, Th. 4)). As 6 is partly smooth relative toM1, we know that m6
is outer semi-continuous (Rockafellar and Wets, 2009, Prop. 8.7). Then, any converging
sequence of subdifferentials {: ∈ m6(G: ) converges to a point in m6(Ḡ).

We can thus select a sequence {: ∈ m6(G: ) converging to {̄ = (~̄ − Ḡ)/W̄ ∈ ri m6(Ḡ)
and define ~: = G: + W{: for some W ∈ (0, W̄). It is immediate to see that the sequence
(~: ) converges to ~W = (1− (W/W̄))Ḡ + (W/W̄)~̄ and that ~W can be made arbitrarily close
to ~̄ by taking W close to W̄ . Thus, we can consider that, properly choosing W , ~: reaches
any neighborhood of ~̄ in a finite number of iterations.
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Theorem 2.18 then indicates that for : large enough, we have G: = proxW6 (~: ).
Furthermore, Corollary 3.13 applied withM =M2 shows that proxW6 isM2-valued
near ~̄ which implies that G: = proxW6 (~: ) ∈ M2 for : large enough which contradicts
G: being inM1 \M2. �

Note that manifolds can be included one in another, for instance if M1 is the
manifold of rank-1 matrices andM2 is the manifold of rank-2 matrices. For these
situations, we will always consider the smallest manifold in practice as guided by
theory which says that if 6 is partly smooth with respect toM1, it cannot be partly
smooth at the same point with respect toM2 because of the absence of sharpness.

3.3.3 The relation between (PQC) and (SQC) in the convex case

In the convex case, the notion of prox-regularity can be dropped and the result simpli-
fied since (~ −G)/W ∈ m6(G) directly implies that G = proxW6 (~) (Theorem 2.22 suffices,
there is no need to call Theorem 2.18 which is the source of the assumptions on W and
~̄). Then, Corollary 3.13 can be simplified as follows.
Corollary 3.15 (Identification with partial smoothness: convex case). Let (G: ) → Ḡ

and (~: ) → ~̄ be a pair of converging sequences such that G: = proxW6 (~: ) andM be a
manifold. Suppose that 6 is convex, lower semi-continuous, and partly-smooth relative to
M at Ḡ . If (SQC) is verified, i.e. if ~−G

W
∈ ri m6(G), then after some finite time

G: ∈ M .

Proof. The proof of Theorem 3.11 can be directly followed with a prox-regularity
threshold A = 0 since we are in the convex case. The only changes lies in the conclusion
where (~−p(~))/W ∈ m6(p(~)) directly implies that p(~) = proxW6 (~) byTheorem 2.22.
Then, Theorem 3.2 can be applied to get the result. �

In fact, convexity, or, more precisely, the equivalence between (~ − G)/W ∈ m6(G)
and G = proxW6 (~) enables to get a better intuition about the relation between the
proximal qualifying condition (PQC) and the subgradient qualifying condition (SQC).

From (SQC) to (PQC): (SQC)means that~ ∈ ri(G+Wm6(G)) so there is an open set in
the affine hull of G +Wm6(G) (represented as the dotted line in Fig. 3.4) which contains ~.
Thus, there is some Y > 0 such that all ~ ∈ B(~̄, Y) ∩ {G +Wm6(G)}, proxW6 (~) = Ḡ ∈ M.

Now, by partial smoothness, the set {G +Wm6(G) : G ∈ M} evolves smoothly around
G + Wm6(G). This means that there is an open neighborhood of ~̄ in ℝ= that belongs
to {G + Wm6(G) : G ∈ NḠ ⊂ M}. This implies the existence of some Y > 0 such that
all ~ ∈ B(~̄, Y), ~ = G + Wm6(G) for some G ∈ M; or equivalently proxW6 (~) = G ∈ M,
which is exactly (PQC).

From (PQC) to (SQC): (PQC) means that there is a ball of radius Y around ~̄ such
that every ~ in that ball verifies proxW6 (~) ∈ M. In particular, Ḡ := proxW6 (~̄) ∈ M.

Using partial smoothness, m6(Ḡ) has its affine hull orthogonal to the tangent space
ofM at Ḡ . If we intersect the affine hull of G +Wm6(G) and the ball around ~̄, we notice
that every point in the intersection is mapped to Ḡ by proxW6 hence the intersection is
included in G + Wm6(G). All in all, this means that ~̄ belongs to an open set within the
affine hull of G + Wm6(G), i.e. ~ ∈ ri(G + Wm6(G)), which is exactly (SQC).
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M
•

G

)ḠM

G + Wm6(G)
×

~
{G + Wm6(G) : G ∈ M}

Figure 3.4: Relation between (PQC) and (SQC) under partial smoothness in the convex
case.

3.4 Local smoothness around critical points

The previous sections introduced the main tools for proximal identification using first
the proximal qualification condition (Section 3.2) and then using partial smoothness
(Section 3.3). However, the last results (especially Theorem 3.11) tend to show that
partial smoothness is more delicate to use since it requires considering only one
manifold and satisfying conditions on the proximity operator (existence of a proximity
operator with a greater stepsize, subgradient qualification, etc.) that make this notion
best used around fixed points of the proximity operator. In that situation, partial
smoothness has an advantage over proximal qualification: it gives much finer results
in terms of smoothness of the proximal operation.

Indeed, the proof ofTheorem 3.11 is based on the study of d~ (G) = 6(G)+ 1
2W ‖G−~‖

2

and is comprised of two parts:
• proving the existence of critical points on the manifoldM that are continuous
with respect to ~;

• showing that the critical points of d~ restricted to the manifoldM are critical
points of d~ on the whole space (and thus proximal points), using subgradient
qualification (SQC) and the continuity of m6 brought by partial smoothness.

The first step is done by considering the equation � (G,~) = grad d~ (G) = 0 in a
neighborhood of (Ḡ, ~̄) inM ×ℝ= and applying the implicit function theorem to get
the existence of a function p : ℝ= → M such that � (p(~), ~) = grad d~ (p(~)) = 0.
The implicit function further tells us that p(~) (that is shown to be exactly proxW6 (~) in
the second step) is actually C1 since 6 is C2 from the definition of partial smoothness.

Thus, partial smoothness enables to show the smoothness of the proximal mapping,
which is important in terms of stability of the associated algorithms (in particular,
this will be crucial in Chapter 6). In order to better illustrate this property, we will
particularize our results by specifying the value of the antecedent ~̄ for common
proximal methods. Note that the results presented here are local and the identification
guarantees additionally assume the convergence of the method.

3.4.1 For the proximal point

As presented in Section 2.3.2, the Proximal point algorithm

G:+1 = proxW6 (G: ) (Proximal point)



54 Chap. 3 - Proximal Identification & Partial Smoothness

aims at finding a minimizer of 6 by finding a fixed point of the associated proximity
operator. By taking ~̄ = Ḡ in the result of Section 3.3.1 (out of simplicity and without
loss of generality, we also take W̄ = 1/A ). We note that the subgradient qualification
condition (SQC) now boils down to the more common critical point qualification
condition

0 ∈ ri m6(Ḡ). (QC)

Combining Theorem 3.11 and Corollary 3.13 directly gives the following result.
Theorem 3.16. Let Ḡ be a point of a manifoldM and A such that:

i) (qualification condition) 0 ∈ ri m6(Ḡ);
ii) (proximal stability) Ḡ = prox6/A (Ḡ);
iii) (prox-regularity) 6 is A prox-regular at Ḡ ;

iv) (partial smoothness) 6 is partly smooth at Ḡ with respect toM.
Then, for any W ∈ (0, 1/A ),

a) (local smoothness) the proximity operator proxW6 is C1 andM valued near Ḡ ;

b) (identification) if ~: → Ḡ , then proxW6 (~: ) ∈ M for : large enough.

This type of result and assumptions is common in the literature; see e.g. (Daniilidis
et al., 2006, Th. 28). However, the proximal stability condition is sometimes eluded (it
is naturally verified in the convex case), or replaced by prox-boundedness (in which
case the stepsize W has to be sufficiently small).

The interest of Theorem 3.16 for the Proximal point algorithm is that it guarantees
that the iterates (G: ) identify the manifoldM and furthermore behave smoothly on it.

3.4.2 For the proximal gradient

As detailed in Section 2.3.3, the Proximal gradient algorithm then consists in iterating

G:+1 = proxW6 (G: − W∇5 (G: )) (Proximal gradient)

to find a minimizer of 5 + 6. Taking ~̄ = Ḡ − W∇5 (Ḡ) in the result of Section 3.3.1, we
can quickly show a result similar to Theorem 3.16 with the qualification condition

−∇5 (Ḡ) ∈ ri m6(Ḡ). (QC)

More precisely, we get the following result.
Theorem 3.17. Let 5 : ℝ= → ℝ be a C1 function and 6 : ℝ= → ℝ a lower semi-
continuous function.
Let Ḡ be a point of a manifoldM and A such that:

i) (qualification condition) −∇5 (Ḡ) ∈ ri m6(Ḡ);
ii) (proximal gradient stability) Ḡ = prox6/A (Ḡ − 1/A∇5 (Ḡ));
iii) (prox-regularity) 6 is A prox-regular at Ḡ ;

iv) (partial smoothness) 6 is partly smooth at Ḡ with respect toM.
Then, for any W ∈ (0, 1/A ),

a) (local smoothness) the proximity operator proxW6 is C1 andM valued near Ḡ −
W∇5 (Ḡ);

b) (identification) if ~: → Ḡ − W∇5 (Ḡ), then proxW6 (~: ) ∈ M for : large enough.
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This results provides an identification result for the Proximal gradient method.
However, it only provides smoothness for the proximity operator, not the full proximal
gradient operator. This can be corrected rather easily, provided that 5 is C2.25 25Actually, this reasoning can be

directly extended to compositions
of the proximity operator with a
C1 mapping.3.4.3 For the proximal gradient, second version

Adopting the same reasoning as in the proof of Theorem 3.11 but incorporating the
gradient of 5 in the surrogate function we obtain the following result.

Theorem 3.18. Let 5 : ℝ= → ℝ be a C2 function and 6 : ℝ= → ℝ a lower semi-
continuous function.
Let Ḡ be a point of a manifoldM and A such that:

i) (qualification condition) −∇5 (Ḡ) ∈ ri m6(Ḡ);
ii) (proximal gradient stability) Ḡ = prox6/A (Ḡ − 1/A∇5 (Ḡ));
iii) (prox-regularity) 6 is A prox-regular at Ḡ ;

iv) (partial smoothness) 6 is partly smooth at Ḡ with respect toM.
Then, for any W ∈ (0, 1/A ),

a) (local smoothness) the proximal gradient operator proxW6 (· − W∇5 (·)) is C1 and
M valued near Ḡ ;

b) (identification) if ~: → Ḡ , then proxW6 (~: − W∇5 (~: )) ∈ M for : large enough.

Proof. The main difference with respect to the proof of Theorem 3.11 is that we now
consider the function

d : ℝ= ×ℝ= → ℝ=

(D,~) ↦→ 6(D) + 1
2W ‖D − ~ + W∇5 (~)‖

2.

Computing the proximal gradient proxW6 (~ − W∇5 (~)) can then be seen as mini-
mizing the parametrized function d~ := d (·, ~). �

The identification properties of the proximal gradient were extensively studied in
the literature; e.g. (Garrigos et al., 2020; Liang et al., 2017a; Sun et al., 2019). However,
the non-convex case is more rarely treated, as well as the local smoothness of the
proximal gradient operator.

Remark 3.19 ((Non) smoothness of proximal gradient at non qualified points.). Take
the same functions as in Remark 3.3, 5 (G) = 1

2 (G − 1)
2 and 6(G) = |G | for any G ∈ ℝ,

and W ∈ (0, 1). The unique minimizer lies at the origin, but is not a structured critical
point as it is not qualified: 0 ∉ ri m(5 + 6) (0) = ri[−2; 0] = (−2; 0). The proximal
gradient operator is

proxW6 (~ − W∇5 (~)) =


(1 − W)~ + 2W if ~ ≤ −2W1−W
0 if −2W1−W ≤ ~ ≤ 0

(1 − W)~ if 0 ≤ ~

and is indeed not continuously differentiable near 0 as illustrated next (for W = 0.5).
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~

proxW6 (~ − W∇5 (~))

In this illustration, we see again two phenomena observed in Remark 3.3. First,
identification is still possible when coming “from the left”, i.e. by starting from negative
values. Second, it is exactly the fact that 0 belongs to the border (and the relative
interior) of m(5 + 6) that put the breaking point at 0 which is the fixed point of the
represented operator. J

Remark 3.20 (Other proximal methods). The reasoning laid out above can be straight-
forwardly extended to other proximal methods of the literature. For instance, one can
show identification for Douglas-Rachford/ADMM (Liang et al., 2017b), SAGA/SVRG
(Poon et al., 2018), proximal (quasi-)Newton methods (Lee, 2020), etc. J

3.5 Harnessing nonsmoothness

To conclude this chapter, let us put the presented results into perspective. In the
introduction to Part A, we motivated our study by considering regularized learning
problems and the identification of their prior structure. In this chapter, we modeled
this (user-defined) prior as a collection of manifolds:

C = {M1, . . . ,M@}.

Then, benefiting from some structure amounts to belonging to one or several of these
manifolds. Importantly, we also saw that when computating a proximity operator, we
often obtained the structure of its output (its sparsity pattern for the ℓ1 norm, its rank
for the nuclear norm, etc.).

In a first time, we showed how to guarantee that the iterates of a proximal method
G: ∈ proxW6 (~: ) will belong to some of these manifold in finite time. More precisely, an
iterate G: will belong to a manifoldM8 if it is a stable output of the proximity operator,
i.e. if proxW6 (~) ∈ M8 for all ~ close to ~: . In particular, if ~: converges to some ~, the
stable manifolds around~ will be identified for sure while the other manifolds to which
G = proxW6 (~) does not belong will not be identified. This also means that parts of the
structure may be identified sooner than others. Some manifolds can even be falsely
identified but only far enough from the optimal point. This proximal identification is
the theoretical backbone to the design and the analysis of methods that are able to
adapt to the uncovered structure along the way.

Then, we provided qualification condition for the exact identification of the fi-
nal/optimal structureM★. This additional qualification condition is necessary here
since the optimal structure has to be somehow stable to be identified as we saw in
Remark 3.3 and Fig. 3.1; this also makes sense in terms of statistical relevance of the
optimal pattern.

In a second time, under the umbrella of partial smoothness, we investigated the
identification of the optimal manifoldM★ under a qualification condition. This enabled
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us to show that proximal methods not only identified but also behaved smoothly around
the critical points. This means a possibly faster convergence in practice but also the
opportunity to take advantage of this gained smoothness to use higher order methods
along the identified structure.

These results are the workhorses and the motivation carrying Chapters 4–6.

��
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4 Case Study: theProximalGradientmethod

and its accelerated versions

À la fin, quand il vit
Que l’autre touchait presque au bout de la carrière,

Il partit comme un trait ; mais les élans qu’il fit
Furent vains : la Tortue arriva la première.

“Eh bien, lui cria-t-elle, avais-je pas raison ?
De quoi vous sert votre vitesse ?
Moi l’emporter ! et que serait-ce

Si vous portiez une maison ?
Jean de la Fontaine – Le Lièvre et la Tortue (1668)

In this chapter, we focus on some of the (many) variants of the proximal
gradient method and investigate the identification properties presented in

Chapter 3. Notably, we investigate how the difference in monotonicity and
rates between the variants may result in contrasting identification in practice.

This chapter is based on the following publications:
• F. Iutzeler, J. Malick : On the Proximal Gradient Algorithm with Alter-
nated Inertia , Journal of Optimization Theory and Applications, vol. 176,
no. 3, pp. 688-710, March 2018.

• G. Bareilles, F. Iutzeler : On the Interplay between Acceleration and
Identification for the Proximal Gradient algorithm , Computational Opti-
mization and Applications, vol. 77, no. 2, pp. 351–378, 2020.

As mentioned in Part A’s introduction, problems of the form

min
G ∈ℝ=

� (G) := 5 (G) + 6(G) (PA)

with 5 a smooth function and 6 a nonsmooth, structure-enhancing, function are of
particular interest in data science. In order to take full advantage of the structure
of the problem, i.e. using the gradient of 5 and the proximity operator of 6, it is
natural to consider the proximal gradient algorithm. This method stems from the
idea of Forward-Backward splitting in monotone operators theory (see (Bruck Jr, 1977;
Passty, 1979) for an historical perspective and for a more recent formulation (Bauschke
and Combettes, 2011, Chap. 25.3,27.3)). It consists in alternating a gradient step on
5 and a proximal operator on 6. The proximal gradient has been widely adopted in
signal/image processing and machine learning thanks to the availability of explicit
proximity operator for regularization functions (Combettes and Wajs, 2005; Duchi and
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Singer, 2009). The structure identification was also one of the reasons for the adoption
of these kind of methods, in particular for the iterative thresholding of wavelets
coefficients; see e.g. (Chambolle et al., 1998; Daubechies et al., 2004; Figueiredo and
Nowak, 2003; Figueiredo et al., 2007) and references therein.

In 2009, Amir Beck and Marc Teboulle introduced an accelerated variant of the
proximal gradient algorithm, FISTA (Beck and Teboulle, 2009a), that adapts the idea of
Nesterov’s fast gradient method (Nesterov, 1983) to the proximal gradient case; see
(d’Aspremont et al., 2021) for a recent review. Thanks to its better convergence rate in
theory and in practice and the relative simplicity of the algorithm, FISTA was rapidly
adopted by the community and lead to a great amount of subsequent research. In
particular, two aspects of FISTA caught my attention:

(1) The iterates convergence is more involved. The issue comes from the difficulty
to mix the usual proofs based on monotone operator theory with Nesterov’s
acceleration; see (Iutzeler and Hendrickx, 2019, Sec. 3.2.1) and references therein.
It was finally proven for slightly modified version in (Attouch and Peypouquet,
2016; Chambolle and Dossal, 2015).

(2) The functional decrease is not monotonous in general. In the follow-up paper
(Beck and Teboulle, 2009b), Beck and Teboulle notice that “As opposed to [the
proximal gradient], FISTA is not a monotone algorithm, that is, the function values
are not guaranteed to be nonincreasing. Monotonicity seems to be a desirable
property of minimization algorithms, but it is not required in the original proof of
convergence of FISTA. Moreover, we observed in the numerical simulations in (Beck
and Teboulle, 2009a) that the algorithm is “almost monotone”, that is, except for
very few iterations the algorithm exhibits a monotonicity property.” This was the
motivation for their introduction of MFISTA, a monotone version of FISTA.

In fact, we noticed in (Bareilles and Iutzeler, 2020) that the non-monotonicity
of the functional values was closely link to fluctuations of the identified structure.
Intuitively, the convergence was too fast (more precisely, the inertia was too strong)
to stay on some manifold, even if it is the optimal one; a problem that is not solved
by the monotonous version MFISTA. This chapter is thus devoted to the study of the
identification properties of proximal gradient algorithms.

4.1 TheProximalGradientalgorithmand its accelerated
variants

In the convex case, a minimizer of problem (PA) is a point G satisfying

0 ∈ m� (G) = ∇5 (G) + m6(G). (4.1)

Forward-Backward splitting then consist in numerically solving (4.1) by discretizing
the differential inclusion ¤G ∈ m� (G) in a Explicit-Implicit manner:

0 ∈ W∇5 (G: ) + Wm6(G:+1) + G:+1 − G:

⇔ 0 ∈ m6(G:+1) +
1

W
(G:+1 − (G: − W∇5 (G: )) )

⇔ G:+1 = proxW6 (G: − W∇5 (G: ))

and thus consists in alternating a proximal step and a gradient step.
In the whole chapter, we will thus assume convexity and non-degeneracy in order

to make the message clearer.
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Assumption 4.1. The function 5 : ℝ= → ℝ is convex and !-smooth, and 6 : ℝ= →
ℝ is convex, proper, and lower semi-continuous. Furthermore, we suppose that
argmin � ≠ ∅.

4.1.1 Algorithm

For some fixed stepsize W ,26 26For clarity and conciseness, we
consider fixed stepsizes in the
whole chapter. We refer the reader
to (Beck, 2017, Chap. 10) for other
stepsize strategies.

the proximal gradient algorithm consists in iterating

G:+1 = proxW6 (G: − W∇5 (G: )) . (Proximal gradient)

Asmentioned in Section 2.3.3, this methods can be seen as an iterative minimization
of a first-order approximation of 5 plus 6 since

G:+1 = proxW6 (G: − W∇5 (G: ))

= argminD∈ℝ=

{
5 (G: ) + 〈D − G: ,∇5 (G: )〉 + 6(D) +

1

2W
‖D − G: ‖2

}
which enables to easily derive descent inequalities (see Lemma 2.39) and prove the
following convergence result.
Theorem 4.2. Let Assumption 4.1 hold. Then, the Proximal gradient method with
W ∈ (0, 1/!] generates iterates that verify

a) � (G:+1) ≤ � (G: ) − 2−W!
2(1+W!) dist(0, m� (G:+2))

2;

b) � (G: ) −min � ≤ ‖G
★−G0 ‖2
2W: ;

c) (G: ) converges to a point G ∈ argmin � ;

d) ‖G:+1 − G ‖ ≤ ‖G: − G ‖ for any G ∈ argmin � .

In words, this means that the functional suboptimality decreases monotonically
at a O(1/:) rate. Furthermore, the iterates converge to one of the minimizers while
the distance to the set of minimizers is non-increasing. This property, that often
appears in monotone operator theory, is usually called Fejér monotonicity (Bauschke
and Combettes, 2011, Sec. 5.1).

4.1.2 Acceleration by Nesterov’s inertial method

To improve the convergence of the proximal gradient algorithm, (Beck and Teboulle,
2009a) proposed to add an inertial step. This consists in constructing the next iterate
~:+1 by combining the outputs G:+1 and G: of the last two proximal gradient steps.
Specifically, given a sequence of real non-negative numbers (U: ), an iteration of the
inertial proximal gradient algorithm can be written as{

G:+1 = proxW6 (~: − W∇5 (~: ))
~:+1 = G:+1 + U:+1 (G:+1 − G: )

. (Accelerated Proximal gradient)

The design of the inertial sequence (U: ) affects greatly the performance of the
resulting algorithm, and different options are investigated in the literature. Popular
choices include a) Nesterov’s optimal sequence (Nesterov, 1983) which leads to the
FISTA algorithm (Beck and Teboulle, 2009a) and b) the variants used for refined
analyses (Attouch and Peypouquet, 2016; Chambolle and Dossal, 2015):

U:+1 =
C: − 1
C:+1

with 0) C0 = 0 and C:+1 :=
1+

√
1+4C2

:

2

or 1) C0 = 0 and C:+1 := :+0
0

with 0 > 2.

(4.2)
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Both choices lead to increasing sequences tending to 1 at rate 1/: and are proven to
accelerate the worst-case convergence rate of the algorithm from O(1/:) to O(1/:2).
However, this comes at the price of losing monotonicity.
Theorem 4.3. Let Assumption 4.1 hold. Then, the Accelerated Proximal gradient method
with W ∈ (0, 1/!] and (U: ) as in (4.2) generates iterates that verify

a) � (G:+1) ≤ � (G: );
b) � (G: ) −min � ≤ ‖G

★−G0 ‖2
2W (:+1)2 ;

c) (G: ) converges to a point G ∈ argmin � for choice b in (4.2);
d) ‖G:+1 − G ‖ ≤ ‖G: − G ‖ for any G ∈ argmin � .

Proof. Point b comes from (Beck and Teboulle, 2009a, Th. 4.4) using a very direct and
elegant proof. Showing point c is more involved and the question remained open
for more than five years,2727un lustre in French! see (Chambolle and Dossal, 2015, Th. 3) or (Attouch and
Peypouquet, 2016, Th. 3) for two proofs based on different arguments. �

The key idea in the proof of (Beck and Teboulle, 2009a, Th. 4.4) is that by calling
the descent inequalities for the proximal gradient (in particular (2.15) with G = D = ~:
and G = ~: , D = G★), with G★ ∈ argmin � and {: = � (G:+1) − � (G★),

{: − {:−1 = � (G:+1) − � (G: ) ≤ −
2 − W!
2W
‖G:+1 − ~: ‖2 −

1

W
〈~: − G: , G:+1 − ~:〉

{: = � (G:+1) −min � ≤ −2 − W!
2W
‖G:+1 − ~: ‖2 −

1

W
〈~: − G★, G:+1 − ~:〉

The first equation times (C: − 1) added to the second yields:

C:{: − (C: − 1){:−1 ≤ −
2 − W!
2W

C: ‖G:+1 − ~: ‖2 −
1

W
〈C:~: − (C: − 1)G: − G★, G:+1 − ~:〉.

Multiplying by C: , using the relation C2
:
− C: ≤ C2:−1 verified by both strategies in

(4.2),

C2
:
{: − C2:−1{:−1 ≤ −

2 − W!
2W
‖C:G:+1 − C:~: ‖2 −

1

W
〈C:~: − (C: − 1)G: − G★, C:G:+1 − C:~:〉

and thus

C2
:
{: − C2:−1{:−1 ≤ −

1 − W!
2W
‖C:G:+1 − C:~: ‖2 (4.3)

− 1

2W
‖C:G:+1 − (C: − 1)G: − G★‖2︸                               ︷︷                               ︸

:=1:+1

+ 1

2W
‖C:~: − (C: − 1)G: − G★‖2︸                            ︷︷                            ︸

:=0:

.

The final step consists in noticing that this is a telescopic sum provided that
1:+1 = 0:+1, ie.

C:G:+1 − (C: − 1)G: = C:+1~:+1 − (C:+1 − 1)G:+1 ⇔ ~:+1 = G:+1 +
C: − 1
C:+1

(G:+1 − G: ).
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4.1.3 The Value of Monotonicity

The iterates generated by the Accelerated Proximal gradient are not monotonous in
terms of functional values nor Fejér monotonous. In fact, the iterates generated by
inertial methods can circle or oscillate around the set of minimizers (Lorenz and Pock,
2014; Maingé, 2008). These kinds of behaviors make accelerated methods sometimes
slower than their unaccelerated counterparts (see for instance the non-negative least
squares problem in (Malitsky and Pock, 2018)).

Monotonicity (and in particular functional monotonicity) is a desirable feature in
optimization, in both theory and practice; see for instance the quests for descent in
(Correa and Lemaréchal, 1993; Fuentes et al., 2012). For composite optimization, several
algorithms based on descent tests have been proposed to fix the non-monotonicity
of accelerated proximal gradient methods, in particular MTwist (Bioucas-Dias and
Figueiredo, 2007) in the particular case of a quadratic 5 , and in the present setting
MFISTA (Beck and Teboulle, 2009b):

I:+1 = proxW6 (~: − W∇5 (~: ))
G:+1 = argmin{� (G) : G ∈ {I:+1, G: }}
~:+1 = G:+1 +

(
C:−1
C:+1

)
(G:+1 − G: ) +

(
C:
C:+1

)
(I:+1 − G:+1)

(MFISTA)

with (C: ) as in (4.2).
This direct modification enables to restore monotonicity of the functional values

while preserving the convergence rate.
Theorem 4.4. Let Assumption 4.1 hold. Then, the MFISTA method with W ∈ (0, 1/!]
and (C: ) as in (4.2) generates iterates that verify

a) � (G:+1) ≤ � (G: );
b) � (G: ) −min � ≤ ‖G

★−G0 ‖2
2W (:+1)2 ;

c) (G: ) converges to a point G ∈ argmin � for choice b in (4.2);
d) ‖G:+1 − G ‖ ≤ ‖G: − G ‖ for any G ∈ argmin � .

Proof. Point a is immediate from the algorithm, and b comes from (Beck and Teboulle,
2009b, Th. 5.1) by a small modification of the proof of FISTA. I was not able to find a
positive nor a negative answer in the literature for the iterates convergence of MFISTA,
however tying to adapt the proof of (Chambolle and Dossal, 2015) to this version would
give a good conjecture of the answer. �

Another strategy coming from monotone operator theory is to alternate between
an accelerated proximal gradient step and a classical one. It was shown to exhibit
attractive performances in practice (Iutzeler and Hendrickx, 2019) (better than inertial
acceleration in some strongly convex cases), while recovering some iterate monotonoc-
ity. This method simply consists in applying Accelerated Proximal gradient with an
alternated inertial sequence:

U: = 0 (4.4)

U:+1 =
C: − 1
C:+1

with 0) C0 = 0 and C:+1 :=
1+

√
1+4C2

:

2

or 1) C0 = 0 and C:+1 := :+0
0

with 0 > 2.

for : even. We obtain the following result in (Iutzeler and Malick, 2018).
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Theorem 4.5. Let Assumption 4.1 hold. Then, the Accelerated Proximal gradient method
with W ∈ (0, 1/!] and (U: ) as in (4.4) generates iterates that verify

a) � (G:+2) ≤ � (G: ) − (2−U:+1−W!)W2(1+W!)2 dist(0, m� (G:+2))2 for : even;

b) � (G: ) −min � ≤ ‖G
★−G0 ‖2

2W (:+1)2 ;

and if 0 ≤ U: ≤ min
{
1
2 ,

1
W!
− 1

2

}
for all : , then

c) (G2: ) converges to a point G ∈ argmin � ;

d) ‖G:+2 − G ‖ ≤ ‖G: − G ‖ for any G ∈ argmin � for : even.

Proof. This is exactly Theorems 3.1 and 3.2 in (Iutzeler and Malick, 2018). For points
c and d, convergence of the iterates may still hold for a wider choice of (U: ) but the
convergence will not be Fejér monotonous anymore. �

Unlike MFISTA, no functional evaluation is needed to guarantee the functional
monotonicity. In addition, even though we lose the O(1/:2) convergence rate, we will
see in the next section that a descent as in point i also has a theoretical interest as it
opens the door for a complete complexity analysis.

Remark 4.6 (Other variants & Kurdyka-Łojasiewicz functions). Many variants of the
accelerated proximal gradient have been proposed since (Beck and Teboulle, 2009a); see
e.g. (Li and Lin, 2015) for an overview. Many of them are designed to handle nonconvex
functions. To perform a convergence rate analysis in this case, it is common to rely on
the geometric properties of the function at hand, modeled by Kurdyka-Łojasiewicz
gradient inequalities; see e.g. the extended survey in (NGuyen, 2017). Interestingly,
these kind of properties also provide rates for subgradient descent methods such as
our variant with alternated inertia; this was the viewpoint we adopted in (Iutzeler and
Malick, 2018). J

4.1.4 Monotonic convergence and rates for Kurdyka-Łojasiewicz functions

By comparing the functional decrease of MFISTA (Theorem 4.4) with the one of the
vanilla proximal gradient or the proximal gradient with alternated inertia (Theorems 4.2
and 4.5), we notice that MFISTA is “only” non-increasing whereas the latter methods
decrease their functional value by an amount proportional to the dist(0, m� (G:+1))2.
This kind of monotonicity can be combined with geometric properties of objective
functions to derive convergence rates or complexity analysis.

Two types of geometric profiles are often used: error bounds or Kurdyka-Łojasiewicz
gradient inequalities. For a function � : ℝ= → ℝ and all G close to argmin � , these
properties can be written as

i (� (G) −min � ) ≥ dist(G, argmin � ) (Error Bound)
i ′(� (G) −min � ) dist(0, m� (G)) ≥ 1 (Kurdyka-Łojasiewicz)

where i is a smooth increasing concave function, called desingularizing function; see
(Bolte et al., 2007) or (Bolte et al., 2015) for details.

Typical desingularizing functions are of the form i (C) = �/\ C\ for \ ∈ (0, 1]
and � > 0. Interestingly, in this case, the two properties are equivalent for convex
functions and share the same desingularizing function (Bolte et al., 2015, Th. 5). We
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can also rephrase the property in a simpler way: � has the KL property if for all G
close to argmin �

dist(0, m� (G)) ≥ 1

�
(� (G) −min � )1−\ . (4.5)

This property may look strong at a first sight but it turns out to be widely satisfied,
for instance by semi-algebraic functions (Bolte et al., 2007). In some special cases,
the parameters \ and � can be explicitly computed; see (Bolte et al., 2015, Sec. 3). For
instance, the ℓ1-regularized least-square functions of the form

� (G) = ‖�G − 1‖22 + _1‖G ‖1

has the KL property on any ℓ1-ball around the solutions with i (B) = �
√
B and �

computable explicitly from �, 1, _1 and the size of the ball (Bolte et al., 2015, Lem. 10).
The Kurdyka-Łojasiewicz property is particularly well-suited for complexity analy-

sis of algorithms showing a decrease of the form28 28This is closely related to the
notion of subgradient sequences
considered in (Bolte et al., 2015):
� (G:+1) ≤ � (G: ) −0 ‖G:+1−G: ‖2

and ‖{:+1 ‖ ≤ 1 ‖G:+1 − G: ‖ for
some {:+1 ∈ m� (G:+1) .
Unfortunately, our alternated
inertial methods do not fall into
that framework. In particular, this
prevents us to deduce anything on
the iterates behavior.

� (G:+1) ≤ � (G: ) − 0: dist2 (0, m� (G:+1))

see in particular (Attouch and Bolte, 2009; Frankel et al., 2015) or (Li and Lin, 2015) in
the context of accelerated proximal gradient.

While the case of 0: ≥ 0 > 0 is well covered in the literature, it does not suffices
to analyze our algorithm with alternated inertia (see Theorem 4.5). We thus extended
the result of (Attouch and Bolte, 2009) to incorporate the case of vanishing (0: ) in
(Iutzeler and Malick, 2018, Th. 3.3).

Theorem 4.7. Let � : ℝ= → ℝ be a function satisfying the Kurdyka-Łojasiewicz
inequality with perspective function i (C) = �

\
C\ for some� > 0, \ ∈ (0, 1]. Suppose that

there is a non-negative sequence (0: ), such that the iterates (G: ) satisfy

� (G:+1) ≤ � (G: ) − 0: [dist(0, m� (G:+1))]2 and
∞∑
:=1

0: = +∞

then � (G: ) converge to min � , and depending on the behavior of (0: ) divided in three
regimes:

a) 0: ≥ 0 > 0

b) 0: ≥ 0 with 0: = Ω
(

1
:3

)
, 3 ∈ (0, 1)

c) 0: ≥ 0 with 0: = Ω
(
1
:

)
we get the following functional convergence rates:

\ ∈]0, 0.5[ \ ∈ [0.5, 1[ \ = 1

a) O
(

1

:
1+ 2\

1−2\

)
O

( [
�2

�2+0

] : )
finite

b) O
(

1

:
1+ 2\−3

1−2\

)
O

(
exp

(
− �′

2�2:
1−3

) )
finite

c) O
(

1

log(:)
1

1−2\

)
O

(
1

:
�”
2�2

)
finite

with � ′ = lim inf:
∑
ℓ≤: 0ℓ/:1−3 and �” = lim inf:

∑
ℓ≤: 0ℓ/log(:).
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Proof. The monotonicity of (� (G: )) implies that � (G: ) → � . Since
∑∞
:=1 0: = +∞, we

have moreover that a subsequence of (dist(0, m� (G:+1))) vanishes. By (4.5), this yields
that the corresponding subsequence of (� (G: )) converges to min � , hence � = min � .

Define now A: = � (G: ) − min � and come back to the KL property (4.5) which
reads

A:+1 ≤ A: −
0:

�2
A2−2\
:+1 ⇔ 0:

�2
≤ (A: − A:+1)A2\−2:+1 . (4.6)

We separate three cases with respect to \ .

Case \ = 1. Eq. (4.6) becomes A:+1 ≤ A: − 0:
�2 , so by summing this inequality we get

A:+1 ≤ A0 −
1

�2

:∑
ℓ=0

0ℓ

and as (0: ) is a non-negative sequence verifying
∑∞
:=1 0: = +∞, there is  ′ < ∞,

such that ∀: ≥  ′, 1
�2

∑:
ℓ=0 0: > A0 leading to A:+1 = � (G:+1) − min � < 0 which

contradicts min � being the minimum of � . Thus, we must have � (G:+1) = min � for
all : ≥  ′, i.e. finite convergence.

Case \ ∈ [0.5, 1). Here 0 < 2 − 2\ ≤ 1. Since A: → 0, we have A2−2\
:

≥ A: for all
: ≥  ′. Hence

A:+1 ≤ A: −
0:

�2
A:+1 ⇔ A:+1 ≤

1

1 + 0:
�2

A:

which leads to different convergence modes depending of (0: ). If it is bounded away
from zero, linear convergence arises (case a). Else, if 0: → 0, then there is  ′′ < ∞ so
that for all : ≥  ′′, log( 1

1+ 0:

�2

) ≤ − 0:
2�2 so

log(A:+1) ≤
:∑

ℓ= ′′
log

(
1

1 + 0ℓ
�2

)
+ log(A0)

≤ − 1

2�2

:∑
ℓ= ′′

0ℓ + log(A0) ≤
{
− �′

2�2:
1−3 + log(A0) case b

− �”
2�2 log(:) + log(A0) case c

leading, for �1,�2 two positive constants, to

A:+1 ≤
{
�1 exp(− �′

2�2:
1−3 ) case b

�2
1

:�”/(2�2 ) case c

Case \ ∈ (0, 0.5). Here −2 < 2\ −2 < −1 so as 0 ≤ A:+1 ≤ A: , we have 0 ≤ A2\−2
:

≤
A2\−2
:+1 .

Define q (C) = �
1−2\ C

2\−1 with the same �, \ as in i . Let us turn our attention
to q (A:+1) − q (A: ) that we want to lower-bound by a constant. We proceed in two
subcases:
If A2\−2

:+1 ≤ 2A2\−2
:

. Then we have

q (A:+1) − q (A: ) = −
∫ A:

A:+1

q ′(C)dC = �
∫ A:

A:+1

C2\−2dC ≥ � (A: − A:+1)A2\−2:

≥ �
2
(A: − A:+1)A2\−2:+1 =

0:

2�
:= 30:
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If A2\−2
:+1 ≥ 2A2\−2

:
. Then we have A2\−1

:+1 ≥ 2
2\−1
2\−2 A2\−1

:

q (A:+1) − q (A: ) =
�

1 − 2\ (A
2\−1
:+1 − A

2\−1
:
) ≥ �

1 − 2\

(
2

2\−1
2\−2 − 1

)
A2\−1
:

≥ �

1 − 2\

(
2

2\−1
2\−2 − 1

)
A2\−10 := 31

Thus, we have q (A:+1) − q (A: ) ≥ min(30: , 31) > 0, thus for all : ≥  ,

q (A: ) = q (A ) +
:−1∑
ℓ= 

q (A8+1) − q (A8 ) ≥ q (A ) +
:−1∑
ℓ= 

30ℓ <31

30ℓ + (: −  −  0 (:))31

≥ 1

2�

:−1∑
ℓ= 

30ℓ <31

0ℓ + (: −  −  0 (:))31

where  0 (:) := Card
{
ℓ ∈ [ ,:] : 30ℓ ≤ 31

}
. We have to split into two cases:

case a:  0 (:) →  ̄0 < +∞ and q (A: ) ≥ (: −  −  ̄0)31 for all : >  +  ̄0 ; hence the
result from the classical case holds.
cases b and c:  0 (:) → +∞ and  ′ := sup{ℓ : 30ℓ ≥ 31} is finite as 0: → 0. Then, for
all : >  ′

q (A:+1) ≥
1

2�

:∑
ℓ= ′

0ℓ ≥
{
� ′:1−3 case b

�” log(:) case c

and thus

A:+1 ≤


(

�

(1−2\ )�′:1−3

) 1
1−2\ case b(

�
(1−2\ )�” log(:)

) 1
1−2\ case c

which leads to the claimed result. �

This result directly provides rates for the Proximal gradient algorithm under case
a, as observed in e.g. (Bolte et al., 2015). Case c on the other hand is able to provide
convergence rates for the algorithm with alternated inertia as stated in the following
theorem.
Corollary 4.8 (Convergence Rates with alternated inertia). Let Assumption 4.1 hold
and suppose that � satisfies the Kurdyka-Łojasiewicz inequality with perspective function
i (C) = �

\
C\ for some � > 0, \ ∈ (0, 1]. Then, the Accelerated Proximal gradient method

with W = 1/! and (U: ) as in (4.4) generates iterates that satisfy

� (G2: ) −min � ≤


O

(
1

log(:)
1

1−2\

)
if \ ∈]0, 0.5[

O
(
1
:?

)
if \ ∈ [0.5, 1[

0 for : large enough if \ = 1

with ? = lim inf:
∑
ℓ≤:

(2−Uℓ+1−W!)W
4(1+W!)2�2 log(:) .

Unfortunately, these rates are strictly worse that those of the vanilla proximal
gradient. But, they can be better than those of the accelerated version. Furthermore,
this gives us an original manner to be resilient to strong convexity as described in the
next remark.
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Remark 4.9 (Resilience to strong convexity). When � is in addition `-strongly convex,
the proximal gradient algorithm is known to have a linear convergence (see (Karimi
et al., 2016) for a proof based on error bounds) but accelerated versions such as FISTA
only have polynomial convergence (O(1/:2) in general). Moreover these convergence
rates clearly appear in practice; see e.g. (Malitsky and Pock, 2018).

Since we can easily show that a strongly convex function verifies the KL property
with \ = 0.5, we can adopt an alternated inertial sequence of the form

U: = 0 (4.7)

U:+1 =
C: − 1
C:+1

with C0 = 0 and C:+1 :=

(
: + 0
0

) 3
where 3 ∈ (0, 1) and 0 > max(1, (23)1/3 ).

for : even. This “slower” inertial sequence was investigated (without alternance) in
the completely different topic of inexact proximal computation in (Aujol and Dossal,
2015).

Then, assuming that Assumption 4.1 holds with � strongly convex. The Accelerated
Proximal gradient method with W = 1/! and (U: ) as in (4.7) generates iterates that
converge to the unique minimizer of � and have a better-than-polynomial rate of
O

(
exp

(
−�:1−3

) )
. J

4.1.5 Illustration
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Figure 4.1: Illustration of the behavior of several variants of the proximal gradient
algorithm on a lasso problem.

In order to visualize the typical phenomenons that we mentioned, we display the
evolution of the variants of proximal gradient considered in this section on a lasso
problem

min
G ∈ℝ=

‖�G − 1‖22︸       ︷︷       ︸
5 (G)

+ _‖G ‖1︸︷︷︸
6 (G)

with synthetic matrix/vector couples � ∈ ℝ<×= and 1 ∈ ℝ< . � is drawn from the
standard normal distribution and 1 = �G0 + 4 where G0 is taken as a 10% sparse vector
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taken from the normal distribution, and 4 is taken from the normal distribution with
standard deviation 0.001. We set _ so that the original sparsity is ultimately recovered.

In Fig. 4.1, we plot the functional suboptimality for all compared algorithms with
two different sizes of the matrix �: (a) 130 × 80 and (b) 85 × 80. We observe that
the proximal gradient and the alternated inertial counterpart benefit from a more-
than-polynomial rate which enables them to outperform other vairants in the better
conditioned case, the alternated inertial version being always significantly better than
the vanilla one. In the second case where the problem is more poorly conditioned,
FISTA and MFISTA perform best.

4.2 Identification

Let us now turn to the identification properties of the (accelerated) proximal gradient
in theory and in practice.

4.2.1 In theory: Identification and Acceleration are independent

Since the iterates produced by both the Proximal gradient and Accelerated Proximal
gradient methods converge, the identification results of Chapter 3 give exactly the
same result for these methods.
Theorem 4.10. Let Assumption 4.1 hold. Assume that (G: ) is a sequence produced
by either the Proximal gradient or the Accelerated Proximal gradient method with W ∈
(0, 1/!] and (U: ) as in (4.2). Provided that the limit G of (G: ) belongs to some manifold
M, if:

1) there is Y > 0 such that

for all ~ ∈ B(G − W∇5 (G), Y), proxW6 (~) ∈ M, (PQC – Proximal Gradient)

or 2) 6 is partly-smooth relative toM at G and

−∇5 (G) ∈ ri m6(G) (SQC – Proximal Gradient)

then, after some finite time G: ∈ M.

Proof. For Proximal gradient and Accelerated Proximal gradient, let us define the
sequence (D: ) respectively as D: = G: − W∇5 (G: ) and D: = ~: − W∇5 (~: ) so that
G:+1 = proxW6 (D: ) for both algorithms. Then, Theorems 4.2 and 4.3 give us the
convergence of (D: ) to D = G − W∇5 (G) with G ∈ argmin � is the limit of (G: ).

The first part of the result is thus a direct application of Theorem 3.2 while the
second one comes from Corollary 3.15. �

We notice here that the minimizer G has to be qualified for identification to happen,
as already observed in the previous chapter. In addition, we see here that keeping the
same minimizer, the shape of 6 around the minimizer plays an important role in the
difficulty to identify some manifold.

Remark 4.11 (Faster rates around the solutions). Let us consider the second set of
assumptions of Theorem 4.10, with 6 is partly-smooth relative toM at G and −∇5 (G) ∈
ri m6(G). Then, if 5 is additionally C2 around G and ker(∇2 5 (G)) ∩)GM = {0}, a local
linear convergence rate can be obtained. This is shown in (Liang et al., 2017a, Th. 4.13).
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The same proof holds for both Proximal gradient and Accelerated Proximal gradient,
it consists in showing that for both methods, denoting A: = G: − G , 3: = [A:−1 A: ]>:

3:+1 = "3: + 4: , ‖4: ‖ = > (‖3: ‖)

with " a matrix of spectral radius d (") < 1 from (Liang et al., 2017a, Cor. 4.9,
Rem. 4.10).

In order to show the linear convergence behavior, following (Polyak, 1987, Chap.
2.1.2) (as in (Liang et al., 2017a)), we take Y ∈ (0, (1 − d ("))/2) and  ′ > 0 as the
smallest time from which i) identification holds; and ii) ‖4: ‖/‖3: ‖ ≤ Y.  ′ is finite
since identification happens in finite time and ‖4: ‖ = > (‖3: ‖). Then,

‖3 ′+:+1‖ ≤ ‖": ‖‖3 ′+1‖ +
:∑
;=1

‖":−; ‖‖4 ′+; ‖ ≤ �"d: ‖3 ′+1‖ +�"
:∑
;=1

d:−; ‖4 ′+; ‖

where d := d (") + Y and �" > 0 is a constant such that ‖": ‖ ≤ �"d: for all : (see
(Horn and Johnson, 2012, Cor. 5.6.13)).

This recursion enables us to show that there is some � such that for all : ≥ 0,
‖3 ′+:+1‖ ≤ � (d (") + 2Y): ‖3 +1‖; see (Bareilles and Iutzeler, 2020, Apx. 5) for details.

Once again, the result is not different between Proximal gradient and Accelerated
Proximal gradient. Even worse, the rate obtained for Accelerated Proximal gradient
with this analysis is actually worse than the one for Proximal gradient (see (Liang
et al., 2017a, Sec. 4.4)), which mirrors the discussion in Remark 4.9 above in the case
where some strong convexity is present but unknown. J

4.2.2 In practice: Interplay between Acceleration and Identification

At this point, we saw that accelerated methods are favored in practice and offer better
theoretical rates but these superior performances make no apparent difference in terms
of identification. Nevertheless, we can expect accelerated methods to reach the basin
of attraction of the optimal manifold sooner, and thus identify faster. However, the
non-monotonicity of the accelerated methods may cause them to leave the identified
manifold only to reach it again after some time. In this transient state, the interplay
between identification and acceleration can be negative. Typically, an oscillatory
behavior may be the sign of this transient state (see e.g. (Liang et al., 2017a, Sec. 5.4)).

Several works of the literature consideredmodifications of the Accelerated Proximal
gradient aiming at limiting such a behavior using heuristic restarts (Catalina et al.,
2018; Ito et al., 2017; O’donoghue and Candes, 2015; Scheinberg et al., 2014) or adaptive
acceleration (Giselsson and Boyd, 2014; Poon and Liang, 2019); unfortunately, most of
these results are empirical and lack a refined analysis. A notable exception is when
the acceleration is limited to the iterations where the functional value decreases as
mentioned in Section 4.1.3.

In (Bareilles and Iutzeler, 2020), we argue that acceleration can interfere with
identification, sometimes delaying it, sometimes helping it. Note that we are only
interested here in the transient phase of identification when the iterates are in the
process of reaching the optimal manifold. We illustrate this claim by considering the
iterates of Proximal gradient, Accelerated Proximal gradient, and MFISTA on three
problems in ℝ2 of the form ‖�G − 1‖2 + 6(G) for different nonsmooth functions 6: the
ℓ1 norm and the distances to the unit ball in the 1.3 and 2.6 norms2929

6 = min( ‖ · ‖? − 1, 0) for ? in
{1.3, 2.6}, the proximity operator
proxW6 (~) is ~ (1 − W/‖~ ‖? ) if

‖~ ‖? > 1 + W , ~/‖~ ‖? if
1 ≤ ‖~ ‖? ≤ 1 + W , and ~

otherwise.

.
The natural manifolds of interest for these nonsmooth functions are respectively

the set of cartesian axes of ℝ= and the unit spheres of the 1.3 and 2.6 norm, which
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Figure 4.2: Iterates behavior for variants of the proximal gradient algorithm when
minimizing ‖�G − 1‖2 + 6(G) for different nonsmooth functions 6. The candidate
manifolds are displayed in gray.

we denote by S‖ · ‖1.3 (0, 1) and S‖ · ‖2.6 (0, 1). Figure 4.2 highlights three interesting
behaviors:

(1) Upon reaching a manifold, the inertial term of the accelerated versions will not
be aligned with the manifold in general and thus will have a non null orthogonal
component toM. Unless that orthogonal component is small enough, it will
cause iterates tomiss themanifold and go beyond it. Fig. 4.2a illustrates this point
for accelerated proximal gradient over linear manifolds: the iterates go past the
optimal manifoldM1 twice before reaching it definitively, while the proximal
gradient iterates identify it directly. Fig. 4.2c shows the same overshooting
behavior of accelerated proximal gradient. In Fig. 4.2b, while proximal gradient
iterates identify the optimal manifold definitively, iterates of both accelerated
versions go beyond it, only to reach it again after several iterations.

(2) In the case of a curved (non-affine) manifold M, the interplay between the
curvature and the inertial term can cause the iterates to leave the manifold. In
Fig. 4.2c, iterates of both accelerated versions reachM a first time but leave it
after some iterations. It turns out that these iterates do reachM again, but only
to leave it again some time later and have this phenomenon happen periodically.
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(3) Acceleration also has some kind of exploratory behavior that increases the
chances to encounter an optimal manifold, which can be helpful with problems
not verifying the qualification conditions (see Theorem 4.10). In Fig. 4.2c where
neither qualification condition hold, the iterates of both accelerated versions
reach the optimal manifold, at least for some time, while proximal gradient
iterates never does (this phenomenon is also illustrated in Remark 3.3).

As we already mentioned, identifying quickly the optimal structure of a composite
optimization problem can be as important as solving the problem to a high precision,
and even more. Thus, in the next section, we aim at conciliating acceleration with
identification.

4.3 Improving the identification properties of theAccel-
erated Proximal gradient

Based on the previous remarks, it seems natural to try to accelerate as long as it does
not jeopardize a fast identification. Our goal in this section is thus to provide an
algorithm with a satisfying practical and theoretical rate (by accelerating as soon as
possible) while making the iterates stick to the identified structure as much as possible.

4.3.1 A test-based strategy

We first start by laying out a generic accelerated proximal gradient where some test
decides if an accelerated step should be performed or not. Next, we will propose two
efficient practical tests to determine whether or not to accelerate an iteration with the
goal of promoting sparsity.

At each iteration : , we call a boolean-valued function T: that returns 1 if an
acceleration step should be performed, and 0 otherwise. Our test-based algorithm then
writes:

~: =

{
G: + U: (G: − G:−1) if T: = 1
G: otherwise

D:+1 = ~: − W∇5 (~: )
G:+1 = proxW6 (D:+1)

(Test-dependent acceleration)

A general bound on suboptimality can be derived for this algorithm, independently
of the value of the test T, as stated in the following lemma.
Lemma 4.12. Let Assumption 4.1 hold and take W > 0. Then, the iterates produced by
the proximal gradient method with (Test-dependent acceleration) and (U: ) as in (4.2)
satisfy

C2
:
[� (G:+1) −min � ] ≤ −

:∑
ℓ=0

1 − W!
2W

C2ℓ ‖Gℓ+1 − ~ℓ ‖2 +
1

2W
‖G0 − G★‖2 (4.8)

+
:∑
ℓ=1

(1 − Tℓ )
1

2W
‖Gℓ − G★‖2

Proof. Following the same inequalities as for Accelerated Proximal gradient and con-
sidering the two outputs of the test:
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• The accelerated update T: = 1 specifies (4.3) to:

C2
:
{: − C2:−1{:−1 ≤ −

1 − W!
2W
‖C:G:+1 − C:~: ‖2 (4.9)

− 1

2W
‖C:G:+1 − (C: − 1)G: − G★‖2 +

1

2W
‖C:−1G: − (C:−1 − 1)G:−1 − G★‖2

since the update gives C: (~: − G: ) = (C:−1 − 1) (G: − G:−1).
• The proximal gradient update T: = 0 specifies (4.3) to:

C2
:
{: − C2:−1{:−1 ≤ −

1 − W!
2W
‖C:G:+1 − C:~: ‖2 (4.10)

− 1

2W
‖C:G:+1 − (C: − 1)G: − G★‖2 +

1

2W
‖G: − G★‖2

since the update is ~: = G: .
Both Eqs. (4.9) and (4.10) can be summarized, at the cost of introducing some error

when acceleration is performed, as:

C2
:
{: − C2:−1{:−1 ≤ −

1 − W!
2W
‖C:G:+1 − C:~: ‖2

− 1

2W
‖C:G:+1 − (C: − 1)G: − G★‖2 +

1

2W
‖C:−1G: − (C:−1 − 1)G:−1 − G★‖2

+ (1 − T: )
1

2W
‖G: − G★‖2

A functional error bound can now be deduced, by summing these inequalities up
from 1 to iteration : and re-arranging terms:

C2
:
[� (G:+1) −min � ] ≤ � (G1) −min � −

:∑
ℓ=1

1 − W!
2W
‖CℓGℓ+1 − Cℓ~ℓ ‖2

− 1

2W
‖CℓGℓ+1 − (Cℓ − 1)Gℓ − G★‖2 +

1

2W
‖G1 − G★‖2

+
:∑
ℓ=1

(1 − Tℓ )
1

2W
‖Gℓ − G★‖2

(4.11)

where C0 = 1. Suboptimality at first iteration can be approximated by applying a usual
descent lemma (i.e. (2.15) with G = ~0, D = G★):

� (G1) −min � ≤ −2 − W!
2W
‖G1 − ~0‖2 +

1

W
〈~0 − G★, G1 − ~0〉

= −1 − W!
2W
‖G1 − ~0‖2 +

1

2W
‖~0 − G★‖2 −

1

2W
‖G1 − G★‖2

Finally, recalling that ~0 = G0, applying the previous majoration and − 1
2W ‖C:G:+1 −

(C: − 1)G: − G★‖2 < 0 to Eq. (4.11) yields the result. �

This results indicates us that the test cannot be equal to 0 (no acceleration) in-
finitely many times, otherwise we would lose our convergence rate. But, as we want
identification to be favored, we also need a control on the iterates convergence.
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This can be obtained using once again the geometric properties of the functions:
since Error Bounds and KL inequalities are equivalent with the same desingularizing
function (Bolte et al., 2015, Th. 5) (see also Section 4.1.4), if � satisfies (4.5), we obtain
for any G close to argmin �

dist(0, m� (G)) ≥ 1

�
(� (G) −min � )1−\ ≥ 1

�

(
\

�

) 1−\
\

(dist(G, argmin � ))
1−\
\ .

In this case, using that dist(0, m� (G:+1)) ≤ !W+1
W
‖~: − G:+1‖ (see Lemma 2.41), we

get that

‖~: − G:+1‖ ≥
W

� (!W + 1)

(
\

�

) 1−\
\

(dist(~: , argmin � ))
1−\
\ , (4.12)

which gives us the kind of control we need.
Furthermore, as we are mainly interested in final identification, it seems natural to

do accelerated steps as long as the iterates are far away from the solution. Therefore,
we only allow to consider non-accelerated steps when iterates live in the following set:

Z =
{
~ : G = proxW6 (~ − W∇5 (~)) satisfies ‖G − ~‖2 ≤ ‖G1 − G0‖2 and � (G) ≤ � (G0)

}
.

To determine whether ~: ∈ Z or not, one just has to check if ‖G:+1 − ~: ‖2 ≤
‖G1 − G0‖2 and � (G:+1) ≤ � (G0).3030The constant ‖G1 − G0 ‖2 could

actually be replaced by any
constant; this one seems to work
well in practice. Furthermore, the
functional evaluation is actually

only needed if the function is sharp
with \ = 1 above, e.g. when 5 ≡ 0

and 6 (G) = ‖G ‖1. In these rather
degenerate cases, the proximal
gradient converges in a finite

number of steps.

Thus, it depends only on previously computed
iterates and not on the outcome of the test at time : .

4.3.2 Test 1: Stopping when reaching

Let us define a set of candidate manifolds C = {M1, . . . ,M@} onto which identification
is of particular importance. We refer the reader to Section 3.2.3 for discussions on the
typical candidate manifolds in data science and how proximity operators can directly
indicate if their output belong to some of these manifolds.

As noticed in Section 4.2.2 point (1), upon identification the momentum term is
in general not aligned with the identified subspace. One further accelerated step
may cause the next iterate to leave the subspace, while the vanilla proximal gradient
would have stayed in it. A first natural method is thus to “reset” the inertial term, by
performing one non-accelerated step when reaching a new manifold in our candidate
set C:

T1
:
= 0 (no acceleration) if ~: ∈ Z and

{
G: ∈ M

G:−1 ∉M for someM ∈ C

and 1 otherwise.
Note that this kind of test is computationally possible for most regularization

functions in our applications of interest since the computation of the proximity operator
comes with the knowledge of the structure of the output, see Sections 3.2.3 and 3.5.

Intuitively, acceleration is performed by default if the iterates are too far from
optimum and as long as no new structure is identified. This means that we can benefit
from the exploratory behavior of acceleration. Then, accelerated iterations will be
performed as long as they do not prevent identifying a new manifold. Note that
this way, if finite-time identification is possible, iterations should asymptotically all
be accelerated. As expected, this method has the same rate of convergence as the
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accelerated proximal gradient whenever identification is possible, which is proven
in the following theorem. The interest of this method lies in its non-asymptotic
identification behavior, not captured by theory, which should be improved compared
with proximal and accelerated proximal gradient.
Theorem4.13. Let Assumption 4.1 hold, suppose that � satisfies the Kurdyka-Łojasiewicz
inequality with perspective function i (C) = �

\
C\ for some � > 0, \ ∈ (0, 1], and

take W ∈ (0, 1/!]. Then, the iterates produced by the proximal gradient method with
(Test-dependent acceleration) endowed with T1 and (U: ) as in 4.2 satisfy

� (G:+1) −min � ≤ ‖G0 − G
★‖2

2WC2
:

+ :R
2WC2

:

= O
(
1

:

)
for any G★ ∈ argmin � and some R > 0.
Furthermore, if Problem (PA) has a unique minimizer G★ and the qualifying constraint
(PQC – Proximal Gradient) holds at G★ for allM ∈ C such that G★ ∈ M at D★ = G★ −
W∇5 (G★), then the iterates sequence (G: ) converges, finite-time identification happens,
and

� (G:+1) −min � ≤ ‖G0 − G
★‖2

2WC2
:

+  R
2WC2

:

= O
(
1

:2

)
.

for some finite  > 0.

Proof. First, at any iteration : for which the test returned 0 (T1
:
= 0), we have ‖G:+1 −

~: ‖ ≤ ‖G1 − G0‖2 and � (G:+1) ≤ � (G0) as ~: ∈ Z. Thus, using the fact that � is a KL
function and the reasoning of (4.12), we have that ‖~: −G★‖2 = ‖G: −G★‖2 is bounded
by some constant R (note that G:+1 = ~:+1 since T1

:
= 0). Dropping the first term of

the right hand side of (4.8) and using that C: ≥ 2.: for any choice in (4.2), we get the
first result.

Then, if there is a unique minimizer, the error bound for � (see (4.12)) along with
the first part of the result tells us that G: → G★ and thus ~: → G★. Since the qualifying
constraint (PQC – Proximal Gradient) holds for all final manifolds (i.e. allM ∈ C
such that G★ ∈ M), it follows from Corollary 3.9 that G: belongs to exactly the same
manifolds as G★ after some finite time. All in all, this means that the test T1 will
produce non accelerated iterates only a finite number of times  which gives the
second part of the result. �

This result means that we can devise a test-based acceleration of the proximal
gradient that will benefit from the same functional convergence rate as the Accelerated
Proximal gradient while favoring structured iterates.

4.3.3 Test 2: Prospective reach

Another method to deal with the negative effects of inertia when the additional term is
misaligned with the local manifold is to compute one proximal gradient step forward
to investigate which structure can be expected from the next iterate. Intuitively, if the
iterate obtained after acceleration is at least as structured as the non-accelerated one,
it is kept, otherwise the point obtained after the simple proximal gradient step is taken.
This is done in order to counteract both issues (1) and (2) mentioned in Section 4.2.2
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while still benefiting from the exploratory behavior of acceleration (see point (3) in
Section 4.2.2).

T2
:
= 0 (no acceleration) if ~: ∈ Z and

{
T(G: ) ∈ M

T(G: + U: (G: − G:−1)) ∉M
for someM ∈ C

and 1 otherwise with T(G) = proxW6 (G − W∇5 (G)).
This approach is further motivated by the desirable retraction property of the

proximal (gradient) operator (see Section 3.4.3). However, a drawback of this test is
the necessity to compute two proximal gradient steps (for the accelerated and the
non-accelerated point), a bit like MFISTA. Similarly to the test T1, we are able to show
that T2 provides at least a convergence similar to that of the Proximal gradient, and in
cases when identification is possible, equivalent to that of the Accelerated Proximal
gradient.
Theorem4.14. Let Assumption 4.1 hold, suppose that � satisfies the Kurdyka-Łojasiewicz
inequality with perspective function i (C) = �

\
C\ for some � > 0, \ ∈ (0, 1], and take

W ∈ (0, 1/!]. Then, the iterates produced by the proximal gradient method with Test-
dependent acceleration endowed with T2 and (U: ) as in (4.2) satisfy

� (G:+1) −min � ≤ ‖G0 − G
★‖2

2WC2
:

+ :R
2WC2

:

= O
(
1

:

)
for any G★ ∈ argmin � and some R > 0.
Furthermore, if Problem (PA) has a unique minimizer G★ and the qualifying constraint
(PQC – Proximal Gradient) holds at G★ for allM ∈ C such that G★ ∈ M at D★ = G★ −
W∇5 (G★), then the iterates sequence (G: ) converges, finite-time identification happens,
and

� (G:+1) −min � ≤ ‖G0 − G
★‖2

2WC2
:

+  R
2WC2

:

= O
(
1

:2

)
.

for some finite  > 0.

Proof. The proof is the same as the one of Theorem 4.13. Indeed, like T1, T2 is such
that i) the test can return 0 only for bounded iterates; and ii) as soon as identification
happens, the test returns 1 (i.e. acceleration). �

Before looking at the presented tests numerically, we mention that the same
reasoning as in Remark 4.9 can be applied to obtain local linear convergence for the
methods presented here.

4.3.4 Numerical illustrations

In this section, we first show how the proposed methods can overcome the issues
presented on test cases in Section 4.2.2. Then, we illustrate the improved identification
properties of these methods on a more typical data science objective.3131The code used for these

experiments was written in Julia
(Bezanson et al., 2017) by Gilles

Bareilles and is available at
https://github.com/

GillesBareilles/
Acceleration-Identification.

Test cases

First, we return on the test cases presented in Section 4.2.2, and show the iterates
trajectories and suboptimality evolution along with the time of identification. For a

https://github.com/GillesBareilles/Acceleration-Identification
https://github.com/GillesBareilles/Acceleration-Identification
https://github.com/GillesBareilles/Acceleration-Identification
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fair comparison between test T2 and the other algorithms, we plot the suboptimality
versus the number of proximal gradient steps (equal to the number of iterations for
all algorithms except with test T2 which performs two proximal gradient steps per
iteration). The moment of identification of the final structure is denoted by the symbol
⊕ on the suboptimality plots.

In Fig. 4.3, when 6 is the ℓ1 norm, both tests allow to identify in finite time and
prevent issue (1) of Section 4.2.2.

In Fig. 4.4 and Fig. 4.5, the sought manifolds are respectively the 1.3-norm and
2.6-norm unit sphere, which are curved. Test T2 allows to get finite identification,
while T1 and accelerated proximal gradient struggle in doing so. Furthermore, the
algorithm based on test T2 identifies the manifold as soon as one of its iterates belong
to it, as opposed to the accelerated proximal gradient or T1.

All in all, we observe that test T2 corrects the problems noted in Section 4.2.2 on
these three examples. We advocate the use of T2 when identifying the structure is
most important. If reaching a high precision solution is the primary objective, we
recommend to use test T1, for which each iteration is as costly as an accelerated
proximal gradient one.
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Low-rank matrix regression

Now, we consider a low-rank linear regression problem

min
- ∈ℝ20×20

‖�- − �‖22 + _‖- ‖∗

where � ∈ ℝ(16×16)×(20×20) is a random tensor whose coefficients follow a centered
reduced normal distribution, � = �( + � where ( is a rank-3 matrix and � is a matrix
with Gaussian entries with standard deviation 0.01. Finally, we set _ = 0.01 in order
to retrieve the same structure as ( (in the spirit of (Vaiter et al., 2017, Th. 1)).

We observe in Fig. 4.6 that the moment of identification happens roughly at the
same time for the accelerated and proposed algorithms while the vanilla proximal
gradient takes much more time. This justifies the use of acceleration in the first steps
in order to explore correctly the search space. We also see that the number of correctly
identified manifolds increases almost monotonically for T2, while accelerated proximal
gradient and T1 seem to lose all structure upon identifying a new manifold. This
means that if one stops all algorithms at a 10−3 suboptimality, almost no structure is
recovered for the accelerated proximal gradient, while test T1 and even more T2 are
able to recover half the structure of the original signal.



4.3 Improving the identification properties of FISTA 79

10−9

10−6

10−3

100

0 · 100 1 · 104 2 · 104 3 · 104
0

20

40

60

80

100

iterations

m
an

ifo
ld
so

fi
ni
tia

ls
ig
na

l(
in

%)

Proximal gradient

10−9

10−6

10−3

100

�
(G
:
)−

m
in
�

0 · 100 1 · 104 2 · 104 3 · 104
0

20

40

60

80

100

iterations

Accelerated Proximal gradient

10−9

10−6

10−3

100

0 · 100 1 · 104 2 · 104 3 · 104
0

20

40

60

80

100

iterations

m
an

ifo
ld
so

fi
ni
tia

ls
ig
na

l(
in

%)

w/ test T1

10−9

10−6

10−3

100

�
(G
:
)−

m
in
�

0 · 100 1 · 104 2 · 104 3 · 104
0

20

40

60

80

100

iterations

w/ test T2

Figure 4.6: Low-rank linear regression – 20-3=17 manifolds to identify



80 Chap. 4 - Case Study: Proximal Gradient

4.4 Concluding remarks

In this chapter, we considered variants of the Proximal gradient algorithm, including
the popular accelerated version FISTA. Since the identification properties rely only on
the convergence of the iterates but not on any form of monotonicity (functional or
Fejér), these methods appear to be equivalent with respect to structure identification
in theory.

However, in practice, we showed that acceleration can interfere with identification,
sometimes positively, sometimes negatively. Then, we proposed two simple modifica-
tions of the accelerated proximal gradient in order to counteract the negative effects of
acceleration on the iterates structure during the transient phase when the structure is
currently being identified. This was also the opportunity to show that the identification
performance among the algorithms depends largely on whether the manifold is flat or
has curvature.

More generally, this case study was the occasion to precisely show that while all
converging proximal methods were equal for the identification results of Chapter 3,
this is not the case in practice. Indeed, final identification holds for all methods but
the reaching time and the structure stability can be very different. The reaching time is
closely linked to the convergence rate of the iterates; as a rule of thumb the faster the
rate, the faster some structure starts to appear. On the other hand, the structure stability
very much depends on the algorithm and in particular on its relation with structure
information. Typically, accelerated methods are often faster but tend to extrapolate
iterates linearly, regardless of the identified structure. They are thus efficient on affine
manifolds (like sparsity) but may be very unstable on general manifolds (such as fixed
rank).

In the upcoming Chapters 5 and 6, we will show how the structure information can
be exploited to a numerical advantage by directly exploiting its lower dimensionality.

��



5 Adaptive Coordinate Descent

HENRI– Donc voilà, Lucie hésite entre danseuse étoile,
star à Hollywood ou prof de philo.

On essaie de l’orienter subtilement vers la troisième option.
Alexis Michalik – Le porteur d’histoire (1992)

Building on the theory and intuitions developed in Chapters 3 and 4, we de-
velop here a method that harnesses the uncovered structure of nonsmooth

problems by exploring preferentially along this low-complexity manifold. To
do so, in the case of linear priors, we introduce a randomized proximal gradient
algorithm whose sampling depends on the identified structure. This brings a
significant improvement on typical learning problems in terms of dimensions
explored compared to comparable structure-blind methods.

This chapter is based on the following publication:
• D. Grishchenko, F. Iutzeler, J. Malick: Proximal Gradient methods with
Adaptive Subspace Sampling, Mathematics of Operations Research, 2021.

As in Chapter 4, we will consider problems of the form

min
G ∈ℝ=

� (G) := 5 (G) + 6(G) (PA)

with 5 a smooth function and 6 a nonsmooth structure-enhancing function, motivated
by regularized signal processing problems as advocated in Part A’s introduction.
We will also work on variants of the Proximal gradient algorithm but with another
viewpoint: reducing the dimension of the gradient update based on the structure
identified by the proximity operator.

To do so, we first introduce a randomized descent algorithm going beyond separable
nonsmoothness and associated coordinate descent methods: we consider “subspace
descent” extending “coordinate descent” to generic subspaces. Then, we use the
identification property of proximal methods to adapt our sampling of the subspaces
with the identified structure. This results in a structure-adapted randomized method
with automatic dimension reduction, which performs better in terms of dimensions
explored compared to non-adaptive methods.

Though our main concern is with non-separable nonsmooth functions 6, we men-
tion that our identification-based adaptive approach is different from existing adapta-
tion strategies restricted to the particular case of coordinate descent methods. Indeed,
adapting coordinate selection probabilities is an important topic for coordinate de-
scent methods as both theoretical and practical rates heavily depend on them (see



82 Chap. 5 - Adaptive Coordinate Descent

e.g. (Necoara and Patrascu, 2014; Richtárik and Takáč, 2014)). Though the optimal
theoretical probabilities, named importance sampling, often depend on unknown quan-
tities, these fixed probabilities can sometimes be computed and used in practice, see
(Richtárik and Takáč, 2016b; Zhao and Zhang, 2015). The use of adaptive probabili-
ties is more limited; some heuristics without convergence guarantees can be found
in (Glasmachers and Dogan, 2013; Loshchilov et al., 2011), and greedy coordinates
selection are usually expensive to compute (Dhillon et al., 2011; Nutini et al., 2015,
2017). Bridging the gap between greedy and fixed importance sampling, (Namkoong
et al., 2017; Perekrestenko et al., 2017; Stich et al., 2017) propose adaptive coordinate
descent methods based on the coordinate-wise Lipschitz constants and current values
of the gradient. The methods we develop here, even when specialized in the coordinate
descent case, are the first ones where the iterates structure enforced by a non-smooth
regularizer is used to adapt the selection probabilities.

All along this chapter, we will consider linear structures and interpret our findings
for sparsity. Nevertheless, the develop theory fits any kind of linear priors, some
examples of which will be investigated into more details at the end of the chapter.

5.1 Randomized Subspace descent

The premise of randomized subspace descent consists in repeating two steps: i) ran-
domly selecting some linear subspace; and ii) updating the iterate over the chosen
subspace. Such algorithms thus extend usual coordinate descent to general sampling
strategies, which requires algorithmic changes and an associatedmathematical analysis.
Note however that we restrict ourselves to linear subspaces.

We put the following standard assumption on the problem; compared to Chapter 4
on the proximal gradient, we also add a strong convexity assumption in order to
simplify the claims and proofs. Proof directions for the non-strongly convex case are
available in the appendix of (Grishchenko et al., 2020).

Assumption 5.1 (On the optimization problem). The function 5 is !-smooth and
`-strongly convex and the function 6 is convex, proper, and lower-semicontinuous.
This implies that � has a unique minimizer that we denote G★.

In the first part of this chapter, we will investigate the building blocks of a ran-
domized subspace proximal gradient method when the subspaces are independent and
identically distributed. Hence, we will leave out the possibility to adapt to the uncovered
structure for now.

5.1.1 A random subspace proximal gradient algorithm

Our goal is to construct a random subspace version of the proximal gradient algorithm

D: = G: − W∇5 (G: ) (5.1a)
G:+1 = proxW6 (~: ) (5.1b)

By random subspace, we mean that that we will draw a linear subspace Y: inde-
pendently from a fixed distribution and project the update on it. To do so, one has to
determine which variable will be projected. Three choices are apparently possible:

(1) G: , i.e. projecting after the proximity operation;
(2) ∇5 (G: ), i.e. projecting after the gradient;
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(3) D: , i.e. projecting after the gradient step.
Choice (1) has limited interest in the general case where the proximity operator is
not separable along subspaces and thus a projected update of G: still requires the
computations of the full gradient. In the favorable case of coordinate projection and
6 = ‖ · ‖1, it was studied in (Qu and Richtárik, 2016) using the fact that the projection
and the proximity operator commute. Choice (2) was considered recently in (Hanzely
et al., 2018) in the slightly different context of sketching.

Here, we will consider Choice (3), inspired by recent works highlighting that
combining iterates usually works well in practice (see e.g. (Mishchenko et al., 2020)
and references therein). With this choice, a direct random projection such as{

~: = projY: (G: − W∇5 (G: ))
G:+1 = proxW6 (~: )

will in general bias the update and jeopardize convergence.
To overcome this issue, we include a correction using the inverse square root of

the expected projection: Q := (�[projY: ])
−1/2 which we assume to exist for now.32 32This is the main technical

difficulty that limits us to linear
subspaces. Indeed, in the case of
linear subspaces, projY: is a linear
operator and its expectation is
computable in many cases of
interest as we will see in a short
moment.

Formally, our Random Proximal Subspace Descent (RPSD) algorithm, displayed as
Algorithm 5.1, replaces (5.1a) by

I: = Q (G: − W∇5 (G: ) ) and ~: = projY: (I: ) + (I− projY: ) (~:−1) .

Intuitively, we first perform a gradient step followed by a change of basis (by
multiplication with the positive definite matrix Q), giving variable I: ; then, variable ~:
is updated only in the random subspace Y: , keeping the same value outside. Note that
I: does not actually have to be computed as only projY: Q∇5 (G: ) is needed. Finally,
the final proximal operation (5.1b) is performed after getting back to the original space
(by multiplication with Q−1):

G:+1 = proxW6
(
Q−1 (~: )

)
.

Contrary to existing coordinate descent methods, our randomized subspace proximal
gradient algorithm does not assume that the proximity operator proxW6 is separable
with respect to the projection subspaces. Apart from the algorithm of (Hanzely et al.,
2018) in a different setting, this is an uncommon but highly desirable feature to tackle
general composite optimization problems.

Algorithm 5.1 Randomized Proximal Subspace Descent - RPSD

1: Initialize Q = (�[projY0 ])−1/2, ~0, G1 = proxW6 (Q−1 (~0))
2: for : = 1, . . . do
3: I: = Q (G: − W∇5 (G: ) )
4: ~: = projY: (I: ) + (I−projY: ) (~:−1)
5: G:+1 = proxW6

(
Q−1 (~: )

)
6: end for

Now that we have an algorithm in mind, let us investigate the choice of the random
subspaces (Y: ).

5.1.2 Subspace selection

We begin by introducing the mathematical objects leading to the subspace selection
used in our randomized subspace descent algorithms. Though, in practice, most
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algorithms rely on projection matrices, our presentation highlights intrinsic subspaces
associated to these matrices; this opens the way to a finer analysis, especially in
Section 5.2.2 when working with adaptive subspaces.

We consider a family D = {S8 }8=1,..,? of (linear) subspaces of ℝ= . Intuitively, this
set represents the directions that will be favored by the random descent; in order to
reach a global optimum, we naturally assume that the sum of the subspaces in a family
matches the whole space.3333In the definition and the

following, we use the natural set
addition (sometimes called the

Minkowski sum): for any two sets
C,D ⊆ ℝ= , the set C + D is

defined as
{G + ~ : G ∈ C, ~ ∈ D} ⊆ ℝ= .

Definition 5.2 (Covering family). Let D = {S8 }8=1,..,? be a family of subspaces of ℝ= .
We say that D is covering if it spans the whole space, i.e. if

∑?

8=1 S8 = ℝ= .

Example 5.3. The family of the axes S8 = {G ∈ ℝ= : G [ 9 ] = 0 ∀9 ≠ 8} for 8 = 1, .., = is a
canonical covering family for ℝ= . J

From a covering family D, we call selection the random subspace obtained by
randomly choosing some subspaces in D and summing them. We call admissible the
selections that include all directions with some positive probability; or, equivalently,
the selections to which no non-zero element of ℝ= is orthogonal with probability one.
Definition 5.4 (Admissible selection). Let D be a covering family of subspaces of ℝ= .
A selection Y on D is defined from the set of all subsets of {1, .., ?} to the set of the
subspaces of ℝ= as

Y (l) =
∑
9 ∈l
S9 for l = {81, . . . , 8B }.

The selection Y is admissible if ℙ[G ∈ Y⊥] < 1 for all G ∈ ℝ= \ {0}.
Lemma 5.5 (Average projection). If a selection Y is admissible then

P := �[projY ] is a positive definite matrix.

In this case, we denote by _min (P) > 0 and _max (P) ≤ 1 its minimal and maximal
eigenvalues.

Proof. Note first that for almost all l , the orthogonal projection projY (l) is positive
semi-definite, and therefore so is P. Now, let us prove that if P is not positive definite,
then Y is not admissible. Take a nonzero G in the kernel of P, then

G>PG = 0 ⇐⇒ G>�[projY ]G = 0 ⇐⇒ �[G> projY G] = 0.

Since G> projY (l) G ≥ 0 for almost all l , the above property is further equivalent for
almost all l to

G> projY (l) G = 0 ⇐⇒ projY (l) G = 0 ⇐⇒ G ∈ Y (l)⊥ .

As G ≠ 0, this yields that G ∈ Y (l)⊥ for almost all l which is in contradiction with Y
being admissible. Thus, if a selection Y is admissible, P := �[projY ] is positive definite
(so _min (P) > 0).

Finally, using Jensen’s inequality and the fact that projY is a projection, we get
‖PG ‖ = ‖�[projY ]G ‖ ≤ �‖ projY G ‖ ≤ ‖G ‖, which implies that _max (P) ≤ 1. �

Although the framework, methods, and results presented in this paper allow for
infinite subspace families (as in sketching algorithms); the most direct applications
of our results only call for finite families for which the notion of admissibility can be
simplified to ℙ[S8 ⊂ Y] > 0 for all 8 .
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5.1.3 Convergence and rate of RPSD

Now, we are in position to show that the proposed algorithm converges linearly at
a rate that only depends on the function properties and on the smallest eigenvalue
of P. We also emphasize that the step size W can be taken in the usual range for the
proximal gradient descent.
Theorem 5.6 (RPSD convergence rate). Let Assumption 5.1 hold and let (Y: ) be an i.i.d.
sequence of admissible selections on the covering familyD. Then, for anyW ∈ (0, 2/(`+!)],
the sequence (G: ) of the iterates of RPSD converges almost surely to the minimizer G★ of
(PA) with

�
[
‖G:+1 − G★‖22

]
≤

(
1 − _min (P)

2W`!

` + !

) :
_max (P)‖~0 −Q(G★ − W∇5 (G★))‖22 .

To show this result, we first prove to “descent” lemmas that will capture the
behavior of the method. One of the originalities of the proof is that some while the
(G: ) are seen in the standard Euclidean way, the (I: ) are considered in the P-weighted
norm ‖G ‖P =

√
〈G, PG〉 (and the (~: ) in both!).

Lemma 5.7 (Expression of the decrease as a martingale). Let Assumption 5.1 hold and
let (Y: ) be an i.i.d. sequence of admissible selections on the covering family D. From
the minimizer G★ of (PA), define the fixed points ~★ = I★ = Q

(
G★ − W∇5

(
G★

) )
of the

sequences (I: ) and (~: ). Then

�
[
‖~: − ~★‖22 |F:−1

]
= ‖~:−1 − ~★‖22 + ‖I: − I★‖2P − ‖~:−1 − ~★‖2P .

Proof. By taking the expectation on Y: (conditionally to the past), we get

�
[
‖~: − ~★‖22 |F:−1

]
= �

[
‖~:−1 − ~★ + projY: (I: − ~:−1)‖

2
2 |F:−1

]
= ‖~:−1 − ~★‖22 + 2�

[
〈~:−1 − ~★, projY: (I: − ~:−1)〉|F:−1

]
+ �

[

projY: (I: − ~:−1)

2 |F:−1]
= ‖~:−1 − ~★‖22 + 2〈~:−1 − ~★, P(I: − ~:−1)〉 + �

[
〈projY: (I: − ~:−1), projY: (I: − ~:−1)〉|F:−1

]
= ‖~:−1 − ~★‖22 + 2〈~:−1 − ~★, P(I: − ~:−1)〉 + �

[
〈I: − ~:−1, projY: (I: − ~:−1)〉|F:−1

]
= ‖~:−1 − ~★‖22 + 〈~:−1 + I: − 2~★, P(I: − ~:−1)〉,

where we used the fact that ~:−1 and I: are F:−1-measurable and that projY: is a
projection matrix so projY: = proj>Y: = proj2Y: .

Then, using the fact I★ = ~★, the scalar product above can be simplified as follows

〈~:−1 + I: − 2~★, P(I: − ~:−1)〉 = 〈~:−1 + I: − ~★ − I★, P(I: − ~:−1 + I★ − ~★)〉
= −〈~:−1 − ~★, P(~:−1 − ~★)〉 + 〈~:−1 − ~★, P(I: − I★)〉
+ 〈I: − I★, P(I: − I★)〉 − 〈I: − I★, P(~:−1 − ~★)〉

= 〈I: − I★, P(I: − I★)〉 − 〈~:−1 − ~★, P(~:−1 − ~★)〉

where we used in the last equality that P is symmetric. �

Lemma 5.8 (Contraction property in P-weighted norm). Let Assumption 5.1 hold and
let (Y: ) be an i.i.d. sequence of admissible selections on the covering family D. From
the minimizer G★ of (PA), define the fixed points ~★ = I★ = Q

(
G★ − W∇5

(
G★

) )
of the
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sequences (I: ) and (~: ). Then

‖I: − I★‖2P − ‖~:−1 − ~★‖2P ≤ −_min (P)
2W`!

` + ! ‖~:−1 − ~
★‖22 .

Proof. First, using the definition of I: and I★,

‖I: − I★‖2P = 〈Q(G: − W∇5 (G: ) − G★ + W∇5 (G★)), PQ(G: − W∇5 (G: ) − G★ + W∇5 (G★))〉
= 〈G: − W∇5 (G: ) − G★ + W∇5 (G★),Q>PQ(G: − W∇5 (G: ) − G★ + W∇5 (G★))〉

=


G: − W∇5 (G: ) − (G★ − W∇5 (G★))

22 .

Using the standard stepsize range W ∈ (0, 2/(` + !)], one has (see Section 2.3.1)

‖I: − I★‖2P =


G: − W∇5 (G: ) − (G★ − W∇5 (G★))

22 ≤ (

1 − 2W`!

` + !

)
‖G: − G★‖22 .

Using the non-expansiveness of the proximity operator of the convex lower semi-
continuous function 6 along with the fact that as G★ is a minimizer of (PA) so G★ =

proxW6 (G★ − W∇5 (G★)) = proxW6 (Q−1~★) (see Section 2.3.2), we get

‖G: − G★‖22 = ‖proxW6 (Q−1 (~:−1)) − proxW6 (Q−1 (~★))‖22
≤ ‖Q−1 (~:−1 − ~★)‖22 = 〈Q−1 (~:−1 − ~★),Q−1 (~:−1 − ~★)〉
= 〈~:−1 − ~★, P(~:−1 − ~★)〉 = ‖~:−1 − ~★‖2P

where we used that Q−>Q−1 = Q−2 = P. Combining the previous equations, we get

‖I: − I★‖2P − ‖~:−1 − ~★‖2P ≤ −
2W`!

` + ! ‖~:−1 − ~
★‖2P .

Finally, the fact that ‖G ‖2P ≥ _min (P)‖G ‖22 for positive definite matrix P enables to get
the claimed result. �

Relying on these two lemmas, we are now able to prove Theorem 5.6 by showing
that the distance of ~: towards the minimizers is a contracting super-martingale.

Proof of Theorem 5.6. Combining Lemmas 5.7 and 5.8, we get

�
[
‖~: − ~★‖22 |F:−1

]
≤

(
1 − _min (P)

2W`!

` + !

)
‖~:−1 − ~★‖22

and thus by taking the full expectation and using nested filtrations (F: ), we obtain

�
[
‖~: − ~★‖22

]
≤

(
1 − _min (P)

2W`!

` + !

) :
‖~0 − ~★‖22

=

(
1 − _min (P)

2W`!

` + !

) :
‖~0 −Q(G★ − W∇5 (G★))‖22 .

Using the same arguments as in the proof of Lemma 5.8, one has

‖G:+1 − G★‖22 ≤ ‖~: − ~★‖2P ≤ _max (P)‖~: − ~★‖22
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which enables to conclude

�
[
‖G:+1 − G★‖22

]
≤

(
1 − _min (P)

2W`!

` + !

) :
_max (P)‖~0 −Q(G★ − W∇5 (G★))‖22 .

Finally, this linear convergences implies the almost sure convergence of (G: ) to G★ as

�

[ +∞∑
:=1

‖G:+1 − G★‖2
]
≤ �

+∞∑
:=1

(
1 − _min (P)

2W`!

` + !

) :
< +∞

implies that
∑+∞
:=1 ‖G:+1 − G★‖2 is finite with probability one. Thus we get

1 = ℙ

[ +∞∑
:=1

‖G:+1 − G★‖2 < +∞
]
≤ ℙ

[
‖G: − G★‖2 → 0

]
which in turn implies that (G: ) converges almost surely to G★. �

5.1.4 The sparse case

A simple instantiation of our setting can be obtained by considering projections onto
uniformly chosen coordinates, which enables to recover standard coordinate descent.

We choose the family

D = {S1, ..,S=} with S8 = {G ∈ ℝ= : G [ 9 ] = 0 ∀9 ≠ 8}

and the selection Y consisting of taking S8 according to the output of an independent
Bernoulli variable of parameter ?8 ∈ (0, 1]. Then, the matrices P = diag( [?1, .., ?=]),
projY: and Q commute, and, by a change of variables ~̃: = Q−1~: and Ĩ: = Q−1I: ,
Algorithm 5.1 boils down to

Ĩ: = G: − W∇5 (G: ) , ~̃: = projY: (Ĩ: ) + (I− projY: ) (~̃:−1) , G:+1 = proxW6 (~̃: )

i.e. no change of basis is needed anymore, even if 6 is non-separable. Furthermore,
the convergence rates simplifies to (1 − 2min8 ?8W`!/(` + !)) which translates to
(1 − 4min8 ?8`!/(` + !)2) for the optimal W = 2/(` + !).

In the special case where 6 is separable (i.e. 6(G) = ∑=
8=1 68 (G [8 ])), we can further

simplify the iteration. In this case, projection and proximal steps commute, so that the
iteration can be written

G:+1 = projY: proxW6 (G: − W∇5 (G: )) + (I−projY: )G: , i.e.

G
[8 ]
ℓ+1 =

{
proxW68

(
G
[8 ]
:
− W∇8 5 (G: )

)
= argminD 68 (D) + 〈D,∇8 5 (G: )〉 + 1

2W ‖D − G
[8 ]
:
‖22 if 8 ∈ Y:

G
[8 ]
:

elsewhere

which boils down to the usual (proximal) coordinate descent algorithm, that recently
knew a rebirth in the context of huge-scale optimization, see (Nesterov, 2012; Richtárik
and Takáč, 2014; Tseng, 2001; Wright, 2015). In this special case, the theoretical conver-
gence rate of RPSD is similar to the existing rates in the literature, see e.g. (Richtárik
and Takáč, 2014).
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5.1.5 Identification holds… but is inexploitable

Following Section 3.2.2, we investigate the identification properties of RPSD by defining
a collection of manifolds:

C = {M1, . . . ,M@}

and recall our notation for structure as mapping S : ℝ= → {0, 1}@ defined as

S[8 ] (G) = 0 if G ∈ M8 and 1 elsewhere.

Now, Theorem 5.6 guarantees that the iterates of RPSD converge almost surely to
G★ which in turn implies that Q−1~: converges almost surely to G★ − W∇5 (G★). Thus,
with probability one, Theorem 3.4 applies. This gives the following result.
Theorem 5.9 (Partial identification). Let Assumption 5.1 hold and let (Y: ) be an i.i.d.
sequence of admissible selections on the covering familyD. Then, for anyW ∈ (0, 2/(`+!)],
with probability one, the iterates (G: ) of RPSD satisfy after some finite time

S[8 ] (G★) ≤ S[8 ] (G: ) ≤ max
{
S[8 ]

(
proxW6 (~)

)
: ‖~ − G★ + W∇5 (G★)‖ ≤ Y

}
for all 8 = 1, .., @.

Thus, we indeed have identification but it is unexploitable since our subspace
selection is i.i.d.. Following Section 3.5, we would like to favor the directions along the
identified manifolds. Intuitively, this means going from the i.i.d. choice of RPSD:

S8 ∈ Y: with probability ?8 for all :, 8

to an adaptive sampling based on the currently identified manifolds:

S8 ∈ Y: with probability
{
? if G: ∈ M8 and S8 is orthogonal toM8

1 elsewhere for all 8 .

This adaptive strategy means always updating in the direction (tangent to) the
identified manifolds;3434Recall that the S8 , and in fact the

M8 are all linear subspaces of ℝ=

in this chapter.

but only with some probability ? > 0 orthogonally to them (in
order not to be stuck in a manifold and to retain the convergence guarantees).

We develop this idea along with the necessary mathematical tools in the next
section.

5.2 Adaptive subspace descent

Our aim in this section is to automatically adapt to the structure identified by the
iterates along the run of the algorithm. The methods proposed here are, up to our
knowledge, the first ones where the iterate structure enforced by a nonsmooth regu-
larizer is used to adapt the selection probabilities in a randomized first-order method.

5.2.1 Structure & Subspace

We first provide some general rules to link the sampling (thus the family of subspaces
D) with the identified structure (the family of possible manifolds C). To this end, the
two families D and C have to be closely related. We thus introduce the notion of
generalized complemented subspaces.
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Definition 5.10 (Generalized complemented subspaces). Two families of subspaces
C = {M1, . . . ,M@} and D = {S1, . . . ,S@} are said to be (generalized) complemented
subspaces if for all 8 = 1, . . . , @{

(S8
⋂M8 ) ⊆

⋂
9 S9

S8 +M8 = ℝ=
.

Example 5.11 (Complemented subspaces and sparsity vectors). For sparsity patterns,
the structure can be captured by the collection (see Section 3.2.3)

C = {M1, . . . ,M=} withM8 = {G ∈ ℝ= : G [8 ] = 0},

then, a natural choice for the subspace is the collection of the axes (see Example 5.3)

D = {S1, . . . ,S=} with S8 = {G ∈ ℝ= : G [ 9 ] = 0 ∀9 ≠ 8}.

They are complemented subspaces sinceM8

⋂S8 = {0} = ⋂
9 S9 andS8+M8 = ℝ= .

In this case, the sparsity vector S(G) corresponds to the support of G (indeed S[8 ] (G) = 0
if and only if G ∈ M8 ⇔ G [8 ] = 0). J

The practical reasoning with using complemented families is the following. If the
subspaceM8 is definitively identified at time  (i.e. S[8 ] (G: ) = 0 ⇔ G: ∈ M8 for
all : ≥  ), then it is no use to update the iterates in S8 in preference, and the next
selection Y: should not include S8 anymore. Unfortunately, the moment after which
a subspace is definitively identified is unknown in general; however, subspacesM8

usually show a certain stability and thus S8 may be “less included” in the selection.
This is the intuition behind our adaptive subspace descent algorithm. Once again, this
reasoning is numerically tractable since the computation of the proximity operator
comes with the knowledge of the structure of the output; see Sections 3.2.3 and 3.5.

5.2.2 Adaptive Random Subspace Descent

For any randomized algorithm, using iterate-dependent sampling automatically breaks
down the i.i.d. assumption. In our case, adapting to the current iterate structure means
that the associated random variable depends on the past. We thus need further analysis
and notation.

In the following, we use the subscript ℓ to denote the ℓ-th change in the selection.
We denote by L the set of time indices at which an adaptation is made, themselves
denoted by :ℓ = min{: > :ℓ−1 : : ∈ L}. We then replace the i.i.d. assumption by the
following one.

Assumption 5.12 (On the randomness of the adaptive algorithm). For all : > 0, Y: is
F: -measurable and admissible. Furthermore, for any ℓ , : ≥ :ℓ , (Y: ) is independent
and identically distributed on [:ℓ , :]. The decision to adapt or not at time : is F: -
measurable, i.e. (:ℓ )ℓ is a sequence of F: -stopping times.

This means that the subspace sampling distribution can be changed at some iter-
ations of the algorithm, the ones in L, but between them, the sampling is i.i.d.. This
gives the generic Algorithm 5.2, where we denote by Pℓ = �[projY:ℓ ] the average

projection for the i.i.d. sequence (Y:ℓ , Y:ℓ+1, .., Y:ℓ+1−1), and Qℓ = P
− 1

2

ℓ
accordingly.

Under this assumption, we can prove the convergence of this random subspace
descent method with time-varying selections. The rationale of the proof is that the
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stability of the algorithm is maintained when adaptation is performed sparingly. After
analyzing this generic algorithm, we will see how this can be put into practice.

Algorithm 5.2 Adaptive Randomized Proximal Subspace Descent - ARPSD

1: Initialize Q = (�[projY0 ])−1/2, ~0, G1 = proxW6 (Q−10 (~0)), ℓ = 0, L = {0}.
2: for : = 1, . . . do
3: I: = Qℓ (G: − W∇5 (G: ) )
4: ~: = projY: (I: ) + (I− projY: ) (~:−1)
5: G:+1 = proxW6

(
Q−1ℓ (~: )

)
6: if an adaptation is decided then
7: L← L ∪ {: + 1}, ℓ ← ℓ + 1
8: Generate a new admissible selection with Pℓ = �[projY:ℓ ]

9: Compute Qℓ = P
− 1

2

ℓ
and Q−1ℓ

10: Rescale ~: ← QℓQ−1ℓ−1~:
11: end if
12: end for

Before going further on the applicability of this method with respect to identi-
fication and adapted sampling strategies, let us see what theoretical results can be
obtained.

5.2.3 Convergence and rate

Under Assumption 5.12, the convergence is obviously not unconditional: all the sam-
pling strategies have to be admissible and cannot change too much and too often. The
“crude” result we can obtain is the following.
Theorem 5.13 (ARPSD convergence). Let Assumption 5.1 and Assumption 5.12 hold.
For any W ∈ (0, 2/(` + !)], let the user choose its adaptation strategy so that:

i) the adaptation cost is upper bounded deterministically: ‖QℓQ−1ℓ−1‖22 ≤ aℓ ;

ii) the inter-adaptation time is lower bounded deterministically: :ℓ − :ℓ−1 ≥ cℓ ;

iii) the selection admissibility is lower bounded deterministically: _min (Pℓ−1) ≥ _ℓ−1;
then, from the previous instantaneous rate 1 − Uℓ−1 := 1 − 2W`!_ℓ−1/(` + !), the
corrected rate for cycle ℓ writes

(1 − V: ) := (1 − Uℓ−1)a1/cℓℓ
. (5.2)

Then, we have for any : ∈ [:ℓ , :ℓ+1)

�
[
‖G:+1 − G★‖22

]
≤ (1 − Uℓ ):−:ℓ

ℓ∏
<=1

(1 − V<)c< ‖~0 −Q0

(
G★ − W∇5

(
G★

) )
‖22 .

This theoremmeans that by balancing the magnitude of the adaptation (i.e. aℓ ) with
the time before adaptation (i.e. cℓ ) from the knowledge of the current rate (1−Uℓ−1), one
can retrieve the exponential convergence with a controlled degraded rate (1−Vℓ ). This
result is quite generic, but it can be easily adapted to specific situations. For instance,
we provide a simple example with a global rate on the iterates in the forthcoming
Example 5.14.
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For now, let us turn to the proof of the theorem. To ease its reading, the main
notations and measurability relations are depicted in Fig. 5.1.

iterations

:ℓ

adaptation

:ℓ + cℓ+1

new adaptation possible

~:−1, G: , I:

:

Y:
F:−1

~: → G:+1 → I:+1
{:ℓ+1 = : + 1}

F:

: + 1

Y:+1

Figure 5.1: Summary of notations about iteration, adaptation and filtration. The filtra-
tion F:−1 is the sigma-algebra generated by {Y:′}:′≤:−1 encompassing the knowledge
of all variables up to I: (but not ~: ).

Proof. Let us define ~★ℓ = Qℓ

(
G★ − W∇5

(
G★

) )
, Lemmas 5.7 and 5.8 can be directly

extended and combined to show for any : ∈ [:ℓ , :ℓ+1)

�
[
‖~: − ~★ℓ ‖22 |F:−1

]
≤

(
1 − 2W`!_min (Pℓ )

` + !

)
︸                     ︷︷                     ︸

≤1−Uℓ

‖~:−1 − ~★ℓ ‖22 . (5.3)

Since the distribution of the selection has not changed since :ℓ , iterating (5.3) leads to

�
[
‖~: − ~★ℓ ‖22 |F:ℓ−1

]
≤ (1 − Uℓ ):−:ℓ ‖~:ℓ−1 − ~★ℓ ‖22 . (5.4)

We focus now on the term ‖~:ℓ−1 − ~★ℓ ‖22 corresponding to what happens at the last
adaptation step. From the definition of variables in the algorithm and using the
deterministic bound on ‖QℓQ−1ℓ−1‖, we write

�
[
‖~:ℓ−1 − ~★ℓ ‖22 |F:ℓ−2

]
≤ �

[
‖QℓQ−1ℓ−1 (~:ℓ−2 + projY:ℓ −1 (I:ℓ−1 − ~:ℓ−2) − QℓQ

−1
ℓ−1~

★
ℓ−1‖22 |F:ℓ−2

]
≤ �

[
‖QℓQ−1ℓ−1‖22 ‖~:ℓ−2 + projY:ℓ −1 (I:ℓ−1 − ~:ℓ−2) − ~

★
ℓ−1‖22 |F:ℓ−2

]
(5.5)

≤ aℓ (1 − Uℓ−1)‖~:ℓ−2 − ~★ℓ−1‖22 .

Repeating this inequality backwards to the previous adaptation step ~:ℓ−1 , we get

�
[
‖~:ℓ−1 − ~★ℓ ‖22 |F:ℓ−1

]
≤ aℓ (1 − Uℓ−1):ℓ−:ℓ−1 ‖~:ℓ−1 − ~★ℓ−1‖22
≤ aℓ (1 − Uℓ−1)cℓ ‖~:ℓ−1 − ~★ℓ−1‖22 ,

using the assumption of bounded inter-adaptation times. Combining this inequality
and (5.4), we obtain that for any : ∈ [:ℓ , :ℓ+1),

�
[
‖~: − ~★ℓ ‖22

]
≤ (1 − Uℓ ):−:ℓ

ℓ∏
<=1

a< (1 − U<−1)c< ‖~0 − ~★0 ‖22 .

Using now (5.2), we get

�
[
‖~: − ~★ℓ ‖22

]
≤ (1 − Uℓ ):−:ℓ

ℓ∏
<=1

(1 − V<)c< ‖~0 − ~★0 ‖22
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Finally, the non-expansiveness of the prox-operator propagates this inequality to G: ,
since we have

‖G: − G★‖22 = ‖proxW6 (Q−1ℓ (~:−1)) − proxW6 (Q−1ℓ (~★ℓ ))‖22
≤ ‖Q−1ℓ (~:−1 − ~★ℓ )‖22 ≤ _max (Q−1ℓ )2‖~:−1 − ~★ℓ ‖22
= _max (Pℓ )‖~:−1 − ~★ℓ ‖22 ≤ ‖~:−1 − ~★ℓ ‖22 .

This concludes the proof. �

Example 5.14 (Explicit convergence rate). Let us specify Theorem 5.13 with the follow-
ing simple adaptation strategy. We take a fixed upper bound on the adaptation cost
and a fixed lower bound on uniformity:

‖Q:Q−1:−1‖
2
2 ≤ a _min (P: ) ≥ _. (5.6)

Then from the rate 1 − U = 1 − 2W`!_/(` + !), we can perform an adaptation every

c = dlog(a)/log
(
(2 − U)/(2 − 2U)

)
e (5.7)

iterations, so that a(1 − U)c = (1 − U/2)c and :ℓ = :c. A direct application of
Theorem 5.13 gives that, for any : ,

�
[
‖G:+1 − G★‖22

]
≤

(
1 − W`!_

` + !

) :
�

where � = ‖~0 − Q0 (G★ − W∇5 (G★))‖22 . That is the same convergence mode as in the
non-adaptive case (Theorem 5.6) with a modified rate. Note the modified rate provided
here (of the form (1 − U/2) to be compared with the 1 − U of Theorem 5.6) was chosen
for clarity; any rate strictly slower than 1 − U can bring the same result by adapting c
accordingly. J

Remark 5.15 (On the adaptation frequency). Theorem 5.13 and Example 5.14 tell us
that we have to respect a prescribed number of iterations between two adaptation
steps. We emphasize here that if this inter-adaptation time is violated, the resulting
algorithm may be highly unstable. We illustrate this phenomenon on a TV-regularized
least squares problem: we compare two versions of ARPSD with the same adaptation
strategy verifying (5.6) but with two different adaptation frequencies

• at every iteration (i.e. taking cℓ = 1)
• following theory (i.e. taking cℓ = c as per Eq. (5.7))

On Fig. 5.2, we observe that adapting every iteration leads to a chaotic behavior.
Second, even though the theoretical number of iterations in an adaptation cycle is
often pessimistic (due to the rough bounding of the rate), the iterates produced with
this choice quickly become stable (i.e. identification happens, which will be shown
and exploited in the next section) and show a steady decrease in suboptimality. J

A drawback of Theorem 5.13 is that the adaptation cost, inter-adaptation time,
and selection uniformity have to be bounded by deterministic sequences. This can be
restrictive if we do not have prior knowledge on the problem or if the adaptation cost
varies a lot. This drawback can be circumvented to the price of loosing the rate per
iteration to the rate per adaptation, as formalized in the following result.
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Figure 5.2: Comparisons between theoretical and harsh updating time for ARPSD.

Theorem 5.16 (ARPSD convergence: practical version). Let Assumptions 5.1 and 5.12
hold. Take W ∈ (0, 2/(` + !)], choose _ > 0, and set V = W`!_/(` + !). Consider the
following adaptation strategy:

1) From the observation of G:ℓ−1 choose a new sampling with Pℓ and Qℓ , such that
_min (Pℓ ) ≥ _;

2) Compute cℓ so that ‖QℓQ−1ℓ−1‖22 (1 − Uℓ−1)cℓ ≤ 1 − V where Uℓ−1 =

2W`!_min (Pℓ−1)/(` + !);
3) Apply the new sampling after cℓ iterations (:ℓ = :ℓ−1 + cℓ ).

Then, we have for any : ∈ [:ℓ , :ℓ+1)

�
[
‖G:+1 − G★‖22

]
≤ (1 − Uℓ ):−:ℓ (1 − V) ℓ ‖~0 −Q0

(
G★ − W∇5

(
G★

) )
‖22 .

Proof. The proof follows the same pattern as the one of Theorem 5.13. The only
difference is that the three control sequences (adaptation cost, inter-adaptation time,
and selection uniformity) are now random sequences since they depend on the iterates
of the (random) algorithm. This technical point requires a special attention. In (5.5),
the adaptation introduces a cost by a factor ‖QℓQ−1ℓ−1‖22 , which is not deterministically
upper-bounded anymore. However it is F:ℓ−1-measurable by construction of Qℓ , so
we can write

�
[
‖~:ℓ−1 − ~★ℓ ‖22 |F:ℓ−1

]
= �

[
�

[
‖~:ℓ−1 − ~★ℓ ‖22 |F:ℓ−2

]
|F:ℓ−1

]
≤ �

[
�

[
‖QℓQ−1ℓ−1 (~:ℓ−2 + projY:ℓ −1 (I:ℓ−1 − ~:ℓ−2) − QℓQ

−1
ℓ−1~

★
ℓ−1‖22 |F:ℓ−2

]
|F:ℓ−1

]
≤ �

[
‖QℓQ−1ℓ−1‖22 (1 − Uℓ−1)‖~:ℓ−2 − ~★ℓ−1‖22 |F:ℓ−1

]
= ‖QℓQ−1ℓ−1‖22 (1 − Uℓ−1)�

[
‖~:ℓ−2 − ~★ℓ−1‖22 |F:ℓ−1

]
.

Using Eq. (5.3), this inequality yields

�
[
‖~:ℓ−1 − ~★ℓ ‖22 |F:ℓ−1

]
≤ ‖QℓQ−1ℓ−1‖22 (1 − Uℓ−1):ℓ−:ℓ−1�

[
‖~:ℓ−1−1 − ~★ℓ−1‖22 |F:ℓ−1

]
≤ (1 − V)�

[
‖~:ℓ−1−1 − ~★ℓ−1‖22 |F:ℓ−1

]
.
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where we used points 2) and 3) of the strategy to bound the first terms deterministically.
Finally, we obtain

�
[
‖~:ℓ−1 − ~★ℓ ‖22

]
= �

[
�

[
‖~:ℓ−1 − ~★ℓ ‖22 |F:ℓ−1

] ]
≤ (1 − V)�

[
‖~:ℓ−1−1 − ~★ℓ−1‖22

]
then the rest of the proof follows directly by induction. �

5.2.4 Adaptivity in Practice & Comparison between RPSD and ARPSD

Now that we know to what extent we can change sampling strategies, we can imple-
ment our structure adapted strategies. We recall that we can identify structure among
a family of linear subspaces C = {M1, . . . ,M@} and that our sampling directions
D = {S1, . . . ,S@} are complemented subspaces to C.

Intuitively, ifM8 is identified (i.e. G: ∈ M8 ), then S8 , which is orthogonal toM8

has less interest. So we propose to construct Y: such that ℙ[S8 ∈ Y: ] = ? for a small
probability ? > 0 for all 8 such thatM8 is identified; and ℙ[S8 ∈ Y: ] = 1 for the others.

Unfortunately, we saw before that adapting at every iteration was impossible.
Hence, at time : ∈ [:ℓ , :ℓ+1), the structure that is used for the sampling is the one of
time :ℓ−1 (as per Theorem 5.16). Table 5.1 summarizes the common points and differ-
ences between the proposed adaptive and non-adaptive subspace descent methods.

(non-adaptive) subspace descent adaptive subspace descent
RPSD ARPSD

Subspace family D = {S1, ..,S2 }

Algorithm


I: = Q (G: − W∇5 (G: ) )
~: = projY: (I: ) + (I− projY: ) (~:−1)

G:+1 = proxW6
(
Q−1 (~: )

)
Selection

Option 1 S8 ∈ Y: with probability

S8 ∈ Y: with probability ?
{
? if G:ℓ−1 ∈ M8

1 elsewhere

Option 2

Sample B elements uniformly in
Sample B elements uniformly in D {S8 : G:ℓ−1 ∈ M8 }

and add all elements in
{S9 : G:ℓ−1 ∉M 9 }

Table 5.1: Strategies for non-adaptive vs. adaptive algorithms. The two options
introduced in this table are examples on how to generate reasonably performing
admissible selections. Their difference lies in the fact that for Option 1, the probability
of sampling a subspace outside the support is controled, while for Option 2, the number
of subspaces is controlled (this makes every iteration computationally similar which
can be interesting in practice). Option 2 will be discussed in Section 5.3 and illustrated
numerically.

Notice that, contrary to the importance-like adaptive algorithms of (Stich et al., 2017)
for instance, the purpose of these methods is not to adapt each subspace probability
to local steepness but rather to adapt them to the current structure. This is notably
due to the fact that local steepness-adapted probabilities can be difficult to evaluate
numerically and that in heavily structured problems, adapting to an ultimately very
sparse structure already reduces drastically the number of explored dimensions, as
suggested in (Grishchenko et al., 2021) for the case of coordinate-wise projections.
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5.2.5 Rate improvement with identification

Now, in addition to the expected computational advantage of adaptive sampling, we can
actually have a better theoretical rate under the usual proximal gradient qualification
constraint to guarantee exact identification:

for all ~ ∈ B(G − W∇5 (G), Y), proxW6 (~) ∈ M, (PQC – Proximal Gradient)

Theorem 5.17 (Improved asymptotic rate). Under the same assumptions as in The-
orems 5.13 and 5.16, if the solution G★ of (PA) verifies the qualification constraint
(PQC – Proximal Gradient) then, using an adaptation deterministically computed from
(S(G: )), we have

‖G: − G★‖22 = O?

( (
1 − _min (P★)

2W`!

` + !

) : )
where P★ is the average projection matrix of the selection associated with S(G★) and O?
stands for Big O in probability, i.e. stochastic boundedness.35 35Alternatively, we know that there

is a random time, finite almost
surely, such that the rate is
deterministically bounded by the
quantity in parentheses after this
time.

Proof. Exact identification holds by Corollary 3.9 since (G: ) converges almost surely
to G★, thus S(G: ) will exactly equal S(G★) in finite time. Now we go back to the proof
of Theorem 5.16 to see that the random variable defined by

-: =

{
G:ℓ if : ∈ (:ℓ , :ℓ + cℓ ]
G: if : ∈ (:ℓ + cℓ , :ℓ+1]

for some ℓ

also converges almost surely to G★. Intuitively, this sequence is a replica of (G: ) except
that it stays fixed at the beginning of adaptation cycles when no adaptation is admitted.
This means that S(-: ) which can be used for adapting the selection will exactly reach
S(G★) in finite time. From that point on, since we use an adaptation technique that
deterministically relies on S(G: ), there are no more adaptations and thus the rate
matches the non-adaptive one of Theorem 5.6. Finally, using the almost sure finiteness
of the identification time and Markov’s inequality, we get the claimed result. �

This theorem means that if C and D are chosen in agreement with 6, the adaptive
algorithm ARPSD eventually reaches a linear rate in terms of iterations as the non-
adaptive RPSD. In addition, the term _min (P) present in the rate now depends on
the final selection and thus on the optimal structure which is much better than the
structure-agnostic selection of RPSD in Theorem 5.6. In the next section, we develop
practical rules for an efficient interlacing of 6, C, and D.

5.3 Practical examples and discussion

Let us now see how Option 2 of Table 5.1 and the convergence results above can be
used in practice.

5.3.1 Sparsity patterns & Coordinate-wise projections

We recall from Example 5.11, that for sparsity patterns, the structure can be captured
by the collection

C = {M1, . . . ,M=} withM8 = {G ∈ ℝ= : G [8 ] = 0},
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and that a natural choice for the subspace is

D = {S1, . . . ,S=} with S8 = {G ∈ ℝ= : G [ 9 ] = 0 ∀9 ≠ 8}.

Then, a practical adaptive coordinate descent can be obtained from the following
reasoning at each adaptation time : = :ℓ−1:

• Observe S(G: ) i.e. the support of G: .
• Take all coordinates in the support and randomly select B coordinates outside
the support.3636We note by null(G) the set of

indices of the null coordinates of G .
For simplicity, we only consider the

case B ≤ | null(G: ) |.

. Compute the associated Pℓ , Qℓ , and Q−1ℓ . Notice that _min(Pℓ ) =
?ℓ = B/| null(G: ) |.

• Following the rules of Theorem 5.16, compute

cℓ =

⌈
log

(
‖QℓQ−1ℓ−1‖22

)
+ log(1/(1 − V))

log(1/(1 − Uℓ−1))

⌉
with Uℓ−1 = 2?ℓ−1W`!/(` + !)

for some small fixed 0 < V ≤ 2W`!/(=(` + !)) ≤ inf ℓ Uℓ .
Apply the new sampling after cℓ iterations (i.e. :ℓ = :ℓ−1 + cℓ ).

Example 5.18. Let us give a simple example in ℝ4:

for G: =

©­­­«
1.23
−0.6
0
0

ª®®®¬ , S(G: ) =
©­­­«
1
1
0
0

ª®®®¬ , then ℙ[S1 ⊆ Y:ℓ ] = ℙ[S2 ⊆ Y:ℓ ] = 1
ℙ[S3 ⊆ Y:ℓ ] = ℙ[S4 ⊆ Y:ℓ ] = ?ℓ := B/| null(G: ) | = B/2

Pℓ =
©­­­«
1

1
?ℓ

?ℓ

ª®®®¬ Qℓ =
©­­­«
1

1
1/√?ℓ

1/√?ℓ

ª®®®¬ Q−1ℓ =

©­­­«
1

1 √
?ℓ √

?ℓ

ª®®®¬
J

Finally, we notice that the above strategy with Option 2 of Table 5.1 produces
moderate adaptations as long as the iterates are rather dense. To see this, observe first
that QℓQ−1ℓ−1 is a diagonal matrix, the entries of which depend on the support of the
corresponding coordinates at times :ℓ−1 and :ℓ−2. More precisely, the diagonal entries
are described in the following table:

8 is in the support at
:ℓ−1 :ℓ−2

[
QℓQ−1ℓ−1

]
88

yes yes 1

no yes 1
?ℓ

=
| null(G:ℓ−1 ) |

B

yes no ?ℓ−1 = B
| null(G:ℓ−2 ) |

no no ?ℓ−1
?ℓ

=
| null(G:ℓ−1 ) |
| null(G:ℓ−2 ) |

Thus, as long as the iterates are not sparse (i.e. in the first iterations, when | null(G: ) | ≈
B is small), the adaptation cost is moderate so the first adaptations can be done rather
frequently. Also, in the frequently-observed case when the support only decreases
(S(G:ℓ−2 ) ≤ S(G:ℓ−1 )), the second line of the table is not active and thus ‖QℓQ−1ℓ−1‖ = 1,
so the adaptation can be done without waiting.



5.4 Numerical illustrations 97

5.3.2 Vectors of fixed variations

We saw in Section 3.2.3 that for vectors of fixed variation, the structure can be displayed
using that

C = {M1, ..,M=−1} withM8 =

{
G ∈ ℝ= : G [8 ] = G [8+1]

}
,

then, the structure S(G: ) corresponds to the jumps of G: (indeed S[8 ] (G: ) = 0 iff
G: ∈ M8 ⇔ G

[8 ]
:

= G
[8+1]
:

).
In terms of sampling subspaces, a natural choice is

D = {S1, ..,S=−1} with S8 =
{
G ∈ ℝ= : G [ 9 ] = G [ 9+1] for all 9 ≠ 8

}
,

indeed,M8

⋂S8 = span({1}) = ⋂
9 S9 and S8 +M8 = ℝ= .

The same reasoning as above can be done for vectors of fixed variation by using
these families. At each adaptation time : = :ℓ−1:

• Observe S(G: ) i.e. the jumps of G ;
• The adapted selection consists in selecting all jumps present in G: and randomly
selecting B jumps that are not in G: . Compute Pℓ , Qℓ , and Q−1ℓ (to the difference
of coordinate sparsity they have to be computed numerically).

• For a fixed V > 0, compute

cℓ =

⌈
log

(
‖QℓQ−1ℓ−1‖22

)
+ log(1/(1 − V))

log(1/(1 − Uℓ−1))

⌉
.

Apply the new sampling after cℓ iterations (i.e. :ℓ = :ℓ−1 + cℓ ).

5.4 Numerical illustrations

We report here some numerical illustrations for the behavior of our randomized
proximal algorithms on standard problems involving ℓ1 and 1D TV regularization.

5.4.1 Experimental setup

We consider the standard regularized logistic regression with three different regu-
larization terms, which can be written for given (a8 , 18 ) ∈ ℝ=+1 (8 = 1, . . . ,<) and
parameters _1, _2 > 0

+ _1 ‖G ‖1 (5.8a)

min
G ∈ℝ=

1

<

<∑
8=1

log
(
1 + exp

(
−18a>8 G

) )
+ _2

2
‖G ‖22 + _1 ‖G ‖1,2 (5.8b)

+ _1TV(G) (5.8c)

We use two standard data-sets from the LibSVM repository: a1a (< = 1, 605 = = 123)
for the TV regularizer, and rcv1_train (< = 20, 242 = = 47, 236) for the ℓ1 and ℓ1,2
regularizers. We fix the parameters _2 = 1/< and _1 to reach a final sparsity of roughly
90%.

The subspace collections are taken naturally adapted to the regularizers: by coor-
dinate for (5.8a) and (5.8b), and by variation for (5.8c). The adaptation strategies are
the ones described in Section 5.3.
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We consider five algorithms:3737In the following, x is often given
in percentage of the possible

subspaces, i.e. x% of |D |, that is x%
of = for coordinate projections and

x% of = − 1 for variation
projections.

Name Reference Description Randomness
Proximal gradient Chapter 4 vanilla proximal gradient descent None

x RPCD (Nesterov, 2012) standard proximal coordinate descent x coordinates selected for each update
x SEGA (Hanzely et al., 2018) Algorithm SEGA with coordinate sketches rank((: ) = x
x RPSD Algorithm 5.1 (non-adaptive) random subspace descent Option 2 of Table 5.1 with B = x
x ARPSD Algorithm 5.2 adaptive random subspace descent Option 2 of Table 5.1 with B = x

For the produced iterates, we measure the sparsity of a point G by ‖S(G: )‖1, which
corresponds to the size of the supports for the ℓ1 case and the number of jumps for the
TV case. We also consider the quantity:

Number of subspaces explored at time : =

:∑
C=1

‖S(GC )‖1.

We then compare the performance of the algorithms on three criteria:

• functional suboptimality vs iterations (standard comparison);
• size of the sparsity pattern vs iterations (showing the identification properties);
• functional suboptimality vs number of subspaces explored (showing the gain of
adaptivity).

5.4.2 Illustrations for coordinate-structured problems

Comparison with standard methods

We consider first ℓ1-regularized logistic regression (5.8a); in this setup, the non-adaptive
RPSD boils down to the usual randomized proximal gradient descent. We compare the
proximal gradient to its adaptive and non-adaptive randomized counterparts.

First, we observe that the iterates of Proximal gradient and ARPSD coincide. This
is due to the fact that the sparsity of iterates only decreases (S(G: ) ≤ S(G:+1)) along
the convergence, and according to Option 2 all the non-zero coordinates are selected
at each iteration and thus set to the same value as with Proximal gradient. However, a
single iteration of 10%-ARPSD costs less in terms of number of subspaces explored,
leading the speed-up of the right-most plot. Contrary to the adaptive ARPSD, the
structure-blind RPSD identifies much later then Proximal gradient and shows poor
convergence.
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Figure 5.3: ℓ1-regularized logistic regression (5.8a)

Comparison with SEGA

In Fig. 5.4, we compare ARPSD algorithm with SEGA algorithm featuring coordinate
sketches (Hanzely et al., 2018). While the focus of SEGA is not to produce an efficient
coordinate descent method but rather to use sketched gradients, SEGA and RPSD are
similar algorithmically and reach similar rates. As mentioned in (Hanzely et al., 2018,
Apx. G2), SEGA is slightly slower than plain randomized proximal coordinate descent
(10% RPSD) but still competitive, which corresponds to our experiments. Thanks to
the use of identification, ARPSD shows a clear improvement over other methods in
terms of efficiency with respect to the number of subspaces explored.
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Figure 5.4: ℓ1,2 regularized logistic regression (5.8b)

5.4.3 Illustrations for total variation regularization

We focus here on the case of total variation (5.8c) which is a typical usecase for our
adaptive algorithm and subspace descent in general. Fig. 5.5 displays a comparison
between the vanilla proximal gradient and various versions of our subspace descent
methods.

We observe first that RPSD, not exploiting the problem structure, fails to reach
satisfying performances as it identifies lately and converges slowly. In contrast, the
adaptive versions ARPSD perform similarly to the vanilla proximal gradient in terms of
sparsification and suboptimality with respect to iterations. As a consequence, in terms
of number of subspaces explored, ARPSD becomes much faster once a near-optimal
structure is identified. More precisely, all adaptive algorithms (except 1 ARPSD, see
the next paragraph) identify a subspace of size ≈ 8% (10 jumps in the entries of the
iterates) after having explored around 105 subspaces. Subsequently, each iteration
involves a subspace of size 22, 32, 62 (out of a total dimension of 123) for 10%, 20%, 50%
ARPSD respectively, resulting in the different slopes in the red plots on the rightmost
figure.
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Figure 5.5: 1D-TV-regularized logistic regression (5.8c)

Finally, Fig. 5.6 displays 20 runs of 1 and 20% ARPSD as well as the median of the
runs in bold. We notice that more than 50% of the time, a low-dimensional structure is
quickly identified (after the third adaptation) resulting in a dramatic speed increase
in terms of subspaces explored. However, this adaptation to the lower-dimensional
subspace might take some more time (either because of poor identification in the
first iterates or because a first heavy adaptation was made early and a pessimistic
bound on the rate prevents a new adaptation in theory). Yet, one can notice that these
adaptations are more stable for the 20% than for the 1 ARPSD, illustrating the “speed
versus stability” tradeoff in the selection.
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Figure 5.6: 20 runs of ARPSD and their median (in bold) on 1D-TV-regularized logistic
regression (5.8c)
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5.5 Concluding remarks

In this chapter, we saw how to adapt coordinate descent sampling strategies to the
identified structure. The developed methods can efficiently reduce the “dimension” of
the gradients updates (e.g. the number of gradient coordinates computed). They could
be further improved by considering separately the Lipschitz constants per subspace
or by considering the local conditioning of the problem once the optimal structure
has been identified. The present results focus on the core idea to adapt sampling with
structure.

We needed here only membership information from the structure. This notion is
perfectly handled by proximal qualification, studied in Section 3.2, and does not need
to rely on partial smoothness, developed in Sections 3.3 and 3.4. On the contrary, in
the next chapter, we develop a method where local smoothness and stability of the
identified manifold are directly used.

��



6 RiemannianAccelerationon IdentifiedMan-

ifolds

Time drowns in the unmeasured monotony of space.
Where uniformity reigns,

movement from point to point is no longer movement;
and where movement is no longer movement, there is no time.

Thomas Mann – The Magic Mountain (1924)

Leveraging themanifold identification properties of proximal gradient steps,
we show that Riemannian Newton-like methods can be performed on the

identified structure to drastically boost the convergence. For instance, we
can prove the superlinear convergence of alternating proximal gradient and
Riemannian steps when solving nondegenerated optimization problems. At
the opposite of the previous chapter, we do not only use the identification
properties but also the local smoothness once identification has happened.

This chapter is based on the following publication:
• Gilles Bareilles, Franck Iutzeler, Jérome Malick: Newton acceleration on
manifolds identified by proximal-gradient methods, 2021.

Exploiting the underlying smooth substructure of objective functions to develop
second-order methods has been a subject of fruitful and creative research in nons-
mooth optimization, pioneered by the developments aroundU-Newton algorithms
(Lemaréchal et al., 2000) and the notion of partial smoothness (Lewis, 2002). Let us
mention theUV-Newton bundle method of (Mifflin and Sagastizábal, 2005) approxi-
mating the substructure from first-order information, and the recent :-bundle Newton
method of (Lewis and Wylie, 2019) refining the approximation from a partial second-
order oracle. Interestingly, these Newton-type methods for nonsmooth optimization
are connected to the standard Newton methods of nonlinear programming (SQP) and
to the Newton methods of Riemannian optimization; see (Miller and Malick, 2005). We
refer to (Sagastizábal, 2018) for a recent review of these nonsmooth Newton methods
relying on an implicit smooth substructure. In this chapter, we focus on a special
situation where the smooth substructure can be detected and exploited numerically.

As in the previous chapters, we will consider problems of the form

min
G ∈ℝ=

� (G) := 5 (G) + 6(G) (PA)

where 5 is a smooth differentiable function, and 6 is not everywhere differentiable
but admits a simple proximal operator. More precisely, we assume that the proximal
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operator of 6 outputs an explicit expression of the proximal point together with a
representation of the current active manifold as previously considered in Section 3.5.

Since 6 has a simple proximal operator, first-order methods of choice to minimize
� are variants of the proximal gradient method as investigated in Chapter 4. We saw
that these algorithms were able to identify the nonsmooth substructure of � in finite
time (see Section 4.2.1 and in particular Theorem 4.10) but, unfortunately, the user
never knows if the current manifold is the optimal one or not. Adaptivity is thus once
again key in the exploitation of proximally discovered substructure.

We propose here a Newton acceleration of the proximal-gradient algorithm solv-
ing the nonsmooth optimization problem (PA). Our algorithm uses the same basic
ingredients that work behind the scenes for the existing nonsmooth Newton algo-
rithms recalled above (e.g. (Daniilidis et al., 2006; Lewis and Wylie, 2019; Mifflin and
Sagastizábal, 2005)). In our context, they become apparent, and we can then heavily
rely on recent developments of Riemannian optimization (Absil et al., 2009; Boumal,
2020). Specifically our algorithm relies on (i) explicit proximal operations for structure
identification and (ii) the efficiency of Riemannian Newton-type methods to finally
benefit from faster convergence. We present a convergence analysis showing superlin-
ear convergence of the resulting algorithm under some qualification assumptions –
but without prior knowledge on the final manifold.

6.1 Ageneralalgorithmforexplicitnonsmoothproblems

Let us start by specifying our blanket assumptions for this chapter on the composite
problem (PA).

Assumption 6.1 (On the functions). The functions 5 and 6 are proper and
i) 5 : ℝ= → ℝ is C2 with an !-Lipschitz continuous gradient;
ii) 6 : ℝ= → ℝ is lower semi-continuous;
iii) proxW6 is non-empty on ℝ= for any W > 0;
iv) � := 5 + 6 is bounded below.

These assumptions are mostly common except the third point which directly comes
from our idea of using the proximal operator both for the optimization itself and as an
oracle for the current structure of the iterates.3838See Section 2.2 for more details

about the existence of the
proximity operator. 6.1.1 Proximal gradient with Riemannian acceleration

Building on the identification properties of proximal methods (see Chapter 3 and
Section 4.2.1), we leverage this ability to an algorithmic advantage by reducing our
working space to the identified structure. “Smooth” structures (involving smooth
manifolds and smooth restrictions on it) are of special interest and open the way to
Newton acceleration.

Algorithm 6.1 Proximal gradient with Riemannian acceleration
1: repeat
2: Compute G: ∈ proxW6 (~:−1 − W∇5 (~:−1)) and getM: 3 G:
3: Update ~: = ManUpM:

(G: ) on the current manifold
4: until stopping criterion
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We propose the general algorithm (Algorithm 6.1) which consists in, first, perform-
ing a proximal gradient step G: ∈ proxW6 (~:−1 − W∇5 (~:−1)) that provides both the
current point G: and the manifoldM: where it lies,39 39This implicitly assumes that the

computation of the proximity
operator comes with the knowledge
of the structure of the output,
which is the case for many cases of
interest in this part; see
Sections 3.2.3 and 3.5.

and, second, carrying out a
Riemannian optimization update, ManUpM:

, on the current manifold. This algorithm
is general in the sense that we do not precise for now what is the Riemannian step
ManUp. Our plan of action is to lay out the generic assumptions on the manifold
updates that provide global and local convergence, respectively in Section 6.1.2 and
6.1.3. Then, we will investigate in Section 6.2 the type of Riemannian Newton methods
that fall into this scheme.
Remark 6.2 (Direct extensions of Algorithm 6.1). The first step (the proximal gradient
update) is solely responsible for the identification of the current manifold. Thus,
strategies other than alternating proximal gradient and Riemannian steps could be
considered as long as infinitely many proximal gradient steps are performed; the
results layed out next can be easily adapted to such situations.

The proximal gradient step could also be replaced by another optimization method,
as long as it identifies and converges; however, the changes in the forthcoming results
would be more significant. J

6.1.2 Global convergence

The following result show that Algorithm 6.1 converges to a critical value of � and
that all accumulation points of its iterates are critical points. In order for this to hold,
we only need the mild assumption that the manifold update does not increase the
functional value (this offers a broad choice of methods since this kind of descent is
easily obtained by line-search as discussed in Section 6.2.1).
Theorem 6.3 (Global convergence). Let Assumption 6.1 hold and take W ∈ (0, 1

!
).

Suppose that the manifold update ManUpM provides descent, that is for any G inM

� (ManUpM (G)) ≤ � (G).

Then, Algorithm 6.1 generates non-increasing functional values (� (G:+1) ≤ � (~: ) ≤
� (G: ) for all :) and all limit points of (G: ) and (~: ) are critical points of � that share
the same functional value.

Proof. The proximal gradient steps provides a descent (see Section 2.3.3) thus choosing
~: such that � (~: ) ≤ � (G: ) (by assumption on the manifold update) yields:

� (G:+1)
Lemma 2.39
≤ � (~: ) −

1 − W!
2W
‖G:+1 − ~: ‖2 ≤ � (G: ) −

1 − W!
2W
‖G:+1 − ~: ‖2 . (6.1)

The sequence (� (G: )) is thus non-increasing and lower-bounded, therefore it converges.
Besides, any accumulation point of (G: ) is a critical point of � . Indeed, summing
equation (6.1) for : = 1, . . . , = yields:

1 − W!
2W

=∑
:=0

‖G:+1 − ~: ‖2 ≤ � (G0) − � (G=+1) ≤ � (G0) − inf � < +∞.

Therefore the general term of the above series ‖G:+1 − ~: ‖2 converges to 0, which
implies, by Lemma 2.41, that the distance from m� (G: ) to 0 converges to 0. The outer-
semi continuity property of the limiting subdifferential allows to conclude that every
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accumulation point of (G: ) is a critical point of � . Finally, all limit points share the
same functional value as � is lower semi-continuous. �

We now focus on our main case of interest where (i) the objective is partly smooth
at some critical point with respect to a manifold on which (ii) the Riemannian update
is locally super-linearly convergent. The first point is natural when the nonsmooth
objective � admits a smooth substructure, which often appears in regularized regression
problems. The second point means relying on a higher-order Riemannian method
to fully exploit the smoothness of the identified substructure, which is our primary
motivation.

6.1.3 Identification, local smoothness, and super-linear convergence

Naturally, we build upon the analysis on partial smoothness carried in Sections 3.3
and 3.4. More particularly, in order to place ourselves in the context of Theorem 3.18,
which captures the localization properties of the proximal gradient operator, we
introduce the notion of A -structured critical points.
Definition 6.4. A point Ḡ of a �2 manifold M is a A -structured critical point for
(5 , 6) if:

i) proximal gradient stability: Ḡ = prox6/A (Ḡ − 1/A∇5 (Ḡ));
ii) qualification condition: 0 ∈ ri(∇5 + m6) (Ḡ);
iii) prox-regularity: 6 is A -prox-regular at Ḡ ;
iv) partial smoothness: 6 is partly-smooth at Ḡ with respect toM.

Definition 6.4 gives a precise characterization of the conditions allowing a critical
point to benefit from a local structure stability by the proximal gradient operator.
An illustration of this structure is shown in Fig. 6.1. While points ii,iii,iv are rather
standard in the literature (see e.g. (Daniilidis et al., 2006)), point i is less standard. First,
this point is directly verified when 6 is convex, in which case any positive A is valid. In
the nonconvex case, this condition is not often laid out precisely (still, it appears in
the notion of identifiability in (Drusvyatskiy and Lewis, 2014)) but it is necessary to
take a stepsize range of (0, 1/A ) in the proximal gradient around Ḡ .4040If point i is verified for some

stepsize W̄ , i.e.
Ḡ = proxW̄6 (Ḡ − W̄∇5 (Ḡ)) , then

the maximal stepsize is reduced to
min(W̄, 1/A ) .

M

x̄

x̄+ 1

r∂g(x̄)

Tx̄M

x̄−
1

r∇f(x̄)

proxg/r

Figure 6.1: Illustration of a A -structured critical point. Point i is illustrated by the blue
arrow, while point ii implies that the red cross is in the interior of the black segment.
Partial smoothness appears in the fact that the black segment is perpendicular to the
tangent plane ofM at Ḡ (see also Fig. 3.3).

With this definition, Theorem 3.18 gives the following corollary. Note that the
manifold is defined unambiguously since it is locally unique by partial smoothness,
see Proposition 3.14.
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Corollary 6.5. Let 5 be a C2 function on ℝ= and 6 a lower semi-continuous function
on ℝ= . Take Ḡ ∈ M a A -structured critical point for (5 , 6). Then, for any W ∈ (0, 1

A
), the

proximal gradient map ~ ↦→ proxW6 (~ − W∇5 (~)) is C1 andM-valued near Ḡ .
In particular, if a sequence (~: ) satisfies ~: → Ḡ , then G: := proxW6 (~: −W∇5 (~: )) ∈ M
for : large enough.

Using the structure identification results above, we can guarantee that our method
benefits from superlinear convergence, provided that the considered Riemannian
method is superlinearly convergent locally around a limit point.
Theorem 6.6. Let Assumption 6.1 hold and take W ∈ (0, 1

!
). Assume that Algorithm 6.1

generates a sequence (~: ) which admits at least one limit point Ḡ such that:
i) Ḡ ∈ M is a A -structured critical point for (5 , 6) with A < 1

W
;

ii) ManUpM has superlinear convergence rate of order 1 + \ ∈ (1, 2) on a neighbor-
hood of Ḡ inM.

Then, after some finite time:
a) the sequence (G: ) lies onM;

b) (G: ) converges to Ḡ superlinearly with the same order as ManUp:

distM (G:+1, Ḡ) ≤ 2 distM (G: , Ḡ)1+\ for some 2 > 0.

Proof. Let us note T(~) = proxW6 (~ − W∇5 (~)) for ~ ∈ ℝ= (in all generality, this would
be a set-valued mapping but we will only call it at points for which it is single-valued).

The part i of the assumptions enables us to show the existence of some neigh-
borhood of Ḡ on which the proximal gradient operation isM-valued and Lipschitz
continuous. More precisely, Corollary 6.5 tells us that there exists X1 > 0 and � > 0
such that, for any ~ in B(Ḡ, X1), we have

T(~) ∈ M and ‖T(~) − T(Ḡ)‖ ≤ � ‖~ − Ḡ ‖.

Now, if ~ additionally belongs toM, we immediately deduce that there exists Y1 > 0
such that for any ~ in BM (Ḡ, Y1), T(~) ∈ M;41 41We note BM (G, Y) = {D ∈ M :

distM (D, G) ≤ Y } the points inM
at a (Riemannian) distance to G
smaller than Y .

but in addition, the Euclidean Lipchitz
continuity can be translated into a Riemannian one (see Lemma 2.47) since for some
X > 0,

(1 − X)distM (T(~), Ḡ) = (1 − X)distM (T(~), T(Ḡ)) ≤ ‖T(~) − T(Ḡ)‖
≤ � ‖~ − Ḡ ‖ ≤ � (1 + X)distM (~, Ḡ) (6.2)

Hence, there is @1 > 0 such that for any ~ in BM (Ḡ, Y1)

distM (T(~), Ḡ) = distM (T(~), T(Ḡ)) ≤ @1 distM (~, Ḡ). (6.3)

Then, the part ii of the assumptions gives us the existence of Y2, @2 > 0 and
\ ∈ (0, 1) such that, for any G in BM (Ḡ, Y2),

distM (ManUpM (G), Ḡ) ≤ @2 distM (G, Ḡ)1+\ . (6.4)

Let us now take any G ∈ BM (Ḡ, Y) where Y = min(Y1, Y2, (Y1/@2)
1

1+\ , (@2@1)−
1
\ ):

(1) Since G ∈ BM (Ḡ, Y2), the manifold update (6.4) yields

distM (ManUpM (G), Ḡ) ≤ @2 distM (G, Ḡ)1+\ ≤ @2 Y1+\ ≤ Y1.
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(2) As ManUpM (G) lies in BM (Ḡ, Y1), the proximal gradient update (6.3) applied to
~ = ManUpM (G) gives

distM (T(ManUpM (G)), Ḡ) ≤ @1distM (ManUpM (G), Ḡ)
≤ @1@2 distM (G, Ḡ)1+\ (6.5)

≤ @1@2 Y\distM (G, Ḡ).

Since @2@1Y\ ≤ 1 by construction, this allows us to conclude that for any G ∈ BM (Ḡ, Y),
we have

distM (T(ManUpM (G)), Ḡ) ≤ distM (G, Ḡ) . (6.6)
We have thus proved the existence of a neighborhood BM (Ḡ, Y) of Ḡ inM which is

stable for an iteration of Algorithm 6.1 and over which one iteration has a superlinear
improvement of order 1 + \ (by (6.5)).

Finally, since Ḡ is a limit point of (~: ):
• an iterate will reach any (Euclidean) ball around Ḡ in finite time, notably there
exists  < ∞ such that ~ ∈ B(Ḡ, (1 − X)Y/�);

• equation (6.2) then tells us that distM (T(~ ), Ḡ) ≤ Y and thus G: and ~: belong
to BM (Ḡ, Y) for all : >  by (6.6) and the definition of Y.

We may thus conclude that G:+1 = T(~: ) ∈ M for all : ≥  , and, using (6.5),

distM (G:+1, Ḡ) ≤ @ distM (G: , Ḡ)1+\

for all : >  and @ = @1@2. �

6.2 Newton acceleration

In this section, we investigate several possibilities for the manifold updates in Algo-
rithm 6.1. Since the procedure ManUpM is required not to degrade function value
(for global convergence, see Theorem 6.3), we first study in Section 6.2.1 the use of line-
search in our context. Then, we show in Sections 6.2.2 and 6.2.3 how to use Riemannian
(truncated) Newton method within our framework and derive superlinear/quadratic
convergence guarantees to qualified critical points.

6.2.1 Ensuring functional descent while preserving local rates: Linesearches

As developed in the previous section, the Riemannian updateManUpM should produce
an update that (i) does not degrade the function value and (ii) enjoys a superlinear
local convergence rate. We thus consider a simple (Riemannian) line-search and we
prove that, under mild assumptions, it can find a point which decreases the function
value while retaining the superior local properties. Surprisingly, this result does not
appear in the standard references on Riemannian optimization. We provide here the
necessary developments inspired from the classical textbook (Dennis Jr and Schnabel,
1996).

Standing at point G ∈ M with a proposed direction [ ∈ )GM, a stepsize U > 0 is
acceptable is it satisfies the following Armijo condition:

� (RG (U[)) ≤ � (G) +<1U 〈grad � (G), [〉, for some 0 < <1 < 1/2. (Amijo rule)

When [ is a descent direction, i.e. when 〈grad � (G), [〉 < 0, this line search ensures
functional decrease. The condition for existence of stepsizes U satisfying the Armijo
rule can be obtained by following (Dennis Jr and Schnabel, 1996, Sec 6.3).
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Lemma 6.7. Let Assumption 6.1 hold and consider a manifold M equipped with a
retractionR and a pair (G, [) ∈ )B. If � is differentiable onM at G and 〈grad � (G), [〉 <
0, then there exists Û > 0 such that any step size U ∈ (0, Û) is acceptable by the Amijo
rule.

Proof. We adapt a part of the proof of (Dennis Jr and Schnabel, 1996, Th. 6.3.2) for the
Armijo rule and the Riemannian setting. Since<1 < 1/2, for any U sufficiently small
there holds

� ◦ RG (U[) ≤ � ◦ RG (0) +<1 D (� ◦ RG ) (0) [U[] = � (G) +<1U 〈grad � (G), [〉.

Since � is bounded below, there exists some smallest positive Û such that � (RG (Û[)) =
� (G) +<1Û 〈grad � (G), [〉. Thus all stepsizes in (0, Û) are acceptable by the Amijo
rule. �

In addition, near a critical point and with a Newton direction (or in general a
superlinearly converging method), the linesearch should accept the unit stepsize so
that a full step may be taken. This is the case when the Riemannian Hessian is positive
definite at this point.
Lemma 6.8. Let Assumption 6.1 hold and consider a manifoldM, a point G★ ∈ M, and
a pair (G, [) ∈ )B. Assume that � is twice differentiable onM near G★ and that G★ is a
local minimizer onM with Hess � (G★) is positive definite.
If the direction [ brings a superlinear improvement towards G★, that is if
distM (RG ([), G★) = > (distM (G, G★)) as G → G★, then [ is acceptable by the Amijo rule
with unit stepsize U = 1.

Proof. The proof of (Bonnans et al., 2006, Th. 4.16) can be adapted to the Riemannian
setting. The full proof can be found in (Bareilles et al., 2020a, Apx. B.2). �

We thus consider a backtracking linesearch for finding an acceptable stepsize U .
The unit stepsize is first tried, and then the search space is reduced geometrically so
that superlinear steps are taken whenever possible. The procedure terminates within a
finite number of iterations. Besides, the backtracking nature of the linesearch ensures
that step sizes are not overly small. In practice, we use exactly (Dennis Jr and Schnabel,
1996, Alg. A6.3.1), which features polynomial interpolation of � in the search space.

Remark 6.9 (Other types of linesearch). We do not consider a more sophisticated
linesearch, such as Armijo-Wolfe, as it requires the gradient of � ◦ RG at ~ ≠ G , which
requires to differentiate the retraction. This operation is not simple, we prefer to avoid
it, as in (Huang et al., 2018).

Besides, the additional Wolfe condition serves in part to ensure that not-too-
small steps are taken, which is not ensured theoretically by the Armijo rule but the
backtracking nature of the linesearch mitigates this effect in practice. J

6.2.2 Riemannian Newton & quadratic convergence

We now construct a manifold update based on the Riemannian Newton method (Absil
et al., 2009, Chap. 6), this is the simplest method enjoying a local quadratic convergence
rate. It consists in finding a direction 3 ∈ )GM that minimizes the second order model
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Algorithm 6.2 ManUp-Newton
Require: ManifoldM, point G ∈ M.

1: Find 3 in )GM that solves the Newton equation
2: Find U satisfying the Amijo rule with direction 3 by backtracking.
3: Return: ~ = RG (U3)

(2.18) of � at point G ∈ M, or equivalently that solves Newton equation (see (Boumal,
2020, Sec. 6.2)):

grad � (G) +Hess � (G) [3] = 0. (Newton equation)

In order to ensure that the Newton direction is well-defined and provides descent,
we assume that the Riemannian Hessian of � is positive definite at each iterate (relative
to the working manifold).4242this is verified for instance if � is

strongly convex in the whole space. Theorem 6.10. Let Assumption 6.1 hold and take W ∈ (0, 1
!
). Consider the sequence of

iterates (G: ) generated by Algorithm 6.1 equipped with the Riemannian Newton manifold
update (Algorithm 6.2). If Hess � (G: ) is positive definite at each step, then all limit
points of (G: ) are critical points of � and share the same functional value.
Furthermore, assume that the sequence (~: ) admits at least one limit point G★ such that

i) G★ ∈ M is a A -structured critical point for (5 , 6) with A < 1
W
;

ii) HessM � (G★) � 0 and HessM � is locally Lipschitz around G★.
Then, after some finite time,

a) the sequence (G: ) lies onM;

b) G: converges to G★ quadratically: there exist 2 > 0,

distM (G:+1, G★) ≤ 2 distM (G: , G★)2 .

Proof. As the Riemannian hessian is assumed to be positive definite, Newton’s direction
is a descent direction:

〈grad � (G: ), 3:〉 = −〈grad � (G: ),Hess � (G: )−1 grad � (G: )〉 < 0.

The Riemannian Newton manifold step is therefore well-defined, and stepsizes accept-
able by the linesearch exist by Lemma 6.7, so that the manifold update is well defined
and provides descent. Thus, Theorem 6.3 ensures that every accumulation point of the
iterate sequence is a critical point for � .

Furthermore, assumption ii ensures that the Riemannian Newton direction 3 com-
puted in step 1 of Algorithm 6.2 provides a quadratic improvement towards G★ on a
neighborhood of G★ onM. Indeed, (Absil et al., 2009, Th. 6.3.2) provides the existence
of a neighborhood over which

distM (RG (3), G★) ≤ (VW � + W')distM (G, G★)2 + O(distM (G, G★)3),

where W � and W' quantify smoothness of Hess and RG as defined in the proof.4343We specialize the result to
normal coordinates, that is

i = expG★ , which allows to write
estimates in terms of Riemannian
distances and make the Christoffel

terms becomes negligible, see
(Absil et al., 2009, p. 116).

Finally, the linesearch returns the unit-stepsize after some finite time: U = 1 is tried
first, and is acceptable for direction providing superlinear improvement by Lemma 6.8.
Thus the whole Riemannian Newton update provides quadratic improvement after
some finite time. Using this and assumption i, Theorem 6.6 applies and yields the
results. �
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This theorem states that alternating proximal gradient steps and Riemannian
Newton steps on the identified manifold converges quadratically to structured points
with virtually the same assumptions as the Euclidean Newton method. Notably, a point
G★ ∈ M that is both A -structured critical for (5 , 6) and such that HessM � (G★) � 0 is
a strong local minimizer of � on ℝ= , that is there exists some Y > 0 such that, for G
near G★,

� (G) ≥ � (G★) + Y
2
‖G − G★‖2 .

However, we can notice two issues of Newton’s method (present in both the
Euclidean and Riemannian settings): (i) at each iteration a linear system has to be
solved to produce the Newton direction 3 ; and (ii) the direction 3 does not always
provide descent without the strong assumption that the Riemannian Hessian is positive
definite at each step. Truncated versions of Newton’s method overcome these issues,
as we see for our context, in the next section.

6.2.3 Riemannian Truncated Newton & superlinear convergence

(Riemannian) Truncated Newton consists in solving the Newton equation partially by
using a (Riemannian) conjugate gradient procedure so that whenever the resolution
is stopped, the resulting direction provides descent on the function. The successive
iterates of the conjugate gradient thus slide from the negative gradient towards the
exact solution of Newton’s equation as the number of iterations grow, while maintain-
ing the descent property. This method was proposed first by Dembo and Steinhaug
(Dembo and Steihaug, 1983) as a specific case of inexact Newton method (Dembo et al.,
1982), (Nocedal and Wright, 2006) discusses it as line search Newton-CG, and a review
can be found in (Knoll and Keyes, 2004).

The quality of the truncatedNewton direction is controlled by a parameter[ ∈ [0, 1)
which bounds the ratio of residual and gradient norms:

‖ grad � (G) +Hess � (G) [3] ‖ ≤ [‖ grad � (G)‖. (Inexact Newton equation)

Taking [ = 0 allows only the exact Newton step, while [ = 1 allows a broad set of
directions, including 3 = 0.

Algorithm 6.3ManUp-Newton-CG
Require: ManifoldM, point G ∈ M, convergence defining parameter \ ∈ (0, 1].

1: Let [ = ‖ grad � (G)‖\
2: Find 3 that solves the Inexact Newton equation
3: Find U satisfying the Amijo rule with direction 3 by backtracking.
4: Return: ~ = RG (U3)

Theorem 6.11. Let Assumption 6.1 hold and take W ∈ (0, 1
!
). Consider the sequence

of iterates (G: ) generated by Algorithm 6.1 equipped with the Riemannian Truncated
Newton manifold update (Algorithm 6.3). Then all limit points of (G: ) are critical points
of � and share the same function value.
Furthermore, assume that sequence (~: ) admits at least one limit point G★ such that

i) G★ ∈ M is a A -structured critical point for (5 , 6) with A < 1
W
;

ii) HessM � (G★) � 0 and HessM � is locally Lipschitz around G★.
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iii) [: = O(‖ grad � (G: )‖\ ), for some \ ∈ (0, 1].
Then,

a) for : large enough, the full sequence (G: ) lies onM;

b) G: converges to G★ superlinearly with order 1 + \ : for large : , there exist 2 > 0,

distM (G:+1, G★) ≤ 2 distM (G: , G★)1+\ .

Proof. The first step is to show that the direction provided by the approximate resolu-
tion of the Inexact Newton equation is a descent direction. Following the analysis of
(Dembo and Steihaug, 1983, Lemma A.2) on the euclidean space )GM, we obtain that
if � is twice differentiable onM at G and if G is not a stationary point of � , then

〈grad � (G), 3〉 ≤ −min(1, ‖Hess � (G)‖−1)‖ grad � (G)‖2,

where 3 was obtained solving the Inexact Newton equation with any forcing parameter
[.

Thus, stepsizes acceptable by the linesearch exist by Lemma 6.7, so that the Rie-
mannian Newton-CG manifold update is well defined and provides descent. Thus,
Theorem 6.3 ensures that every accumulation point of the iterate sequence is a critical
point for � .

Furthermore, assumptions ii and iii ensure that the Riemannian Newton CG di-
rection 3 computed in step 1 of Algorithm 6.3 provides a superlinear improvement
towards G★ on a neighborhood of G★ onM. Indeed, (Absil et al., 2009, Th. 8.2.1),
provides the existence of a neighborhood over which

distM (ManUp(G), G★) ≤ 2VW1+\
b

distM (G, G★)1+\ +�distM (G, G★)2,

where Wb is a Lipschitz constant for grad � near G★ and � , V denote two positive
constants.4444Again, we have specialized the

result to normal coordinates, that is
i = expG★ , which allows to write
estimates in terms of Riemannian

distances.

This means that the linesearch returns a unit stepsize after some finite time (U = 1
is tried first, and is acceptable for direction providing superlinear improvement by
Lemma 6.8). Thus, the whole Riemannian Newton-CG update eventually provides
fast improvement. Using this and assumption i, Theorem 6.6 applies and yields the
results. �

6.3 Numerical illustrations

In this section, we illustrate the effect of Newton acceleration, in terms of identification
of the final manifold and local convergence.4545The algorithms and problems are

implemented in Julia (Bezanson
et al., 2017); experiments may be

reproduced using the code available
at https:

//github.com/GillesBareilles/
NewtonRiemannAccel-ProxGrad.

We consider Algorithm 6.1 equipped with either the Newton update of Algo-
rithm 6.2, denoted ‘Alt. Newton’ or the truncated Newton update of Algorithm 6.3,
denoted ‘Alt. Truncated Newton’. Both algorithms use a Conjugate Gradient procedure
to solve the Newton equation, either exactly or not. Each CG iteration requires one
(Riemannian) Hessian-vector product, avoiding to form a Hessian matrix. These meth-
ods are compared to the Proximal Gradient and the Accelerated Proximal Gradient,
which serve as baseline.

We report the numerical results in figures showing a) the suboptimality � (G: ) −
� (G★) of the current iterate G: versus time, and b) the dimension of the current manifold
M: 3 G: versus iteration. We also report a table comparing the algorithms at the first

https://github.com/GillesBareilles/NewtonRiemannAccel-ProxGrad
https://github.com/GillesBareilles/NewtonRiemannAccel-ProxGrad
https://github.com/GillesBareilles/NewtonRiemannAccel-ProxGrad
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iteration that makes suboptimality lower than tolerances 10−3 and 10−9 for various
measures summarized in the following table:

� (G: ) − � (G★) Suboptimality at current iteration.
#prox. grad. steps Number of proximal gradient steps, each involve com-

puting ∇5 (·) and proxW6 (·) once.
#ManUp steps Number of Riemannian steps, each involve computing

grad � (·) once and Hess � (·) [·] multiple times (one
per Conjugate Gradient iteration).

#Hess � (·) [·] Number of Riemannian Hessian-vector products, ap-
proximates the effort spent in manifold updates since
algorithm started.

#5 Number of calls to 5 (·), one per iteration, some for
the Riemannian linesearch, some for the backtracking
estimation of the Lipchitz constant of ∇5 .

#6 Number of calls to 6(·), one per iteration, some for the
Riemannian linesearch.

The proximal gradient updates, present in all methods, include a backtracking pro-
cedure that maintains an estimate of the Lipschitz constant of ∇5 , so that the proximal
gradient stepsize is taken as the inverse of that estimate. The Conjugate Gradient used
to solve (Newton equation) and (Inexact Newton equation) follows (Boumal, 2020, Alg.
6.2); it is stopped when the (in)exactness criterion is met, or after 50 iterations for
the logistic problem and 150 for the trace-norm one, or when the inner direction 3
makes the ratio 〈Hess � (G: ) [3], 3〉/‖3 ‖ small. The manifold updates are completed
by a backtracking linesearch started from unit stepsize, a direct implementation of
(Dennis Jr and Schnabel, 1996, Alg. 6.3.1).

Computing the Riemannian gradient of � requires computing grad 5 (G: ), from
∇5 (G: ) and (2.16), and grad6(G: ) which expression can be derived explicitly. The
Riemannian Hessian-vector product is computed similarly, using ∇2� (G: ) [[: ] with
(2.17) and the derived formulas for Hess6(G: ) [[: ]. Doing so, only Hessian-vector
products are computed and no hessian matrix is formed. In practice, we observe that
the time required for computing grad 5 (G: ) and Hess 5 (G: ) [[: ] is about twice and
four times that of computing 5 (G: ).

The representation of iterates plays an important role in the method global ef-
ficiency, especially when the global space ℝ= is high-dimensional and the current
manifoldM low-dimensional. It seems attractive in that case to represent and manip-
ulate data in a low-dimensional form, such as the truncated SVD representation of
matrices.

6.3.1 Two-dimensional nonsmooth example

We consider the piecewise quadratic problem of (Lewis and Wylie, 2019):

min
G ∈ℝ2

2G21 + G22 + |G21 − G2 |. (6.7)

The objective function is partly-smooth relative to the parabolaM , {G : G2 =

G21}, for which an expression for the tangent space, the orthogonal projection on
tangent space, a second-order retraction and conversion from Euclidean gradients and
hessian-vector products to Riemannian ones are readily available. We detail here the
different oracles of 5 (G) , 2G21 + G22 and 6(G) , |G21 − G2 |:
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• proximity operator: For W < 1/2, there holds

proxW6 (G) =


( G1
1+2W , G2 + W) if G2 ≤

G2
1

(1+2W )2 − W
( G1
1+4WC−2W , G2 + 2WC − W) if G2

1

(1+2W )2 − W ≤ G2 ≤
G2
1

(1−2W )2 + W
( G1
1−2W , G2 − W) if G2

1

(1−2W )2 + W ≤ G2

where C solves G22 + (−2WC + W − G2) (1 + 4WC − 2W)2 = 0.
• Riemannian gradient and hessian: Since 6 is identically null onM, for any point
(G, [) ∈ )B,

grad6(G) = 0 and Hess6(G) [[] = 0.

Besides, Euclidean gradient and Hessian-vector product are converted to Rie-
mannian ones using equations (2.16) and (2.17):

grad 5 (G) = projG (∇5 (G))

Hess 5 (G) [[] = projG

(
∇2 5 (G) [[] −

(
2[1
0

) 〈
∇5 (G),

(
2G1
−1

) 〉
1

1 + 4G21

)
,

and the orthogonal projection onto )GM writes

projG (3) = 3 −
〈
3,

(
2G1
−1

) 〉
1

1 + 4G21

(
2G1
−1

)
We run the proximal gradient, its accelerated counterpart and Algorithm 6.1 with

the Newton update Algorithm 6.2. The proximal gradient steps of all algorithms have
a constant step-size W = 0.05, all algorithms are started from point (2, 3), and converge
to the minimizer of the function (0, 0).
Observations The iterates are displayed in Fig. 6.2. The first Proximal Gradient
step (not visible on the figure) yields an iterate lying on the parabola. While the
(accelerated) proximal gradient iterates leave the parabola to reach it later (a typical
behavior as observed in Chapter 4), the Alt. Newton iterates remains on the parabola
until convergence. The quadratic convergence behavior appears clearly as two Newton
manifold updates bring suboptimality below 10−3, and one additional step gets below
10−12. The Proximal Gradient iterates reach the parabola in finite time, and then
converge linearly towards G★ on the parabola. The Accelerated Proximal Gradient
iterates feature two known negative properties: they “overshoot” the manifold to be
identified twice before reaching it, and they oscillate around G★ in the parabola (see
Section 4.2.2).

6.3.2 ℓ1-regularized logistic problem

We now turn to the ℓ1-regularized logistic problem:

min
G ∈ℝ=

1

<

<∑
8=1

log(18f (〈a8 , G〉)) + _‖G ‖1, (6.8)

where a8 ∈ ℝ= and 18 ∈ {−1, 1} for all 8 = 1, ..,<, _ denotes a positive scalar and f the
sigmoid map G ↦→ 1/(1 + exp(−G)). The nonsmooth part is the ℓ1-norm 6(G) = _‖G ‖1
(see Example 2.24).
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Algorithm Tolerance � (G: ) −min � #prox. grad. steps #ManUp steps #Hess � (·) [·] #5 #6
Prox. Gradient 1 · 10−3 0.0007736370745816156 29 – – 30 30
Prox. Gradient 1 · 10−9 7.594823106800896e-10 60 – – 61 61

Accel. Prox. Gradient 1 · 10−3 0.0009626158394158507 16 – – 17 17
Accel. Prox. Gradient 1 · 10−9 5.184441449855132e-10 63 – – 64 64

Alt. Newton 1 · 10−3 0.00014946622308458022 2 2 10 7 7
Alt. Newton 1 · 10−9 8.748444107374269e-13 3 3 15 10 10

Figure 6.2: Example of Eq. (6.7)

We consider an instance of (6.8) where = = 4000,< = 400, _ = 10−2 and the final
manifold has dimension 249. The coefficients of a are drawn independently following
a normal law. The measurements 1 are generated as follows: a sparse random source
signal B is generated, where each coordinate either is drawn following a normal law or
is set to 0, with probability 1/2. Measurement 18 is 1with probability (1+f (〈a8 , B〉))/2,
and −1 otherwise.

Observations The experiments are presented in Fig. 6.3. The optimal manifold is
identified roughly around iteration 200 for all methods except for Proximal Gradient,
which needs about 1000 iterations. The two baselines Proximal Gradient and its
accelerated version show linear convergence, with a better rate for the non accelerated
version once the final manifold is reached. Alt. Truncated Newton shows superlinear
acceleration, while Alt. Newton fails to converge in the given time budget. This
fact, along with the counts of Hessian-vector products, shows the interest of the
inexact solve of Newton equation performed by the Truncated Newton procedure
Algorithm 6.3 as opposed to the exact solve performed by the Newton procedure
Algorithm 6.2.

As iterations grow, the (Accelerated) Proximal Gradient identifies manifolds of
decreasing dimension in a roughly monotonical way. Alt. Truncated Newton behaves
differently: after identifying monotonically manifolds of dimension lower than 2000,
the dimension of the current manifold jumps to about 3000 for about 10 iterations, to
finally reach quickly the final manifold. We believe that this partial loss of identified
structure is caused by iterates getting close to a non differentiable point of � on the
current manifold, e.g. having one non-null but very small coordinate. There, the
second-order Taylor extension is valid on a small set, broadly speaking only up to the
non-differentiability point; however it may lead to a Newton step that lies outside that
set, thus driving the iterate away from more structured points instead of identifying
them. The same behavior occurs for Alt. Newton. This difficulty can be related to the
well-known problem of constraint activation in nonlinear programming. Despite this
behavior, Algorithm 6.1 retains a good rate overall.
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Algorithm Tolerance � (G: ) −min � #prox. grad. steps #ManUp steps #Hess � (·) [·] #5 #6
Prox. Gradient 1 · 10−3 0.0009963198229036019 357 – – 779 358
Prox. Gradient 1 · 10−9 9.965078207052613e-10 2306 – – 4677 2307

Accel. Prox. Gradient 1 · 10−3 0.0009257766624239938 90 – – 246 91
Accel. Prox. Gradient 1 · 10−9 9.899422392933843e-10 953 – – 1972 954

Alt. Newton 1 · 10−3 0.0009759231753842523 62 61 6303 556 427
Alt. Newton 1 · 10−9 – – – – – –

Alt. Truncated Newton 1 · 10−3 0.0009557819627238895 51 50 2616 437 321
Alt. Truncated Newton 1 · 10−9 3.774758283725532e-15 105 105 5091 742 572

Figure 6.3: Logistic-ℓ1 problem

6.3.3 Trace-norm regularized problem

We finally consider a matrix regression problem:

min
- ∈ℝ=1×=2

1

2

<∑
8=1

( 〈�8 , - 〉 − ~8 ) 2 + _‖- ‖∗, (6.9)

where �8 ∈ ℝ=1×=2 for 8 = 1, ..,<, ~ ∈ ℝ< and _ denotes a positive scalar. The
nonsmooth part is the nuclear norm 6(G) = _‖G ‖∗ (see Example 2.28).

We consider an instance of (6.9) where =1 = 10, =2 = 12,< = 60, _ = 1 · 10−2 and
the final manifold is that of matrices of rank 6. The coefficients of each matrix �8 are
drawn independently following a normal law. The measurements ~ are generated as
follows: a sparse random source signal B is generated as the projection of a matrix
which coordinates are drawn independently following a normal law; the measurement
~8 is then 〈�8 , B〉 + b8 , where b8 follows a centered gaussian law with variance 0.012.

Observations The experiments are presented in Fig. 6.4. We see on Fig. 6.4a that the
Proximal Gradient algorithm and its accelerated version converge sublinearly, which
is to be related to the lack of strong convexity of the objective problem. Alt. Truncated
Newton converges superlinearly, and shows the interest of the Newtonian acceleration.
Figure 6.4b shows that the Proximal Gradient does not reach the final optimal manifold
within the budget of iterations; similarly for the Newton method, within the budget of
time.
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Algorithm Tolerance � (G: ) −min � #prox. grad. steps #ManUp steps #Hess � (·) [·] #5 #6
Prox. Gradient 1 · 10−3 – – – – – –
Prox. Gradient 1 · 10−9 – – – – – –

Accel. Prox. Gradient 1 · 10−3 0.00099894916795637 1489 – – 3073 1490
Accel. Prox. Gradient 1 · 10−9 9.858174276899945e-10 43283 – – 86661 43284

Alt. Newton 1 · 10−3 0.0009833250032105778 93 93 28063 873 687
Alt. Newton 1 · 10−9 – – – – – –

Alt. Truncated Newton 1 · 10−3 0.0009695009931029591 76 76 16342 738 568
Alt. Truncated Newton 1 · 10−9 2.2716245551279712e-11 128 128 27786 1101 879

Figure 6.4: Trace-norm problem

Similarly to the logistic problem, Algorithm 6.1 shows some oscillation between
manifolds upon identification of the optimal one. We believe that, here as well, that
this is due to iterates having positive but near-zero singular values. In this case, the
oscillation behavior seems less harmful, which may be related to the fact that manifolds
are nested in one another.

6.4 Concluding remarks

In this chapter, we saw that it is possible to plug very efficient Riemannian steps on
the manifolds identified by a proximal gradient algorithm. The key ingredients in the
analysis to link the proximal gradient with Riemannian steps are once again based on
the notions of qualification condition and partial smoothness described in Chapter 3.

Without assuming convexity nor a prior knowledge of the final structure, the
proposedmethod directly adapts to the uncovered Riemannian structure and eventually
benefit from a super-linear rate when the critical points are qualified. Numerically,
the identified Riemannian structure and methods are efficiently implementable for our
cases of interest. Furthermore, we notice that even though we are not always sure
that the reached critical points are qualified, our methods still provide an interesting
acceleration, this is intuitively due to being able to capture the better conditioning of
the problem on lower-dimensional manifolds.

This exactly resonates with the general objective of this part. We are able to harness
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the structural information explicitly brought by a proximal method to a numerical
advantage by using Riemannian (inexact) Newton method on the identified manifold;
all of this while being completely adaptive to the structure while benefiting from the
same final superlinear rates as if the final manifold is known!

��



PART B
DISTRIBUTED STRUCTURE &

ASYNCHRONY

In this part, we consider the situation an optimization problem is split over several
machines. More precisely, we place ourselves in a context where" workers/machi-
nes/agents are each given a function � 8 : ℝ= → ℝ and can exchange information (i.e.
points, gradients, function values, etc.) with a coordinator/master/central authority.
We are thus in the centralized/master-worker setting, not in the decentralized case
where machines would directly exchange with each other.46 46The latter setting is also

interesting to me and represented a
significant part of the contributions
of my PhD thesis. However, this
topic is less representative of my
recent research, to the exception of
(Iutzeler, 2017; Iutzeler and Condat,
2018).

Mathematically, a distributed optimization problem can usually be written as

min
G ∈ℝ=

� (G) :=
"∑
8=1

� 8 (G) (PB)

where the global objective function � is the sum of the workers functions (� 8 ). The
sum structure is clearly the most widespread in the literature and is central to the
forthcoming chapters.47 47Nevertheless, different

distributed structures have separate
interests both practically and
theoretically. The sum could for
instance be replaced by a max, or a
median, etc. depending on practical
applications as discussed in the
perspectives Chapter 9.

This kind of structure arises naturally when minimizing some
error over data that is scattered among the workers. Alternatively, it can be obtained
by splitting a function into" chunks and solving the Lagrangian dual problem.

Motivation: Adapting algorithms to the computing setup

Distributed methods for solving (PB) have been studied for decades and particularly
since the pioneering works of John Tsitsiklis and Dimitri Bertsekas (Bertsekas and
Tsitsiklis, 1989; Tsitsiklis et al., 1986; Tsitsiklis, 1984). These distributed algorithms have
two main advantages over standard methods. First, if each � 8 depends on local data at
machine 8 , it may be preferable to directly query the machines for points, gradients, or
functional values rather than regrouping all the data in one place; be it for practical
or legal reasons. Second, with " machines the computational power is increased.
Even though a linear speed-up seems hard to achieve due to the potential idle times,
communication latencies, or heterogeneity of the system, we can hope to accelerate
the optimization process.

These advantages explain the practical success of these methods from multi-
processor machines (which were the primary target in the 1980’s (Tsitsiklis et al.,
1986)) to sensor networks (Rabbat and Nowak, 2004) and more recently clusters of
machines (Boyd et al., 2011; Hall et al., 2010), massive multicore units (Niu et al., 2011),
and globally networked systems including the recent federated learning framework
(Kairouz et al., 2019; Konečnỳ et al., 2016).
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Distributed Optimization Methods

The conception of methods for solving (PB) depends heavily on i) if the objective is
shared by all workers or not; ii) the communication schemes allowed between the
coordinator and the workers; and iii) the worker functions’ properties. Here, far from
addressing all possibilities, we choose some specific settings to focus our work. The
general motivation for our choices is guided by practical implementations, curiosity,
and applications in data science.

Shared vs. Scattered tasks

When the objective is shared by all workers (i.e. if � 8 = �̃ for all 8), this means that all
participants either have the same information or access to a shared memory where
the problem data is stored. This situation arises when parallelizing loops or coordinate
descent methods over several computing units, see e.g. (Bareilles et al., 2020b; Ma
et al., 2015; Peng et al., 2016). The main challenges in this setup is to deal with potential
inconsistent cache read/write and synchronization to offer better performances.

In this part, we will consider a setting where each worker has its own local objective
(typically associated with its own data). This solution is often cheaper andmore scalable
than shared-memory systems. Recent computing architectures thus often rely on many
heterogeneous nodes rather than a few very powerful ones. These changes call for
adapted algorithms with a special attention to communications.

Communication Scheme

In this part, we adopt a radical stance on the communication scheme:

the workers exchange with the coordinator asynchronously
without any control nor knowledge about the delays.

In order for the setup to make sense, we will obviously assume that all machines
exchange within a finite time, but we will not assume the knowledge or the existence
of a bound on this time. This places us in the totally asynchronous setup following
the terminology of (Bertsekas and Tsitsiklis, 1989, Chap. 6.1). The main advantage of
this approach is to able to carry on computation without waiting for slower machines:
machines tirelessly perform computations based on potentially outdated versions of
the global state while a coordinator gathers the inputs into an efficient update. In
traditional synchronous algorithms, latency, bandwidth limits, and unexpected drains
on resources that delay the update of machines would cause the entire system to
wait. By eliminating the idle times, asynchronous algorithms can be much faster than
traditional ones; see e.g. (Hannah and Yin, 2017).

This choice is motivated by implementation possibilities. In Python or C/C++,
it is fairly easy to implement asynchronous exchanges between one machines and
others using the non-blocking send/receive of the MPI standard. In Julia, the module
Distributed is part of the standard library and provides an easy way to add processors
(e.g. distant machines) that can communicate through independent Channel objects.
These possibility enable us to implement algorithms on multiples machines without
being restricted to synchronous Map/Reduce operations.

With the asynchronous implementations mentioned above, the system performs
the best it can, with few idle times, but the user does not have any control on the
order or the time in which a machine will respond. In addition, even if the machines
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response time can be limited, the delay that appears mathematically is the number of
updates in the system since the last exchange of the machine. This means that if some
machine is very fast, it will increase the system’s delays. Finally, delays bounds are
generally very pessimistic since the periods of lag or bottlenecks are often transient.

Workers’ local functions

As in the single machine case, different algorithms shall be employed when the func-
tions are smooth, possess easily computable proximity operators, or can be merely
queried for subgradients. Since the machines possess computing capacities, one could
question whether to ask for a basic oracle (e.g. a gradient), a quick approximate one
(e.g. a stochastic gradient), or a more precise one (e.g. an inexact proximal step).

In this part, we focus one the basic ones: gradients, subgradients, proximity
operator (if explicit). The reason for that is that cheaper ones may lead to too frequent
communications and more precise ones may lead to wasted computational power. Out
of simplicity. This leads to easier implementation and is probably more in line with
practical solutions.

Objectives of the part

The worker functions’ properties will separate the two chapters of this part. This
is due to the very different nature of the proofs techniques for the cases distributed.
Nevertheless, for both chapters, the central question is

How to efficiently harness asynchronous oracles?

We show in this part the importance of the choice of the combination for the
resilience of the algorithm to heterogeneous delays. Our viewpoint is to handle
explicitly the delays as opposed to treating them as noise. This has two general
consequences: i) the proposed methods’ parameters do not depend on the delays; and
ii) the proofs have a striking common point: an interesting proxy for a global iteration
is when all machines have exchanged twice.48 48Intuitively, all machines have to

exchange once to get a sufficiently
new point and a second time so
that the master gets a feedback on
these new points.

In Chapter 7, we will consider general nonsmooth functions for which the workers
can produce subgradient oracles. In this type of problems, commonly arising from
Lagrangian relaxations of difficult/non-convex problems, bundle methods are the
techniques of choice. We show here how to construct global lower-models from
asynchronous local subgradient information and how to produce bundle methods
exploiting these models.

In Chapter 8, we focus on a distributed version of the composite setting of Part A.
Driven by applications in Machine Learning, each machine has a smooth loss function
depending on local data and a global nonsmooth regularization. We exhibit an efficient
way of extending the proximal gradient algorithm. Furthermore, we use identification
to further reduce the cost of exchanges.
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7 Asynchronous Level Bundle

There are two schools of thought about the resilience of time.
The first is that time is highly volatile, with every small event

altering the possible outcome of the earth’s future.
The other view is that time is rigid, and no matter how hard you

try, it will always spring back toward a determined present.
Myself, I do not worry about such trivialities. I simply sell ties to

anyone who wants to buy one…
Jasper Fforde – The Eyre Affair (2001)

We consider nonsmooth convex optimization problems with additive struc-
ture featuring independent oracles (black-boxes) working in parallel.

Existing methods for solving these distributed problems in a general form are
synchronous, in the sense that they wait for the responses of all the oracles
before performing a new iteration. Here, we propose level bundle methods
handling asynchronous oracles. These methods are based on the idea of disag-
gregated bundle and require original upper-models to deal with asynchronicity.

This chapter is based on the following publication:
• F. Iutzeler, J. Malick, and W. de Oliveira : Asynchronous level bundle
methods, Mathematical Programming, vol. 184, pp. 319-348, 2020.

We consider convex optimization problems of the form

min
G ∈X

� (G) :=
"∑
8=1

� 8 (G) (PB−7)

where the constraint set X is compact convex, and the functions � 8 : ℝ= → ℝ (for all
8 = 1, .., ") are convex and possibly nonsmooth.49 49In short, we consider (PB) with

an additional compact constraint
set, mainly to avoid degeneracy
issues in bundle models.

The nonsmoothness of the � 8 typically come from the fact that they are themselves
the results of inner optimization problems, as in Lagrangian relaxation (Lemaréchal,
2001), stochastic optimization (Shapiro et al., 2009), or in Benders decomposition
(Geoffrion, 1972). In such cases, the functions � 8 are known only implicitly through
oracles providing values and subgradients (or approximations of them) at a given
point.

The so-called bundle methods are a family of nonsmooth optimization algorithms
adapted to the resolution of such problems. Using zero-th and first order oracle informa-
tion, these methods construct cutting-plane approximations of the objective function
together with quadratic stabilization techniques. Bundle methods can be traced back
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to (Lemaréchal, 1975); we refer to the textbook (Hiriart-Urruty and Lemaréchal, 1993)
and the recent surveys (Frangioni, 2020; Oliveira and Sagastizábal, 2014) for relevant
references. Real-life applications of such methods are numerous, ranging from com-
binatorial problems (Briant et al., 2008) to energy optimization (Bruno et al., 2017;
Sagastizábal, 2012).

In line with the part’s general problem, we consider here the situation where (PB−7)
is scattered over several machines: each function � 8 corresponds to one machine
and associated local data and computing abilities. This scattering can be due to the
privacy of the data, its prohibitive size, or the prohibitive computing power required
to deal with the full problem. In our context, the functions � 8 are nonsmooth and
only known through oracles. Moreover, in many applications, some of these oracles
require considerably more time than others. This motivated us to turn our attention to
asynchronous algorithms.

Related literature

Though asynchrony is extremely important for efficiency and resilience of distributed
computing, no asynchronous algorithm exists for solving (PB−7) in the above general
distributed setting. For example, big problems in stochastic optimization (where
uncertainty is for example due to intermittent renewable energy sources) are heavily
structured, often amenable to parallel computing by standard decomposition schemes
(e.g. by scenarios (Bruno et al., 2017; Rockafellar and Wets, 1991), by production units
(Dubost et al., 2005), or even both (van Ackooij and Malick, 2015)). However, existing
optimization algorithms exploiting this decomposability are all synchronous, expect
for the recent (Kim et al., 2019) (see also references therein) dealing with a specific
polyhedral problem.

Convincingly, bundle methods are particularly well-suited for asynchronous gener-
alizations: outdated information provided by late machines could indeed be considered
as inexact linearizations (see (Malick et al., 2017), the review (de Oliveira and Solodov,
2018), and references therein). However, to our knowledge, there is no asynchronous
version of bundle methods for the general distributed setting. Indeed, there does exist
an asynchronous (proximal) bundle method (Fischer and Helmberg, 2014) but it is
tailored for the case where" is large and each component depends only on some of
the variables. Moreover its implementation and its analysis are intricate and do not
follow the usual rationale of the literature. We can also mention the asynchronous
bundle (trust-region) method of (Kim et al., 2019), designed for dual decomposition of
two-stage stochastic mixed-integer problems. This algorithm requires to eventually
call all the oracles for all the iterates, which we want avoid in our general situation.
Another related work is the incremental (proximal) bundle algorithm of (Wim van
Ackooij, 2016), that could serve as a basis for an asynchronous generalization. However,
this generalization is not provided or discussed in (Wim van Ackooij, 2016).

Here, we propose, analyze, and illustrate the first asynchronous bundle method
adapted to the general centralized distributed setting, encompassing computer clusters
or mobile agents, described previously. We will not build on the two aforementioned
proximal bundle methods of (Fischer and Helmberg, 2014; Wim van Ackooij, 2016),
but rather investigate level bundle methods (Kiwiel, 1995; Lemaréchal et al., 1995).

In contrast with proximal methods where the iterates’ moves can be small even
with reasonably rich cutting-planes, level bundle methods fully benefit from collected
asynchronous information: richer cutting-plane models would tend to generate useful
lower bounds, so that the level set would better approximate the solution set, and the
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next iterate would better approximate an optimal solution. Such behavior is discussed
in the related context of uncontrolled inexact linearizations; see the comparisons
between proximal and level methods in Section 4 of (Malick et al., 2017).

Though asynchronous linearizations of the functions and associated lower-bounds
can be well exploited in cutting-plane approximations, existing (level) bundle methods
cannot be readily extended in an asynchronous setting because of the lack of upper-
bounds: the values of the objective function are never available, since the oracles have
no reason to be all called upon the same point. The main algorithmic difficulty is
thus to find and manage upper-bounds within asynchronous bundle methods. This
is quite specific to bundle methods which rely on estimates of functions values or
upper-bounds on the optimal values to compute ad-hoc iterates.

7.1 Level bundle methods: recalls & disaggregated ver-
sion

This section reviews the main ideas about (synchronous) level bundle methods. In this
chapter, we will focus on nonsmooth convex problems.

Assumption 7.1. For all 8 = 1, .., " , the functions � 8 : ℝ= → ℝ (for all 8 = 1, .., ") are
convex and X is compact convex.

In Section 7.1.1, we recall the classical algorithm with the associated notation. Then,
we describe in Section 7.1.2 a disaggregated variant exploiting the decomposability of
the objective function of (PB−7). The use of disaggregate models is well-known for
proximal bundle methods, but not fully investigated for level bundle methods: we
develop here the useful material for the asynchronous algorithms of the next sections.

7.1.1 Main ingredients of level bundle methods

We briefly present the classical scheme of level bundle methods, dating back to (Kiwiel,
1995; Lemaréchal et al., 1995), to minimize over X the function � only known through
an exact oracle. While presenting the algorithm and its main features, we introduce
standard notation and terminology of bundle methods; see e.g. the textbook (Hiriart-
Urruty and Lemaréchal, 1993).

Bundle algorithms produces a sequence of feasible points (G: ) ⊂ X fo which the
oracle information � (G: ) and {: ∈ m� (G: ) is assumed to be available. With such
information, these methods create linearizations of the form � (G: ) + 〈{: , ·−G:〉 ≤ � (·).
Such linearizations are used to create a cutting-plane model for � at iteration : :

�̌: (G) := max
9 ∈�:
{� (G 9 ) + 〈{ 9 , G − G 9 〉} ≤ � (G) (7.1)

where �: ⊂ {1, 2, .., :} is a set of indices of points at which the oracle was called.
The use of theses piecewise linear model is at the heart of bundle methods and

in particular of level bundle methods. Their principal feature is the use of a level set
which contains the points in X at which the cutting-plane model is smaller than some
level parameter . For an iteration : , we define the level set �: of �̌: associated with
the level parameter � lev

:
∈ ℝ

�: := {G ∈ X : �̌: (G) ≤ � lev: } ⊃ {G ∈ X : � (G) ≤ � lev
:
}.
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This level set defines a region of the feasible set in which the next iterate will be chosen:
G:+1 ∈ �: . It can also provide a lower bound � low

:
on �★. Indeed, whenever �: = ∅

one can take � low
:+1 = � lev

:
as, in this case, �★ ≥ � lev

:
.

A common rule to choose the next iterate is by projecting a certain stability center
Ĝ: ∈ (G: ) onto �: , that is taking G:+1 as the optimization sub-problem

min
G ∈�:

1

2
‖G − Ĝ: ‖2 . (7.2)

When X is a polyhedral set, computing the next iterate consists in solving a mere
convex quadratic optimization problem. This is also the case when X is a Euclidean
ball, as pointed out in (de Oliveira, 2017). Since the sequence (G: ) is available, an upper
bound for the optimal value �★ is just �up

:
:= min9 ∈{1,..,: } � (G 9 ).

Hence, at each iteration : , using the level set �: , we can compute an upper and a
lower bound on the optimal value. We can then define the gap

Δ: := �up
:
− � low

:

which gives a natural stopping test Δ: ≤ tolΔ, for some stopping tolerance tolΔ ≥ 0.
Indeed, Δ: ≤ tolΔ implies that the best point generated by the algorithm so far
Gbest = argmin{� (G) : G ∈ {G1, .., G: }} verifies � (Gbest) − �★ ≤ tolΔ and thus has a
suboptimality bounded by tolΔ.

Finally, we need to update the level parameter � lev
:

. Intuitively, it has to be taken
between � low

:
and �up

:
(otherwise �: would be empty or too big respectively). A

natural choice is thus to take a convex combination of both:

� lev
:

:= U� low
:
+ (1 − U)�up

:
= �

up
:
− UΔ: , with U ∈ (0, 1). (7.3)

It remains to find a policy for updating the stability center Ĝ: used in (7.2). It
could be updated each time a new best point is found, but for more stability it seems
preferable to update it only when the gap has been reduce by a factor U (the same as in
(7.3)) since the last update of the stability center. The obtained algorithm is displayed
in Algorithm 7.1 and essentially corresponds to the method presented in (Kiwiel, 1995).

Remark 7.2 (About convergence). The convergence of the standard level bundle method
presented in Algorithm 7.1 follows Theorem 3.5 in (Kiwiel, 1995). The proof uses an
argument which does not hold in the asynchronous setting: G:+1 ∈ �: implies that
� (G: ) + 〈{: , G:+1 − G:〉 ≤ � lev: for : ∈ �: , that in turn yields

‖G:+1 − G: ‖ ≥
� (G: ) − � lev:
‖{: ‖

≥ UΔ:
Λ
, (7.4)

where the bound ‖{: ‖ ≤ Λ can be guaranteed by compactness of X and convexity of
� . Since this inequality requires the value of � (G: ), it is not guaranteed anymore in
the asynchronous setting. We will pay special attention to this technical point in the
algorithms of Section 7.3. J
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Algorithm 7.1 Standard level bundle method
1: Choose G1 ∈ X and set Ĝ1 = G1
2: Define �up1 = +∞, �0 = ∅ and Δ̂ = +∞
3: Choose a stopping tolerance tolΔ ≥ 0, a parameter U ∈ (0, 1) and a finite � low1 ≤ �★
4: Send G1 to the oracle
5: for : = 1, 2, . . . do

Step 1: receive information from oracle

6: Receive (� (G: ), {: ) from the oracle
7: Set �: = �:−1 ∪ {: }
8: if � (G: ) < �

up
:

then
9: Update �up

:
= � (G: ) and Gbest = G: ⊲ update upper bound

10: end if
Step 2: test optimality and sufficient decrease

11: Set Δ: = �
up
:
− � low

:
12: if Δ: ≤ tolΔ then
13: Return Gbest and �

up
:

14: end if
15: if Δ: ≤ U Δ̂ then
16: Set Ĝ: = Gbest, set Δ̂ = Δ: , and possibly reduce �: ⊲ critical iterate
17: end if

Step 3: compute next iterate

18: Set � lev
:

= �
up
:
− UΔ: . Run a quadratic solver on problem (7.2).

19: if (7.2) is feasible then
20: Get the new iterate G:+1 ∈ �: . Update � low

:+1 = � low
:

and �up
:+1 = �

up
:

21: else
22: Set � low

:
= � lev

:
and go to Step 2 ⊲ update lower bound

23: end if
Step 4: send back information to the oracle

24: Send G:+1 to the oracle
25: Set Ĝ:+1 = Ĝ:
26: end for

7.1.2 Disaggregated level set

In order to present a level bundle algorithm which exploits the additive structure of
the objective function (PB−7), we first need to define a disaggregated level set able to
incorporate asynchronous updates from several workers.

In our setup," oracles can provide individual information (� 8 (G), {8 ) ∈ ℝ1+= with
{8 ∈ m� 8 (G) for a query point G ∈ X. We define � 8

:
⊂ {1, .., :} as the index set of the

points in the sequence (G: ) where the oracle 8 was called, i.e. such that (� 8 (G 9 ), {89 )9 is
computed. The unique feature of our situation and the main technical point is that
the intersection of the index sets ∩"8=1 � 8: may contain only few elements, or even be
empty. To exploit the additive structure of the objective, we can define individual
cutting-plane models for each 8 at an iteration : :

�̌ 8
:
(G) := max

9 ∈� 8
:

{
� 8 (G 9 ) + 〈{89 , G − G 9 〉

}
≤ � 8 (G).

Instead of approximating the objective function � by its aggregate cutting-plane
model �̌: presented in (7.1), we approximate � by its disaggregated model

∑"
8=1 �̌

8
:
.

While the idea is standard for proximal bundle methods (see e.g. (Bacaud et al., 2001)
for an application in electricity management and (Frangioni and Gorgone, 2014) for
an application in network optimization), the use of disaggregated models has not
been fully investigated for level methods: we are only aware of the level algorithm of
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(Wolf et al., 2014) that employs a disaggregate model indirectly just to request exact
information from on-demand accuracy oracles.

If �: ⊂ ∩"8=1 � 8: , then the disaggregated model provides a better approximation for
� than the aggregated model based on �:

�̌: (G) ≤
"∑
8=1

�̌ 8
:
(G) ≤ � (G) ∀G ∈ ℝ= .

We can then replace in the level bundle algorithm the quadratic subproblem (7.2) by
the disaggregated quadratic subproblem:

min
G ∈�d

:

1

2
‖G − Ĝ: ‖2 with �d

:
:=

{
G ∈ X :

"∑
8=1

�̌ 8
:
(G) ≤ � lev

:

}
, (7.5)

where Ĝ: is the stability center and � lev
:
∈ (� low

:
, �

up
:
) is the level parameter. As in

Section 7.1, if Problem (7.5) is infeasible, i.e. if �d
:
is empty, then � lev

:
is a lower bound

for �★.
Aside from offering better accuracy, the disaggregate model has another advantage

in our context: it allows for partial update of the cutting-plane model using individual
oracle evaluations, without calling all of the " oracles at the same point. This is an
important feature that permits to handle oracles in an asynchronous manner.

We formalize in the next lemma the easy result stating that (7.5) can be cast as a
standard quadratic problem. Furthermore, if the problem is infeasible, �d

:
= ∅ which

triggers the lower bound update as in Section 7.1.
Lemma 7.3 (Disaggregated master sub-problem). Let Assumption 7.1 hold and assume
�d
:

is nonempty. Then, the unique solution of (7.5) can be obtained by solving the
following quadratic optimization problem (in both variables G and A ) and discarding the
A -component of its the solution:

minG,A
1
2 ‖G − Ĝ: ‖

2

s.t. G ∈ X, A ∈ ℝ"
� 1 (G 9 ) + 〈{19 , G − G 9 〉 ≤ A1 ∀9 ∈ � 1

:
...

...

�" (G 9 ) + 〈{"9 , G − G 9 〉 ≤ A" ∀9 ∈ �"
:∑"

8=1 A
8 ≤ � lev

:
.

(7.6)

The size of the disaggregated master quadratic problem is larger (with" additional
variables and" times more constraints), which increases the computing time to solve
it. In the case of costly oracles, this additional time is usually negligible compared to
the total oracles computing time and the gain in precision thanks to the disaggregated
cutting-plane model.

7.2 Asynchronous levelbundlebyupper-boundestimation

In this section, we present and analyze the first asynchronous level bundle method,
using the disaggregated master subproblem (7.6) to incorporate asynchronous lin-
earizations from the oracles.

One iteration corresponds to the treatment by the coordinator of the information
sent by one oracle. More precisely, at iteration : , the master receives the information
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time
Exchanging machine 8

at time :
:a(8)

time
Other machine 9

at time :
:a( 9)

= exchange with the master.

Figure 7.1: Notations for the delayed cuts added in our asynchronous bundle algorithms.

from an oracle, say 8 , updates the disaggregated model, generates a new point, and
sends back a point to oracle 8 .

The asynchronicity in the algorithm implies that the oracles do not necessarily
provide information on the last iterate but on a previous one, so that asynchronous
bundle methods have to deal with delayed linearizations. As in the other chapters
of this parts, we place ourselves in the totally asynchronous setting following the
terminology of (Bertsekas and Tsitsiklis, 1989, Chap. 6); we assume that all oracles
respond and are incorporated in finite time, but we do not need to upper bound theses
response times.

In order to incorporate these delayed cuts, we denote by a(8) the iteration index
of the anterior information provided by oracle 8 : at iteration : , the exchanging oracle
8 provides the linearization for � 8 at the point denoted Ga(8) (see lines 6 and 7 of the
Algorithm 7.2 and Fig. 7.1). Our finite response assumption then simply translates to
a(8) → ∞ as : →∞ for all 8 .

7.2.1 Algorithm

Apart from the disaggregated level set and the asynchronous communication with
the oracles, the main algorithmic difference between our asynchronous level bundle
method and the standard level algorithm (Algorithm 7.1) is the management of upper-
bounds �up

:
. The strategy presented here (and inspired by (Wim van Ackooij, 2016)) is

to estimate upper bounds on �★ without evaluating all component functions � 8 at the
same point since this would require synchronizing the oracles very often. To this end,
we make the assumption that we know an upper bound Λ̄8 on the Lipschitz constant
Λ8 of each � 8 for 8 = 1, .., " . In other words, we assume

|� 8 (G) − � 8 (D) | ≤ Λ̄8 ‖G − D‖ for all G,D ∈ X. (7.7)

The recent work (Wim van Ackooij, 2016) builds on the same assumption and proposes
to bound � 8 (G) at a given point by solving an extra quadratic problem of size |� 8

:
| + 1

depending on Λ̄8 . Using this technique, we would obtain an upper-bound of � (G) at
the extra cost of solving" − 1 quadratic problems at each iteration.

We propose in Algorithm 7.2 a simpler procedure to compute upper bounds �up
:

(Note that our upper bound is computable only once all the oracles have responded
once so that a( 9) is well defined for all oracles.). Our strategy appears on line 23
of Algorithm 7.2 and is based on the following lemma establishing that one has an
upper-bound on the full function at the current points if the points where the � 8 are
evaluated are “close enough”. This yields a handy rule for updating �up

:
depending

only on the distance (weighted by Λ̄8 ) between the current solution of the master
sub-problem (7.6), G:+1, and the last/anterior points on which the oracles responded,
Ga(8) for 8 = 1, .., " .
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Algorithm 7.2 Asynchronous level bundle method by upper-bounds estimation
1: Get Λ̄8 satisfying (7.7). Choose G1 ∈ X, and set ¯Gbest = Ĝ1 = G1
2: Choose a tolerance tolΔ ≥ 0, a parameter U ∈ (0, 1) , and �up

1 > �★ + tolΔ and � low
1 ≤ �★

3: Set Δ̂ = ∞ and �08 = ∅ for all 8 = 1, .., "
4: Send G1 to the" oracles
5: for : = 1, 2, . . . do

Step 1: receive information from an oracle
6: Receive from oracle 8 the oracle information on � 8 at a previous iterate G:′
7: Set a(8) = :′, store (� 8 (G:′ ), {:′ ) , and set � 8

:
= � 8

:−1 ∪ {:
′ }

Step 2: test optimality and sufficient decrease
8: Set Δ: = �

up

:
− � low

:
9: if Δ: ≤ tolΔ then
10: Return ¯Gbest and �

up

:11: end if
12: if Δ: ≤ U Δ̂ then
13: Set Ĝ: = ¯Gbest and Δ̂ = Δ: .
14: Possibly reduce � 9

:
for all 9 = 1, .., " , but keep a( 9) ∈ � 9

:15: end if

Step 3: compute next iterate
16: Set � lev

:
= �

up

:
− UΔ: . Run a quadratic solver on problem (7.6)

17: if (7.6) is feasible then
18: Get new iterate G:+1 ∈ �d

:
. Update � low

:+1 = � low
:

19: else
20: Set � low

:
= � lev

:
and go to Step 2 ⊲ update lower bound

21: end if

22: if � 9
:
≠ ∅ for all 9 = 1, .., " then

23: �
up

:+1 = min
{
�
up

:
, � lev

:
+∑"

9=1

(
Λ̄9 ‖G:+1 − Ga( 9 ) ‖ − 〈{ 9a( 9 ) , G:+1 − Ga( 9 ) 〉

) }
24: if �up

:+1 < �
up

:
then

25: set ¯Gbest = G:+1
26: end if
27: else
28: �

up

:+1 = �
up

:29: end if

Step 4: send back information to the oracle
30: Send G:+1 to machine 8
31: Set Ĝ:+1 = Ĝ:
32: end for

Lemma 7.4. Let Assumption 7.1 hold and suppose that (7.7) holds true for 8 = 1, .., " .
At iteration : , whenever the master sub-problem (7.6) is feasible, with (G:+1, A:+1) its
solution, one has

� (G:+1) ≤ � lev: +
"∑
9=1

(
Λ̄9 ‖G:+1 − Ga( 9) ‖ − 〈{ 9a( 9) , G:+1 − Ga( 9)〉

)
. (7.8)

Furthermore,

UΔ: ≤ �up: − �
up
:+1 + 2

"∑
9=1

Λ̄9 ‖G:+1 − Ga( 9) ‖. (7.9)

Proof. Note first that

� (G:+1) =
"∑
9=1

� 9 (G:+1) =
"∑
9=1

� 9 (Ga( 9) ) +
"∑
9=1

(
� 9 (G:+1) − � 9 (Ga( 9) )

)
.
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This yields

� (G:+1) ≤
"∑
9=1

(
A
9

:+1 − 〈{
9

a( 9) , G:+1 − Ga( 9)〉
)
+

"∑
9=1

(
� 9 (G:+1) − � 9 (Ga( 9) )

)
≤ � lev

:
+

"∑
9=1

(
Λ̄9 ‖G:+1 − Ga( 9) ‖ − 〈{ 9a( 9) , G:+1 − Ga( 9)〉

)
,

where the first inequality comes from the fact that (G:+1, A:+1) is feasible point for
the master sub-problem (7.6). The second inequality uses that

∑"
9=1 A

9

:+1 ≤ � lev
:

as
(G:+1, A:+1) is a feasible point of (7.6) and the Lipschitz assumption (7.7) for the func-
tions.

To prove the second part of the result, we proceed as follows:

�
up
:+1 ≤ �

lev
:
+

"∑
9=1

(
Λ̄9 ‖G:+1 − Ga( 9) ‖ − 〈{ 9a( 9) , G:+1 − Ga( 9)〉

)
≤ �up

:
− UΔ: + 2

"∑
9=1

Λ̄9 ‖G:+1 − Ga( 9) ‖,

where the second inequality is due to the definition of � lev
:

and due to the bound
on the scalar product provided by the Lipschitz assumption (7.7). This concludes the
proof. �

At each iteration, our asynchronous level algorithm (Algorithm 7.2) computes upper
bounds of the functional values by using inequality (7.8). The rest of the algorithm
corresponds essentially to the standard level algorithm (Algorithm 7.1) using the
disaggregated model (7.6).50 50Note that Algorithm 7.2 needs

non-infinite initial bounds �up1 and
� low1 . These bounds can often be
easily estimated from the data of
the problem. Otherwise, we can
call the" oracles at an initial point
G1 and wait for their first responses
from which we can compute
�
up
1 = � (G1) =

∑"
8=1 �

8 (G1) and
� low1 as the minimum of the
linearization � (G1) + 〈{1, G − G1 〉
over the compact set X.

In particular, since the values �up
:

are provable upper
bounds, we still have �★ ∈ [� low

:
, �

up
:
] for all : and the stopping test Δ: ≤ tolΔ is valid.

The convergence analysis of the next section relies on proving that the sequence of
gaps (Δ: ) goes to 0 when tolΔ = 0.

7.2.2 Convergence analysis

We denote by ℓ the number of critical steps that is the number of times line 14 is
accessed, i.e. the number of times the gap significantly decreases. We note :ℓ the
corresponding iteration. We have by construction

Δ:ℓ+1 ≤ UΔ:ℓ ≤ U2Δ:ℓ−1 ≤ · · · ≤ U ℓΔ1 ∀ℓ = 1, 2, . . . (7.10)

We call :ℓ a critical iteration, and G:ℓ a critical iterate. We introduce the set of
iterates between two consecutive critical iterates as illustrated by Fig. 7.2:

 ℓ := {:ℓ + 1, . . . , :ℓ+1 − 1}. (7.11)

The proof of convergence of Algorithm 7.2 consists in showing the algorithm
performs infinitely many critical iterations when tolΔ = 0. We start with basic
properties for iterations in  ℓ , valid beyond Algorithm 7.2 for any level bundle method
undermild assumptions. Observe that a critical iteration is due in exactly two situations:
i) an update of �up

:
; or ii) an update of � low

:
from the infeasibility of the master sub-

problem (7.6). The following lemma states that while i) can happen between two critical
steps (i.e. in  ℓ defined by (7.11)), the case ii) automatically triggers a critical step.
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time:ℓ+1:ℓ+1 − 1:ℓ :ℓ + 1

critical iteration critical iteration

 ℓ

Figure 7.2: Illustration of the set  ℓ used in convergence analysis

Lemma 7.5 (Between two consecutive critical iterates). Let Assumption 7.1 hold and
consider a level bundle method (such as Algorithm 7.2) satisfying

• �up
:

is a non-increasing sequence of upper-bounds on �★;

• � low
:

is updated only when the master sub-problem is empty, and � low
:

is chosen as
a lower bound greater or equal to � lev

:
;

• � lev
:

satisfies � lev
:

= U� low
:
+ (1 − U)�up

:
;

• all the linearizations are kept between two critical steps.
Fix an arbitrary ℓ and let  ℓ be defined by (7.11). Then, (�d

:
) is a nested non-increasing

sequence of non-empty compact convex sets: �d
:
⊂ �d

:−1 for all : ∈  ℓ . Furthermore, for
all : ∈  ℓ ,

(a) the master sub-problem (7.6) is feasible;
(b) the stability center and the lower bound are fixed: Ĝ: = Ĝ:ℓ and � low

:
= � low

:ℓ
;

(c) the level parameter and the gap can only decrease: � lev
:
≤ � lev

:ℓ
and Δ: ≤ Δ:ℓ .

Proof. We start with proving (a), (b) and (c). Each �d
:
for : ∈  ℓ is non-empty

as otherwise the master sub-problem (7.6) would be infeasible. Indeed, if (7.6) was
infeasible at time : , � low

:
receives � lev

:
and therefore � low

:
= �

up
:
− UΔ: ≥ �up: − UΔ:ℓ

so �up
:
− � low

:
≤ UΔ:ℓ , which contradicts the fact that : ∈  ℓ (i.e. is not a critical step).

This proves (a).
For each : ∈  ℓ , the stability center is fixed by construction and the lower bound

is increased only when the master sub-problem (7.6) is found infeasible which is
impossible for : ∈  ℓ (see above). This establishes (b).

The inequality on the level parameter comes directly as follows: � lev
:

= U� low
:
+

(1 − U)�up
:

= U� low
:ℓ
+ (1 − U)�up

:
≤ U� low

:ℓ
+ (1 − U)�up

:ℓ
= � lev

:ℓ
. Note finally that �up

:

is non-increasing and so is Δ: . We thus have also (c).
Finally, each �d

:
is compact as X is compact, and it is also convex as X is convex

and the disaggregate cutting-plane model is convex. The fact that (�d
:
) is a nested

non-increasing sequence is thus direct from (c) as the local cutting plane models only
get richer with : (as the model is only reduced in critical steps which cannot happen
in  ℓ ). �

We now provide a proof of convergence featuring elegant results from variational
analysis (Rockafellar and Wets, 2009).
Theorem 7.6 (Convergence). Let Assumption 7.1 hold and suppose that (7.7) holds true
for 8 = 1, .., " . Let tolΔ = 0 in Algorithm 7.2. Then, the sequence of gaps vanishes,
lim: Δ: = 0, and the sequence of best iterates is a minimizing sequence for (PB−7),
lim: �

up
:

= �★. As a consequence, for a strictly positive tolerance tolΔ > 0, the algorithm
terminates after finitely many steps with an approximate solution: �★ ≤ � ( ¯Gbest) ≤
�★ + tolΔ.
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Proof. The convergence Δ: → 0 is given by (7.10) as soon as the counter of critical
steps ℓ increases indefinitely. Thus we just need to prove that, after finitely many steps,
the algorithm performs a new critical iteration. For the sake of contradiction, suppose
that only finitely many critical iterations are performed. Accordingly, let ℓ̄ be the total
number of critical iterations and :ℓ̄ be the index of the last critical iteration. Observe
that Ĝ: = Ĝ is fixed and Δ: ≥ Δ > 0 for all : > :ℓ̄ . We have from Lemma 7.5, that (�d

:
)

is a nested non-increasing sequence of non-empty compact convex sets for : > :ℓ̄ .
Suppose that there is an infinite number of asynchronous iterations after the last critical
iteration :ℓ , then (�d

:
) converges to �d in the sense of the Painlevé-Kuratowski set

convergence (Rockafellar and Wets, 2009, Chap. 4.B):

lim
:

�d
:

= �d =
⋂
:

cl�d
:
.

Now, Šmulian’s theorem (Bernardes, 2012; Smulian, 1939) guarantees that the intersec-
tion �d = ∩: cl�d

:
is nonempty. Moreover, �d is by definition a convex compact set

and, therefore, the projection of Ĝ onto �d is well defined and unique:

proj�d (Ĝ) = argminG ∈�d

1

2
‖G − Ĝ ‖2 .

Then (Rockafellar and Wets, 2009, Prop. 4.9) implies that G:+1 = argminG ∈�d
:

1
2 ‖G −

Ĝ ‖2 = proj�d
:
(Ĝ) converges to proj�d (Ĝ). Hence, (G: ) is a Cauchy sequence

∀Y > 0 ∃ ∈ ℕ such that ∀:, : ′ ≥  =⇒ ‖G ′
:
− G: ‖ ≤ Y.

By taking Y = U

4"max8 Λ̄8 Δ and : ≥ min9=1,..," a( 9) ≥  ,51 51 As the oracles are assumed to
respond in a finite time, the
inequality min9=1,..," a( 9) ≥  is
guaranteed to be satisfied for : is
large enough.

the inequality in (7.9) gives

UΔ ≤ UΔ: ≤ �up: − �
up
:+1 + 2

"∑
9=1

Λ̄9 ‖G:+1 − Ga( 9) ‖

≤ �up
:
− �up

:+1 + 2
"∑
9=1

Λ̄9
U

4"max8 Λ̄8
Δ ≤ �up

:
− �up

:+1 +
U

2
Δ,

showing that �up
:
− �up

:+1 ≥
U
2Δ > 0 for all : ≥ min9=1,..," a( 9) ≥  . This is in contra-

diction with the fact that the sequence (�up
:
) is non-increasing and lower bounded,

thus convergent. Hence, the index set  ℓ is finite and ℓ grows indefinitely if tolΔ = 0.
Finally, the proof that (�up

:
) converges to the optimal value follows easily by noting

that

�★ ≤ �up
:

= � low
:
+ Δ: ≤ �★ + Δ:

from � low
:
≤ �★ ≤ �up

:
and Δ: = �

up
:
− � low

:
, which ends the proof. �

7.3 Asynchronous level bundle by coordination

The level bundle algorithm of the previous section is fully asynchronous for solving
problem (PB−7). However, it relies on bounds on the Lipschitz constant of the functions
� 8 , which may be hard to have in practice. To compute upper-bounds �up

:
, we propose

here an alternative strategy based on coordination of the machines to evaluate � (G: )
only when necessary.
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7.3.1 Coordinating to get upper-bounds

In our asynchronous setting, the oracles have no reason to be called at the same point
except if the master decides to coordinate them. We propose a test that triggers a
coordination on the points sent to the machines when the (proof of) convergence is
in jeopardy (namely, when (7.4) does not hold). Thus, we introduce a coordination
step (see line 32 in Algorithm 7.3): if the test is valid, this step consists in sending to
all oracles the same iterate at the next iteration in which they are involved.5252To some extent, this can be seen

as a variance reduction step
resembling the scheme of SVRG

(Johnson and Zhang, 2013), except
that our coordination is only

performed when needed and not
after a fixed number of iterations.

Finally,
our coordination strategy does not generate idle times because the machines are not
requested to abort their current jobs.

This algorithm, given in Algorithm 7.3, corresponds to Algorithm 7.2 with more
complex communications (Steps 1 and 4). Step 2 (optimality and sufficient decrease
test) is unchanged. Finally, Step 3 (next iterate computation) relies on the same master
sub-problem (7.6) in both algorithms, but here a coordination-triggering test replaces
the upper-bound test (line 23 of Algorithm 7.2).

The coordination iterates are denoted by G: . Assuming that all oracles always
eventually respond (after an unknown time), the coordination allows to compute the
full value � (G: ) and a subgradient { ∈ m� (G: ) at the coordination iterate G: (see lines
10 and 11, where rr (“remaining to respond”) counts the number of oracles that have
not responded yet to the coordination call). The functional value is used to update the
upper bound �up

:
, as usual for level methods; the subgradient is used to update the

bound Λ̄ approximating the Lipschitz constant of � .
In the algorithm, the coordination is implemented by two vectors of booleans

(to_coordinate and coordinating):
• The role to_coordinate[8] is to indicate to machine 8 that its next computation
has to be performed with the new coordination point G:+1; at that moment,
to_coordinate[8] is set to False and coordinating[8] is set to True.

• The role coordinating[8] is to indicate to the master that machine 8 is responding
to a coordination step, which is used to update the upper bound (line 14).

We note that, as usual for level bundle methods, the sequence of the optimality
gaps Δ: is non-increasing by definition. We will further count with ℓ the number of
times when Δ: decreases sufficiently: more precisely, ℓ is increased whenever line 24
is accessed, and :ℓ denotes the corresponding iteration index. As in the previous
section, we call :ℓ a critical iteration and consider  ℓ the set of iterates between two
consecutive critical iterates (recall (7.11) and Fig. 7.2).

7.3.2 Convergence analysis

We now turn to the convergence analysis of the asynchronous level bundle algorithm
described in Algorithm 7.3. It features three types of iterates: the asynchronous iterates
G: , the coordination iterates G: , and the critical iterates G:ℓ , in addition to the stability
centers Ĝ: .

As previously, we have by definition of critical iterates the chain of inequalities
(7.10):

Δ:ℓ+1 ≤ UΔ:ℓ ≤ . . . ≤ U ℓΔ1 ∀ℓ = 1, 2, . . .

and we rely on Lemma 7.5. The scheme of the convergence proof consists in showing
that there exist infinitely many critical iterations. Note though that between two
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Algorithm 7.3 Asynchronous level bundle method by coordination
1: Choose G1 ∈ X and set G1 = Ĝ1 = G1
2: Choose tolΔ ≥ 0, U ∈ (0, 1) , bounds �up1 > �★ + tolΔ and � low1 ≤ �★, and a constant Λ̄ > 0

3: Set Δ̂ = ∞, rr = " , �08 = ∅ for all 8 = 1, .., " , � = 0 ∈ ℝ, and { = 0 ∈ ℝ=

4: Set to_coordinate[8] = False and coordinating[8] = True for all 8 = 1, .., "
5: Send G1 to the" oracles
6: for : = 1, 2, . . . do

Step 1: receive information from oracle

7: Receive from oracle 8 the oracle information on � 8 at a previous iterate G:′
8: Store (� 8 (G:′ ), {:′ ) , and set � 8

:
= � 8

:−1 ∪ {:
′ }

9: if coordinating[8] = True then
10: rr← rr − 1 and coordinating[8]← False
11: Update � ← � + � 8 (G:′ ) and {← { + {:′
12: if rr = 0 then ⊲ Full information at point G:
13: if � < �

up
:

then
14: Update �up

:
= � and ¯Gbest = G: ⊲ update upper bound

15: end if
16: Update Λ̄← max{Λ̄, ‖{ ‖ }
17: end if
18: end if

Step 2: test optimality and sufficient decrease

19: Set Δ: = �
up
:
− � low

:
20: if Δ: ≤ tolΔ then
21: Return ¯Gbest and �

up
:

22: end if
23: if Δ: ≤ U Δ̂ then ⊲ Critical Step
24: Set Ĝ: = ¯Gbest and Δ̂ = Δ: . Possibly reduce index sets � 9

:
( 9 = 1, .., ")

25: end if
Step 3: Compute next iterate

26: Set � lev
:

= �
up
:
− UΔ: . Run a quadratic solver on problem (7.6)

27: if (7.6) is feasible then
28: Get new iterate G:+1 ∈ �d

:
. Update � low

:+1 = � low
:

, �up
:+1 = �

up
:

29: else
30: Set � low

:
= � lev

:
and go to Step 2 ⊲ update lower bound

31: end if
32: if rr = 0 and ‖G:+1 − G: ‖ < U

Δ:
Λ̄

then
33: Set G:+1 = G:+1 and to_coordinate[9] = True (9 = 1, .., ") ⊲ Coordination Step
34: Reset rr = " , � = 0, { = 0
35: else
36: Set G:+1 = G:
37: end if

Step 4: send back information to the oracle

38: if to_coordinate[8] = True then
39: Send G:+1 to machine 8 .
40: Set to_coordinate[8] = False and coordinating[8] = True
41: else
42: Send G:+1 to machine 8
43: end if
44: Set Ĝ:+1 = Ĝ:
45: end for
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critical steps, we can have several coordination steps; the next result shows that two
coordination iterates cannot be arbitrary close.
Lemma 7.7 (Between two coordination iterates). Let Assumption 7.1 hold. For a given
ℓ and two coordinate iterates GB and GC (with GB ≠ GC ) and B < C ∈  ℓ , there holds

‖GB − GC ‖ ≥ U
ΔC
Λ̄
.

Proof. At the second coordinate iterate GC ∈ �d
C−1, all the oracles have responded at

least once and all of them have been evaluated at GB . Since the set of constraints of
(7.6) keeps growing as : increase within  ℓ , we have that GC satisfies the" constraints
generated by linearizations at GB . Summing these " linearizations and using that
GC ∈ �d

C−1 (see Eq. (7.5)) gives

� (GB ) + 〈{B , GC − GB〉 =
"∑
8=1

(
� 8 (GB ) + 〈{8B , GC − GB〉

)
≤

"∑
8=1

� 8C−1 (GC ) ≤ � levC−1

This yields −‖{B ‖‖GC − GB ‖ ≤ � levC−1 − � (GB ) so that ‖GC − GB ‖ ≥ (� (GB ) − � levC−1)/‖{B ‖.
The value � (GB ) was fully computed before the next coordinate iterate, so before

C . It is then used to update the upper bound, we have � (GB ) ≥ �
up
C . This gives

� (GB ) − � levC−1 ≥ �
up
C − (�

up
C−1 − UΔC−1) ≥ UΔC−1 ≥ UΔC where we used that (Δ: ) is

non-increasing by construction. Finally, using the bound ‖{B ‖ ≤ Λ̄ as provided by the
algorithm at line 16 completes the proof. �

Theorem 7.8 (Convergence). Let Assumption 7.1 hold and assume that (7.7) holds. Let
tolΔ = 0 in Algorithm 7.3, then the sequence of gaps vanishes, lim: Δ: = 0, and the
sequence of coordination iterates is a minimizing sequence for (PB−7), lim: � (G: ) = �★.
For a strictly positive tolerance tolΔ > 0, the algorithm terminates after finitely many
steps with an approximate solution.

Proof. The convergence Δ: → 0 is given by (7.10), as soon as the counter ℓ increases
indefinitely. Thus, we need to prove that there are infinitely many critical iterations.
We obtain this by showing that, for any ℓ , the set  ℓ is finite; for this, suppose that
Δ: > Δ > 0 for all : ∈  ℓ . We proceed in two steps, showing that i) the number
of coordination steps in  ℓ is finite; and ii) the number of asynchronous iterations
between two consecutive coordination steps is finite as well.

Part 1. Define (GB ) the sequence of coordination steps in  ℓ . By Lemma 7.7, we obtain
that for any B < C

‖GB − GC ‖ ≥ U
ΔC
Λ̄
≥ Δ

Λ̄
.

If there was an infinite number of coordination steps inside  ℓ , the compactness of X
would allow us to extract a converging subsequence, and this would contradict the
above inequality. The number of coordination steps inside  ℓ is thus finite.

Part 2. We turn to the number of asynchronous iterations between two consecutive
coordination iterations, that is the number of iterations before the test of line 32 is
active. This part is illustrated by the green arrows in Fig. 7.3.

Since all the oracles are responsive, there is a finite number of iterations between
two updates of any oracle: as a consequence, at a given iteration : , there exists a )
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time:ℓ+1:ℓ

critical step critical step

 ℓ

coordination rr = 0 new coordination
test line 32 active

≤ ) ≤ ) ′

Figure 7.3: Notations for the proof

(the dependence on : is dropped for simplicity) such that all oracles will exchange at
least twice in [:, : +) ]; in other words, the first part of the test rr = 0 will be verified
within a finite number ) of iterations.

Now, let us show by contradiction that the second part of the test, ‖G:+1 − G: ‖ <
UΔ:/Λ̄, will be verified after a finite number of iterations. As in the proof ofTheorem 7.6,
we have from Lemma 7.5 that (�d

:
) is a nested non-increasing sequence of non-empty

compact convex sets for : ∈  ℓ . If there was an infinite number of asynchronous
iterations before the test is verified, the sequence �d

:
would converge to a non-empty

�d in the sense of the Painlevé-Kuratowski (see (Rockafellar and Wets, 2009, Chap.
4.B) and (Bernardes, 2012; Smulian, 1939)). As a consequence,

G:+1 = argminG ∈�d
:

1

2
‖G − Ĝ ‖2 −→ proj�d (Ĝ) = argminG ∈�d

1

2
‖G − Ĝ ‖2 .

As (G: ) converges, for any Y > 0, there exists ) ′ such that for any : ≥ ) ′,
‖G:+1 − G: ‖ ≤ Y. Taking Y = UΔ/(2Λ̄) with Δ: > Δ > 0, the second part of the test
is verified after ) ′ iterations which contradicts the infinite number of asynchronous
iterations before the test is verified. Thus, there are at most ) +) ′ iterations between
two coordination steps.

Combining i) and ii), we can then conclude that the algorithm performs only finitely
many iterations between two consecutive critical iterations. This in turn shows that
there are infinitely many critical iterations, and thus we get convergence using (7.10).
Similarly, for a strictly positive tolerance, there are a finite number of critical steps,
and thus a finite number of iterations. The result on the convergence of (�up

:
) follows

from exactly the same arguments as in the end of the proof of Theorem 7.6. �

7.4 Extension to Inexact oracles

Many applications of optimization to real-life problems lead to objective functions that
are assessed through noisy oracles, where only some approximations to the function
and/or subgradient values are available; see e.g. the recent review (de Oliveira and
Solodov, 2018). This is the typical case in Lagrangian relaxation of (possibly mixed-
integer) optimization problems, in stochastic/robust programming, where the oracles
perform some numerical procedure to evaluate functions and subgradients, such as
solving optimization subproblems, multidimensional integrations, or simulations.

Level bundle methods are well-known to be sturdy to deal with such inexact oracles;
see (de Oliveira and Sagastizábal, 2014; de Oliveira and Solodov, 2018; van Ackooij and
de Oliveira, 2014). In particular, when the feasible setX is compact no special treatment
is necessary to handle inexactness in standard level methods (de Oliveira and Solodov,
2018, Sec. 3). This is also the case for our asynchronous level bundle variants, more
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precisely: i) the asynchronous algorithms converge to inexact solutions when used
with oracles with bounded error (Section 7.4.1), and ii) with a slight modification of
the upper bounds, they can converge to exact solutions when used with lower oracles
with vanishing error (Section 7.4.2). For concision, we omit the proofs related to this
section. They can be found in (Iutzeler et al., 2020, Sec. 5).

7.4.1 Inexact oracles

We assume to have an approximate oracle for � 8 delivering, for each given G ∈ X, an
inexact linearization on � , namely (� 8G , {8G ) ∈ ℝ×ℝ= such that

� 8G = � 8 (G) − [�,8G
{8G ∈ ℝ= such that � 8 (·) ≥ � 8G + 〈{8G , · − G〉 − [{,8G
with [

�,8
G ≤ [�

"
and [

{,8
G ≤ [{

"
for all G ∈ ℝ= .

(7.12)

The subscripts � and { on the oracle errors make the distinction between function value
and subgradient errors. Note that oracles can overestimate function values as [�,8G can
be negative. In fact, both the errors [�,8G and [{,8G can be negative but not simultaneously
because they satisfy [�,8G + [{,8G ≥ 0.5353By substituting

� 8G = � 8 (G) − [�,8G in the inequality
� 8 ( ·) ≥ � 8G + 〈{8G , · − G 〉 − [{,8G and

evaluating at G , we get that
� 8 (G) ≥ � 8 (G) − [�,8G − [{,8G . This

shows that [�,8G + [{,8G ≥ 0.

Global bounds [� , [{ ≥ 0 on the errors should
exist but are possibly unknown. When [{ = 0, we have the so-called lower oracles
returning lower linearizations: � 8 (G) − [�,8G = � 8G 6 �

8 (G) and � 8 (·) > � 8G + 〈{8G , · − G〉.
The exact oracle corresponds to taking [{ = [� = 0.

Our asynchronous algorithms do not need to be changed to handle inexactness:
the information provided by these inexact oracles is used in the same way as done pre-
viously where the oracles were exact. Indeed, we can define the inexact disaggregated
cutting-plane model as

�̌ 8
:
(G) := max

9 ∈� 8
:

{� 8G 9 + 〈{
8
G 9
, G − G 9 〉}

and the inexact level set �d
:
as in (7.5) (but with the inexact model). We then have the

easy following result showing that � low
:

is still relevant.
Lemma 7.9 (Inexact lower bound). The update of � low

:
in Algorithms 7.2 and 7.3 guar-

antees that it is an inexact lower bound, in the sense that

� low
:
≤ �★ + [{ for all k . (7.13)

In particular, if the oracle is a lower oracle ([{ = 0) then the algorithms ensure that � low
:

is a valid lower bound in every iteration : .

Similarly, the next lemma shows that �up
:

is relevant, up the oracle error.
Lemma 7.10 (Inexact upper bound). The definitions of �up

:
in Algorithms 7.2 and 7.3

guarantee that it is an inexact upper bound; more precisely, at iteration :

�
up
:
≥ � ( ¯Gbest) − [� ≥ �★ − [� . (7.14)

The previous two lemmas thus show that the inexact upper and lower bounds
appearing in the asynchronous algorithms with inexact oracles satisfy

� low
:
− [{ ≤ �★ ≤ �

up
:
+ [� for all :.

We now formalize a theorem to conclude that, as in the standard case, inexactness can
be readily handled by our asynchronous level methods.
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Theorem 7.11. The convergence results for Algorithms 7.2 and 7.3, namely Theorems 7.6
and 7.8, still hold up to the oracle error when inexact oracles (7.12) are used. More precisely,
we obtain a tolΔ + [� + [{-solution of (PB−7):

• when tolΔ = 0, we have lim: �
up
:
≤ �★ + [� + [{

• when tolΔ > 0, we have �★ ≤ � ( ¯Gbest) ≤ �★ + tolΔ + [� + [{

Proof. The proofs are valid verbatim until the end about the convergence of (�up
:
). In

the inexact case, we combine (7.13) and (7.14) to write

�★ − [� ≤ � ( ¯Gbest) − [� ≤ �up: = � low
:
+ Δ: ≤ �★ + [{ + Δ: .

Passing to the limit, this ends the proof. �

As previously mentioned, no special treatment is necessary to handle inexactness
in the proposed asynchronous level methods. The obtained solution is optimal within
the precision tolΔ + [� + [{, the given tolerance plus the (possibly unknown) oracle
error bounds. If we target obtaining tolΔ-solutions, more assumptions on the inexact
oracles need to come into play, and minor changes in the algorithms must be made, as
explained in the next section.

7.4.2 Lower oracles with on-demand/vanishing error

We consider further the case of (7.12) with [{ = 0 and controllable [� , for which the
asynchronous algorithms converge to an optimal solution if we slightly change the
upper bound.

We assume here that the error bound [� is known and controllable in the sense
that the algorithm can decrease or increase [� along the iterative process. Thus we
consider the following special case of (7.12): given a trial point G and an error bound
[� as inputs, the oracle provides

� 8G = � 8 (G) − [�,8G
{8G ∈ ℝ= such that � 8 (·) ≥ � 8G + 〈{8G , · − G〉
with [

�,8
G ≤ [�

"
for all G ∈ ℝ= .

(7.15)

The fact that we control[� allows us to incorporate the oracle error in the algorithm,
which eventually will yield convergence to optimality. The fact that [{ = 0 gives that
� low
:

is always a lower bound (recall Lemma 7.9).
At iteration : we index the error bound with : and we drive [�

:
below a fraction of

the gap at the preceding decrease. More precisely, we consider the following control:
there exists ^ ∈ (0, 1) such that the" oracles satisfy (7.15) with

0 ≤ [�
:
≤ ^Δ:ℓ , for all :∈  ℓ (7.16)

where:ℓ corresponds to the last critical iteration (the iteration yielding enough decrease
on line 12 of Algorithm 7.2 or on line 24 of Algorithm 7.3). This control on [�

:
is standard

in methods with on-demand accuracy (de Oliveira and Sagastizábal, 2014).
For Algorithm 7.2, we obtain the obtain the following result.

Theorem 7.12. Consider Algorithm 7.2 with inexact oracles (7.15). If the oracles error
can be controlled by (7.16) with ^ ∈ (0, U2/2), and if the update of �up

:+1 in line 23 is
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replaced with

min

{
�
up
:
,

(
� lev
:
+

"∑
9=1

(
Λ̄9 ‖G:+1 − Ga( 9) ‖ − 〈{ 9a( 9) , G:+1 − Ga( 9)〉

)
+ [�

:

) }
,

then the convergence result of Theorem 7.6 still holds.

And for Algorithm 7.3, we obtain a similar result with a different modification.
Theorem 7.13. Consider Algorithm 7.3 with inexact oracles (7.15). If the oracles error
are controlled by (7.16) with ^ ∈ (0, U2), then the convergence result of Theorem 7.8 still
holds when the update of the upper bound of line 11 is replaced with

� ← � + � 8Gℓ +
[�
:′

"
.

Thus we show that the two asynchronous algorithms also share the well-known
robustness of synchronous level bundle methods for dealing with inexact oracles with
on-demand accuracy (de Oliveira and Sagastizábal, 2014; van Ackooij and de Oliveira,
2014).

7.5 Numerical experiments

In this section, we provide illustrative numerical experiments to illustrate the effec-
tiveness and the potential interest of asynchronicity in bundle methods. A thorough
numerical assessing of the interests and limits of the algorithms would deserve a whole
study of itself to take into account the various biases from the inputs and the computed
system (in particular, the variance of the solution times of the numerical subroutines
and the communications between machines). Here we consider a basic implementation
of the (distributed) algorithms, a trivial set-up and computing system, and a simple
randomly-generated problem.

7.5.1 Experimental set-up

Problem We consider an instance of problem (PB−7) where each function � 8 is the
optimal value of the following mixed-integer linear program (MILP): for G ∈ ℝ= ,

� 8 (G) =


max c8
(
〈28 , ?〉 − 〈G,�8?〉

)
s.t. ‖? ‖∞ ≤ �, �8? ≤ ℎ8

? ∈ ℕ=1 ×ℝ=2

(7.17)

where 28 , �8 ,�8 , ℎ8 are random vectors/matrices with suitable sizes (we denote by =2
the number of affine constraints of the problem i.e. the number of lines of �8 , kept
constant among oracles). Such oracles appear when solving Lagrangian relaxations of
difficult mixed-integer optimization problems. The oracle 8 solves, for given a point G ,
the above MILP to get an optimal point ?★, which gives

� 8 (G) = c8 (〈28 , ?★〉 − 〈G,�8?★〉) and {8 = −c8�8?★ ∈ m� 8 (G).

Tested algorithms We compare four following algorithms; two synchronous and
two asynchronous level bundle methods:

• S Synchronous level bundle algorithm (Algorithm 7.1)
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• SD Synchronous Disaggregated algorithm (Algorithm 7.1 using (7.6))
• AU Asynchronous algorithm by Upper-bounds (Algorithm 7.2)
• AC Asynchronous algorithm by Coordination (Algorithm 7.3)

The four algorithms use the same initialization and global parameters. The only
exception is the level parameter U : we use the simple value U = 0.5 except for AU,
where we use U = 0.9. This higher value allows us to better compensate for rough
Lipschitz constant upper-bounds and get better levels � lev

:
.

Computing setup The code was written in Python 2.7.654 54My bad… It was 2018…and run on a laptop with
an Intel Core i7-5600U and 8GB of RAM. Each machine is assigned to a thread. MPI
is used as a communication framework (more precisely the mpi4py implementation
of OpenMPI 1.6.5). The MILPs (7.17) of the oracles and the quadratic problems at the
master are computed using Gurobi 8.0.0.

Notice that for the standard algorithm S, the quadratic problem (7.2) uses the total
function oracle while the disaggregated quadratic problem (7.6) uses all the oracles
separately. In terms of distributed programming, the first one can be performed by
map-reduce (with a sum operation in the reduce) while the second needs a separate
gathering of the oracle results.

Instance generation We consider" = 8machines/oracles on a problem size= = 20.
We generate moderately imbalanced oracles: six comparable oracles (=1 = 20, =2 = 40,
� = 5, =2 = 100, and c8 = 1) and two slightly bigger (=1 = 50, =2 = 100, � = 10,
=2 = 100, and c8 = 0.1). The matrices �8 ,�8 are drawn independently with coefficients
taken from the uniform distribution in (−1, 1), 28 is taken from the normal distribution
with variance 100. Moreover ℎ8 is taken from the uniform distribution in [0.1, 1.1), so
that ? = 0 is feasible for all problems (7.17) and � low0 = 0 is a valid lower-bound on �★.

Experiments With the above set-up, we run preliminary experiments. We observe
a high variance of the solution times of Gurobi and the communication between ma-
chines: this strongly impacts the time for an oracle to respond, the order of oracles
responses for asynchronous algorithms, and therefore the behavior of the algorithms.
Note also that while the asynchronous methods have the same parameters as the
standard level bundle methods, the behavior of the algorithm (e.g. the coordination
frequency) highly depends on the problem and computing system. A complete compu-
tational study would be quite challenging; we focus here only on showing that using
asynchronous methods can save time.

Thus, we generate, as described above, one problem instance for which the two
bigger oracles (oracles 1 and 2) are computationally more expensive in practice. We
consider five runs of the algorithms: the figures reported in next tables are the average
(and the standard deviation) of the obtained results. We compare the algorithms, first
for a coarse precision target (in Section 7.5.2), then for a finer precision (in Section 7.5.3).
Finally, we investigate the case of inexact oracles (in Section 7.5.4).

7.5.2 Experiments for coarse precision

In this part, we stop the algorithms as soon as Δ:/�★ < 10% and we display in Table 7.1
the number of iterations, the total CPU time, and number of oracle calls to reach this
criterion. These figures illustrates the interest of disaggregation and asynchronicity.
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Indeed, we first see that there is a real difference in computing time between the the
usual level algorithm and the disaggregated ones proposed in this paper: 249s for the
standard level bundle S vs 122s for its disaggregated counterpart SD, and as low as 53s
for the best asynchronous method. We also see that the two asynchronous algorithms
converge quickly compared to the synchronous ones: for example, S converges in 10
(synchronous) iterations which corresponds to 80 oracle calls whereas AC needs 192
oracle calls but its computing time is 5 times lower. We thus observe that synchronous
methods are more reliable (less variance) and asynchronous ones may be faster (as
they have a better use of wall clock time) even though they may compute more (they
make more oracles calls).

Algo # iters � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 time
S 10 10 10 10 10 10 10 10 10 249s

(Alg. 7.1) = 80 ±0 ±0 ±0 ±0 ±0 ±0 ±0 ±0 ± 4s
SD 8 8 8 8 8 8 8 8 8 122s

= 64 ±0 ±0 ±0 ±0 ±0 ±0 ±0 ±0 ± 6s
AU 232 14 18 31 33 33 32 31 32 78s

(Alg. 7.2) ±60 ±6 ±9 ±8 ±9 ±9 ±9 ±9 ±9 ± 39s
AC 192 4 19 28 27 29 28 28 29 53s

(Alg. 7.3) ±50 ±0 ±7 ±8 ±6 ±6 ±7 ±7 ±7 ± 29s

Table 7.1: Comparison of the four algorithms (in terms of number of iterations, number
of oracles calls, and total computing time) in the case of low precision. We report the
average and the standard deviation of the five results.

The two asynchronous algorithms reach the precision more quickly thanks to the
asynchronous bundle information used to improve their lower-bounds, as showed in
Fig. 7.4. In this figure, we see that synchronicity provides tight upper bounds to S and
SD (and frequently w.r.t. the number of oracle calls) but they need more time to get
good lower bounds. The greater variety of cuts added to the disaggregated master sub-
problem (7.6) by asynchronous methods enable them to enjoy better lower bounds than
their synchronous counterparts. To close the gap, the asynchronous methods show
different behaviors on upper-bounds. Indeed, we notice that the upper-bounds used
by AU are weak with respect to the empirical estimation of the associated Lipschitz
constants observed from norms of computed subgradients in AC; see Fig. 7.5. Thus,
the two asynchronous algorithms AU and AC reach the prescribed coarse precision
faster than the synchronous ones, with roughly the same time. However, the loose
upper-bounds in AU make it less competitive as the precision becomes finer.

7.5.3 Experiments with finer precision

For our second experiments, we stop the algorithms whenever Δ:/�★ < 1%. In order
to precise the reach of our methods, we focus here on our flagship asynchronous
algorithm with coordination AC and compare with the synchronous baseline S. We
notably illustrate the impact of the proposed coordination strategy by investigating
two variants of AC: when the test of line 32 is ‘on’ or ‘off’, ‘off’: corresponding to the
case where a coordination is triggered as soon as the previous one has been completed.
In the following table, we again display the average on 5 runs as well as the standard
deviation.

We notice that the asynchronous algorithms achieve a clear speedup compared
to the synchronous bundle. This can be explained intuitively by the fact that the first
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for on representative run of the algorithms. The
two axis (functional values and iterations) are in log-scale.
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Figure 7.5: Estimation of the Lipschitz constants for the oracles: a priori upper bounds
for AU vs. observed norms of computed subgradients.

Algo # iters � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 time
S 20 20 20 20 20 20 20 20 20 390s

(Alg. 7.1) = 160 ±0 ±0 ±0 ±0 ±0 ±0 ±0 ±0 ± 7s
AC 285 6 32 41 40 42 41 41 42 116s

(Alg. 7.3) ±57 ±1 ±10 ±9 ±7 ±7 ±8 ±8 ±8 ± 37s
AC 294 5 32 42 42 45 41 43 44 128s

test off ±91 ±1 ±14 ±12 ±13 ±13 ±13 ±13 ±13 ± 63s

Table 7.2: Comparison of the asynchronous algorithm AC with the baseline S (in terms
of number of iterations, number of oracles calls, and total computing time) in the
case of high precision. We illustrate the impact of the coordination step of line 32
by looking at AC when the test is turned ‘off’. We report the average and standard
deviation on 5 runs.

two oracles are more time consuming than the other (as their associated subproblem is
harder to solve) while they do not contribute proportionally more in the global model.
The asynchronous algorithms thus achieve the sought precision after only 5 or 6 calls
from oracle 1 and around 40 for the others while the synchronous one has to get 20
global calls.

In Fig. 7.6, we plot the values of � low
:

and �up
:

computed along the runs versus
the number of oracle calls. We notice that while the synchronous method improves
iteration by iteration (there are 8 calls per iteration), the asynchronous algorithm
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improves more scarcely but with more significant decreases, often made after receiving
a hard oracle (from #1 or #2). Due to the difference in terms of computational cost
between the workers, one has to keep in mind that the wallclock time cost of a certain
number of oracle calls is smaller in the asynchronous setup, which allows for faster
convergence.
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for S and AC for a representative run.

7.5.4 Experiments with inexact oracles

In this section, we compare our asynchronous algorithms AU and AC with their
on-demand accuracy counterparts from Section 7.4.

We control the accuracy of the oracles by sending to the workers a target precision
along with the trial point. More precisely, at iteration : , we send ^Δ:/� lev: as a target
(relative) precision, used by the worker as the precision-control parameter MIPGap
of Gurobi. The parameter ^ was chosen equal to 0.001 which, given the functional
values, corresponds to a relative precision lowering from 10 in the first iterations to
10−3 in the final steps; compared to a fixed precision of 10−9 for AU and AC. We stop
the algorithms whenever Δ:/�★ < 3%, corresponding to an intermediate precision
compared to the two previous sections. The rest of the setup is exactly the same as in
the previous section.

In Table 7.3, we display the average on 5 runs as well as the standard deviation.
The use of inexact oracles seems to speed-up the convergence of AU and AC both in
terms of wall-clock time and number of oracle calls (with a more even number of calls
across the oracles); this could be due to the fact that larger gaps in the first iterations
would make an exact oracle too expensive for the potential gain in the master bundle.
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Algo # iters � 1 � 1 � 3 � 4 � 5 � 6 � 7 � 8 time
AU 308 14 24 32 40 51 47 49 50 132s

(Alg. 7.2) ±104 ±6 ±11 ±15 ±14 ±15 ±15 ±15 ±15 ± 76s
AU 320 40 40 38 40 41 40 41 41 129s

on-demand ±73 ±10 ±9 ±7 ±9 ±9 ±9 ±10 ±9 ±56s
AC 219 4 18 25 30 36 35 35 37 67s

(Alg. 7.3) ±46 ±1 ±6 ±8 ±6 ±7 ±7 ±7 ±8 ± 26s
AC 97 12 12 11 12 13 12 12 13 14s

on-demand ±9 ±1 ±1 ±2 ±1 ±1 ±1 ±1 ±1 ± 2s

Table 7.3: Comparison of the two asynchronous algorithms and their counterparts
with on-demand accuracy (in terms of number of iterations, number of oracles calls,
and total computing time). We report the average and the standard deviation on 5
runs.

7.6 Concluding remarks

We focused in this chapter on the main ideas that enable to produce efficient (level)
bundle methods from several asynchronous first-order oracles. To our knowledge,
these were the first bundle methods that can address asynchrony efficiently in the
sense that the oracles are tirelessly called upon new points with no idle times nor any
knowledge about the computing system.

We payed a special attention to presenting our study of asynchrony in a com-
prehensive way, by developing i) a disaggregated level bundle method, ii) a simple
fully asynchronous algorithm (requiring additional assumptions), and iii) an advanced
flexible asynchronous algorithm with automatic coordination.

An important finding is that perhaps the central issue in asynchronous bundle is
the generation of valid upper bounds. To do so, we showed that a direct approach
by using a Lipschitz bound on the objective is possible. Nevertheless, this techniques
suffers from the possibly high variance of the points at which the oracle may respond
which makes the method rather sensitive. To overcome this, we got back to the proof
and identified when a the knowledge of the full function value was useful to get a
precise upper-bound. This lead to an algorithm which automatically decides (by a
simple test) when to coordinate the oracles on one point. This does not break our
asynchrony paradigm since the workers are simply given a common for their next
exchange with the master (their current information still being used to enrich the
master sub-problem). This technique practically works better than its synchronous
counter part but also with other strategies that coordinate more often.

Pushing further the reasoning developed in this chapter, it is possible to foresee
several possible improvements: i) dealing with unbounded constraint sets, ii) having
limited memory (bounded storage of information), and iii) coping with mixed-integer
feasible sets and inexact solution of the resulting master program. Another direction
would be to derive a complexity analysis of our methods. However, such a result would
probably be overly pessimistic and not in line with the targeted computing situations.

��
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8 Asynchronous Distributed Optimization

César – Compression de motocycle (1970)

We focus on the asynchronous distributed minimization of objectives that
can be written as a sum of smooth functions, local to each worker,

and a non-smooth function. We first develop an efficient extension of the
proximal gradient to handle asynchronous oracles. Then, building on the
structure analysis carried in Part A, we provide a technique to reduce the
communication cost based on the identification of the optimal sparsity pattern.

This chapter is based on the following publications:
• K. Mishchenko, F. Iutzeler, and J. Malick : A Distributed Flexible Delay-
tolerant Proximal Gradient Algorithm , SIAM Journal on Optimization,
vol. 30, no. 1, pp. 933-959, 2020.

• D. Grishchenko, F. Iutzeler, J. Malick, and M.-R. Amini: Distributed
Learning with Sparse Communications by Identification , SIAM Journal
on Mathematics of Data Science, vol. 3, no. 2, pp. 715-735, 2021.

• K. Mishchenko, F. Iutzeler, J. Malick, M.-R. Amini: A Delay-tolerant
Proximal-Gradient Algorithm for Distributed Learning, 35-th Interna-
tional Conference on Machine Learning (ICML), PMLR 80:3584-3592,
Stockholm (Sweden), July 2018.
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In this chapter, we will consider a particular case of (PB) where the functions � 8 at
the workers are of the form

� 8 (G) ∝ 5 8 (G) + 6(G)

where 5 8 is a local smooth function and 6 is a global nonsmooth function. This setting
typically arises in machine and signal processing where 5 8 may represent a local loss
and 6 a non-smooth regularizer that imposes some structure on optimal solutions, as
discussed in Part A.

In this chapter, we consider that the" workers can compute:
• the gradient of their local function ∇5 8 ;
• the proximity operator of the common nonsmooth function prox6;

while a coordinator handles the communication between the agents. We focus in
particular on the setup where (i) the workers’ functions differ in their values and the
computational complexity of their local oracles (e.g. due to non-i.i.d. unbalanced local
datasets in a learning scenario); (ii) the communications between workers and the co-
ordinator are time-consuming (e.g. due to scarce availability or slow communications).
This implies that we need to pay a special attention to the delays of workers’ updates.

In this distributed setting, we provide an asynchronous proximal gradient algo-
rithm and the associated analysis that adapts to local functions’ parameters and can
handle any kind of delays. In order to subsume delays, we develop an epoch-based
mathematical analysis, encompassing computation times and communication delays,
to refocus the theory on algorithmics.

8.1 Distributed Averaging of (Repeated) Proximal Gradi-
ent steps

Formally, we will consider functions � 8 of the form

� 8 (G) = 1

"

(
5 8 (G) + 6(G)

)
which corresponds to a global objective with an additive smooth structure plus a
nonsmooth part

min
G ∈ℝ=

� (G) :=
"∑
8=1

� 8 (G) = 1

"

"∑
8=1

5 8 (G) + 6(G). (PB−8)

We make the following blanket assumption.

Assumption 8.1. For each 8 = 1, .., " , the function 5 8 : ℝ= → ℝ is `8 -strongly convex
and !8 -smooth. The function6 : ℝ= → ℝ is convex, proper, and lower semi-continuous.

This corresponds to the general case where the agents’ (smooth) functions may
differ across the agents, for instance if they have different types of objectives or different
number of examples. In this case, it is important that they can choose different stepsizes
as we will do in this section.

When the agents’ (smooth) functions are similar and only the number of examples
change, a single stepsize strategy can be alternatively adopted by directly rescaling
the functions and considering a weighted average of these new objectives. This case is
considered in Section 8.3.2.
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In this section, we present the proposed DAve-RPG algorithm, where DAve stands
for the global communication scheme based on distributed averaging of iterates, and
RPG stands for the local optimization scheme, based on repeated proximal-gradient
steps. We start by presenting the generic coordinator worker setting and associated
notations.

8.1.1 Asynchronous Coordinator–Worker Framework

In order to analyze our methods in the asynchronous setup common to this part, we
adopt the following notations. As before, we call iteration/time : , the moment of the
:-th exchange between a worker and the coordinator, or, equivalently, the :-th time
the coordinator has updated its coordinator variable. However, we will now handle
the delays more explicitly: we denote by 38

:
the delay for 8 at time : , i.e. the number

of coordinator updates since worker 8’s last exchange with the coordinator. More
precisely, at time : , the updating worker 8 = 8: suffers no delay (in terms of update
in the coordinator variable), i.e. 38

:
= 0, while the delays of the other workers are

incremented (3 9
:
= 3

9

:−1 + 1 for all 9 ≠ 8: ). In addition, we denote by �8
:
the relative

delay from the penultimate update, mathematically defined as � 9

:
= 3

9

:
+ 3 9

:−3 9

:
−1
+ 1

for worker 9 and time : ; see Fig. 8.1.

G: = G:−1 + Δ

Master

(∇5 1, prox6)
1

Worker 1

… (∇5 8 , prox6)
8 → Δ

Worker 8

… (∇5" , prox6)
"

Worker"

Δ G:8 = 8:

time
updating worker 8 = 8: 8

: = : − 38
:

8

: − �8
:

88

time
other worker 9 ≠ 8:

:

9

: − 3
9

:

9

�
9

:

99

Figure 8.1: Asynchronous distributed setting and delays notations at iteration : .

As mentioned in the introduction to this part, we do not assume that the delays
are uniformly bounded.

8.1.2 DAve Communication scheme

Our communication scheme is based on maintaining at the coordinator the weighted
average of the most updated parameters of the workers. At time : , worker 8 = 8:
finishes the computation of a new local parameter G8

:
and the corresponding adjustment

Δ corresponding to theweighted difference between its new and former local parameter.
As soon as the computation is finished, this adjustment is sent to the coordinator
node which, in turn, adds it to its coordinator parameter G: . The coordinator then
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immediately sends back this parameter to worker 8 , which can begin a new computation
step. During the updates, the coordinator variable is “locked” (see e.g. the description
of (Peng et al., 2016)), guaranteeing read/write consistency. This way, the workers can
compute their updates without interrupting or waiting for each other.

Mathematically, at each time : , one has

G: = G:−1 + Δ with Δ = c8 (G8
:
− G8

:−�8
:

) for 8 = 8:

thus, G: =

"∑
8=1

c8G8
:−38

:

=

"∑
8=1

c8
8
(G:−�8

:
) (8.1)

where
8
represents the computation of worker 8 (see Fig. 8.1) and the (c8 )8=1,..," are

the weights of the workers contributions. These weights are positive real numbers
such that

∑"
8=1 c

8 = 1 and are kept fixed over time.5555As we will see next, their values
are derived from the optimality

conditions of (PB−8) and the
workers computation. In this

chapter, the agents will perform

(proximal) gradient steps (
8

=
proximal gradient step on 5 8 + 6)

which leads to the weights given by
(8.3).

We see in Eq. (8.1) that G: depends on local parameters (G8
:−38

:

)8 , which themselves
were computed using (once more delayed) global parameters (G:−�8

:
)8 . We note that

this idea of averaging iterates has also been used in the different context of variance
reduction in incremental methods (Defazio et al., 2014b; Mokhtari et al., 2018). This
means that the contribution of each worker in the coordinator variable stays fixed
over time even if one worker updates much more frequently than the others. Though
this simple idea might be counterproductive in other contexts, it allows the algorithm
to cope with heterogeneity in the computing system such as data distribution and
agents delays. Roughly speaking, in standard approaches, if an agent has very outdated
information, the output of its computation can lead to a counter-productive change,
generating instability in the algorithm; keeping a fixed average of the contributions
offers a counterbalance to such drastic updates. This phenomenon is illustrated in
the case where the agents computations are gradients steps in Section 8.1.4, notably
through Figs. 8.2 and 8.3.

8.1.3 Optimization scheme: Repeated Proximal Gradient RPG

As the problem features a smooth and a non-smooth part, it is natural that the workers
use proximal gradient steps. Furthermore, we allow the repetition of local proximal
gradient steps before exchanging with the coordinator, for higher flexibility in the
computing time between two exchanges. We present our RPG scheme in 3 stages,
explaining the three letters of the name. For more readability, we consider a generic
worker 8 and time : when 8 = 8: is the exchanging worker (as represented in Fig. 8.1).
� G. If 6 ≡ 0, then each worker may perform a simple gradient step on the last

coordinator parameter received G:−�8
:
:

G8
:
← G:−�8

:
− W8∇5 8 (G:−�8

:
), Δ← c8

(
G8
:
− G8

:−�8
:

)
(8.2)

where W8 is the local stepsize at worker 8 (related only to function 5 8 ) and

c8 :=

1
W8∑"
9=1

1
W 9

(8.3)

is the proportion of worker 8’s contribution, necessary to converge to the correct point.



8.1 Distributed Averaging of (Repeated) Proximal Gradient steps 151

� PG. For a general non-smooth convex function 6, one can extend (8.2) using a
proximity operator. However, contrary to direct intuition, the proximity operator has
to be computed first, leading to a temporary variable D, on which is taken the gradient
step before exchanging:56 56Actually, this is simply due to the

fact that the proximity operator of
(G1, .., G" ) ↦→
]G1=..=G" (G1, .., G" ) +

∑"

=81
6 (G8 )

is prox6 (G) where G is the average
of the (G8 ) . Hence, the proximity
operator of 6 has to be computed
just after the averaging step.

D ← proxW6 (G:−�8
:
), G8

:
← D − W8∇5 8 (D), Δ← c8

(
G8
:
− G8

:−�8
:

)
(8.4)

with W being the coordinator stepsize appearing in all proximity operators:

W :=
"∑"
8=1

1
W8

(8.5)

equal to the harmonic average of the local stepsizes. Note that our algorithm allows for
different local stepsizes, which simplifies parameters tuning as it can be done locally.
Then, the proximity operators have to be taken with a separate coordinator stepsize.
� RPG. Once all computations of iteration (8.4) are done, the worker could send

the adjustment Δ to the coordinator and get G: in response. However, the difference
between the latest G: and G:−�8

:
may be small, so the worker would only gain little

information from a new exchange. Thus, instead of communicating right away, we
suggest to perform additional proximal gradient updates by taking as the starting
point G:−�8

:
+ Δ. The motivation behind this repetition is to lower the burden of

communications and to focus on computing good updates. We will prove later that
there is no restriction on the number of repetitions (called ? in the algorithm), as any
value can be chosen and it can vary freely both across machines and over time.

Our full method DAve-RPG is displayed as Algorithm 8.1.57 57To prepare for following
developments, we explicitly
mention an abstract stopping test C
in the algorithm. Moreover, one
can notice that only the iterates at
the coordinator are numbered. This
is to reflect that the master updates
are the actions that trigger a new
iteration, the notion of iteration has
no real meaning on the worker side.

Algorithm 8.1 DAve-RPG for (PB−8)

Coordinator:

1: Initialize G = G0, : = 0
2: while test C not verified do
3: Receive adjustment Δ: from

worker 8:
4: G: = G:−1 + Δ:
5: Send G: to the worker in return
6: : ← : + 1
7: end while
8: Interrupt all workers
9: Output G: = proxW6 (G: )

Worker 8:

1: Initialize G = G8 = G

2: while not interrupted by coordina-
tor do

3: Receive G from the coordinator
4: Select a number of repetitions ?
5: Δ← 0
6: for @ = 1, .., ? do
7: D ← proxW6 (G + Δ)
8: ~ ← D − W8∇5 8 (D)
9: Δ← Δ + c8 (~ − G)
10: G ← ~

11: end for
12: Send adjustment Δ to the coordi-

nator
13: end while
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8.1.4 Comparison between our averaging and other incremental method

Our algorithm performs a distributed minimization of the composite problem (PB−8) by
aggregating the agents contributions. It is closely related to the proximal incremental
aggregated gradient (PIAG) method (Aytekin et al., 2016; Vanli et al., 2018). We can
compare the update of PIAG with the one of G: = proxW6 (G: ) for DAve-PG (with one
repetition, ? = 1).5858For the coordinator, the iteration

: reads G: = proxW6 (G: ) where
G: is the average of the last update

of each worker: G: =
∑"

8=1 c
8G8

:

(see Eq. (8.1)). For each worker 8 , G8
:

is the result of the last gradient step
performed by this worker on its

local function:
G8
:
= G

:−�8
:
− W8∇5 8 (G

:−�8
:
) (see

Eq. (8.2)). Putting it all together, we
get G: = proxW6 (

∑"
8=1 c

8G
:−�8

:
−∑"

8=1 c
8W8∇5 8 (G

:−�8
:
)) . Finally,

this expression can be simplified by
noticing that c8W8 = W/" (see

Eqs. (8.3) and (8.5)).

DAve-PG PIAG

G: = proxW6

(∑"
8=1 c

8G:−�8
:
−∑"

8=1 c
8W8∇5 8 (G:−�8

:
)
)

G: = proxW6

(
G:−1 − W 1

"

∑"
8=1 ∇5 8 (G:−�8

:
)
)

= proxW6

(∑"
8=1 c

8G:−�8
:
− W 1

"

∑"
8=1 ∇5 8 (G:−�8

:
)
)

These two algorithms are separated by a major difference: PIAG performs an
aggregated delayed gradient descent from the most recent main variable G:−1 and uses
all gradients regardless of corresponding delays. Clearly, if one gradient has not been
updated for long time, this update rule may be harmful. On the other hand, DAve-
(R)PG performs a similar aggregated delayed gradient descent (with more adaptive
local stepsizes) but from the averaged main point G̃:−1 :=

∑"
8=1 c

8G:−�8
:
. This more

conservative update prevents instabilities in the case where some worker is silent for
too long, and, thus, is more robust. See Fig. 8.2 for a geometrical illustration.

This difference is intuitively the same as the one between e.g. SAG (Schmidt et al.,
2017) and MISO (Mairal, 2015) in the context of variance-reduced stochastic gradients.
In these methods, one agent is sampled, returns its gradient, and the sum of the last
computed gradients is used as a direction. The main difference between SAG and MISO
is that this direction is respectively applied to the last (as PIAG), or the average point
(as DAve-PG).

•G2•G3 •G1• G̃3

Figure 8.2: Let the gray ellipses be the level-sets of a smooth function. In red are
represented three iterates (G: ):=1,2,3 and their associated descent directions (taken as
the opposite of the gradients computed at these points). The blue dots represent the
averaged point G̃3 = (G1 +G2 +G3)/3, while the blue vectors both represent the average
of the associated descent directions. We notice that in that situation, descending along
the averaged gradient is much more interesting from the averaged point G̃3 than from
the last point G3.

In terms of theoretical results, this conservative approach allows us to get stronger
convergence results and better rates as derived in the next section:

• the stepsize of PIAG, and thus its rate, depends heavily on the maximal delays
whereas our stepsize does not depend on any form of delays;

• PIAG’s stepsize is global and thus cannot adapt to each of the workers local
functions, while we use locally adapted stepsizes;
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• no version of PIAG exists with multiple proximal gradient steps before exchang-
ing with the coordinator.

In terms of performance, before more thorough comparisons, Fig. 8.3 gives an
illustration of the benefits of the averaged approach in terms of iterates behavior. In
this plot, we consider two runs of DAve-RPG and PIAG applied to a two dimensional
problem where one of the 5 functions/workers takes 10 times as much time to compute
its update as the other workers and consequently produces more delayed updates.
The objective used is a sum of 5 quadratics centered around different points and the
initial point is (-20, -20) in all cases. Although the stepsize used for PIAG was 10 times
smaller (due to its dependence to the delays), the iterates produced by PIAG show
chaotic deviations from the optimal point while DAve-RPG steadily converges to the
optimum.

Figure 8.3: Two runs of a two dimensional example with " = 5 and one worker
suffering long delays.

8.2 Analysis

8.2.1 Revisiting the clock

To the best of our knowledge, all papers on asynchronous distributed methods (except
(Hannah and Yin, 2016, 2017; Sun et al., 2017)) assume that delays are uniformly upper
bounded by a constant. Moreover, the maximum stepsize is usually highly dependent
on this upper bound. In the upcoming results, we show that our algorithm DAve-RPG
converges without assuming bounded delays and with the stepsizes depending only
on local smoothness and convexity of the functions.

The forthcoming results are based on the careful definition of an epoch sequence
along which we investigate the improvement of our algorithm (rather than looking at
the improvement per iteration).

We define our epochs sequence (:ℓ )ℓ by setting :0 = 0 and the recursion:

:ℓ+1 = min{: : each machine made at least 2 updates on the interval [:ℓ , :]}
= min{: : : − �8

:
≥ :ℓ for all 8 = 1, .., "}.

In words, :ℓ is the first moment when all workers have updated twice since :ℓ−1.
This is illustrated by Fig. 8.4. Thus, :ℓ is the first moment when G: no longer depends
directly on information from moments before :ℓ−1. Indeed, we have G: =

∑
8 c

8G8
:−38

:

and G8
:−38

:

was computed using G:−�8
:
.
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1

2

3

Workers ↓ = 1 update

:0 :1 :2
iterations

:ℓ−1 :ℓ

Figure 8.4: Illustration of the epoch sequence for " = 3 workers. Each circle corre-
sponds to one update, i.e. one iteration.

Note that we always have :ℓ ≥ 2" − 1. Furthermore, in the degenerate case when
" = 1, the epoch sequence corresponds to the time sequence: we have :ℓ = ℓ , because
on the interval [ℓ, ℓ + 1] there are exactly two updates of the only worker. In addition,
we will assume that the number of epochs goes to infinity, i.e. all workers eventually
respond, in order to get convergence (which is Assumption 1.1 in Chap. 6 of (Bertsekas
and Tsitsiklis, 1989) for totally asynchronous algorithms).

8.2.2 Preliminary: local iterations

To understand why the algorithm converges as a whole, let us first take a close look at
how one local iteration of RPG enables iterates to get closer to a local solution. Indeed,
a special property of the algorithm is that local variables (G8

:
) do not converge to the

same value as the coordinator variable G: . In contrast, they go to the local shifted
optimal point G★@8 := G★ − W8∇5 8 (G★).

At worker 8 and time : , G8
:
= G8

:−38
:

was obtained by ? = ? (8, : − 38
:
) repetitions of

proximal gradient. Starting with the reception of G:−�8
:
and initializing Δ(0) = 0, the

? local iterations (indexed by subscripts with parentheses) are obtained by

D (@) = proxW6 (G:−�8
:
+ Δ(@−1) ),

G8(@) = D (@) − W
8∇5 8 (D (@) )

Δ(@) = Δ(@−1) + c8
(
G8(@) − G

8
(@−1)

)
for @ = 1, .., ? . Then, G8

:−�8
:

= G8(?) and Δ:−38
:
= Δ(?) .

The next lemma is fundamental to the analysis of our algorithm. It describes how
the local computations go towards their own local shifted optimal point, compared to

a: := max

(

G: − G★

2 , 


G\8:: − G★\8: 


2) ,
where 8: is the updating agent at time : and

G★ =

"∑
8=1

c8G★@8 , G
\8
:
=

1

1 − c8
∑
9≠8

c 9G
9

:
, G★\8 =

1

1 − c8
∑
9≠8

c 9G★@9 .

In addition, we have that G★ = proxW6 (G★) by first-order optimality conditions of
Problem (PB−8).
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Lemma 8.2. Let 5 8 be convex and !8 -smooth, 6 be convex lower semi-continuous. Then,
with W8 ∈ (0, 2/!8 ), we have for any : and any number of repetitions

G8

:
− G★@8



2 ≤ a:−�8
:
− W8

(
2

!8
− W8

) 

∇5 8 (D (?) ) − ∇5 8 (G★)

2
where D (?) is such that G8

:
= D (?) − W8∇5 8 (D (?) ).

Furthermore, if 5 8 is additionally `8 -strongly convex. Then, with W8 ∈ (0, 2/(!8 + `8 )], we
have for any : that after ?8

:
repetitions

G8

:
− G★@8



2 ≤ (
1 − W8`8

) 2
68 (?8

:
)2 a:−�8

:

with 68 (?) = 1 − W8`8 ∑?−1
@=1 (1 − W8`8 )@−1 (c8 )@ .

Proof. First, as 5 8 is `8 -strongly convex and !8 smooth, we have that for any @ = 1, .., ?
(see Eq. (2.13) in Lemma 2.34),

G (@) − G★@8

2 =



D (?) − W8∇5 8 (D (@) ) − (G★ − W8∇5 8 (G★))

2
≤

(
1 − 2W8`8!8

`8 + !8

) 

D (@) − G★

2 − W8 ( 2

`8 + !8 − W
8

) 

∇5 8 (D (@) ) − ∇5 8 (G★)

2 (8.6)

≤
[ (
1 − 2W8`8!8

`8 + !8

)
− `2W8

(
2

`8 + !8 − W
8

) ] 

D (@) − G★

2
= (1 − W8`8 )2



D (@) − G★

2 . (8.7)

Then, for @ = 1, we have by non-expansivity of the proximity operator that



D (1) − G★

2 ≤ 


G:−�8
:
− G★




2
which completes the proof for ? = 1. Going further, for @ ≥ 2, non-expansivity and
Jensen’s inequality yield



D (@) − G★

2 ≤ 


G:−�8
:
+ Δ(@−1) − G★




2
=






c8 (G (@−1) − G★@8 ) +∑
9≠8

c 9
(
G
9

:−�8
:

− G★@9
) 




2

=





c8 (G (@−1) − G★@8 ) + (1 − c8 ) (G\8:−�8
:

− G★\8
) 



2

≤ c8


G (@−1) − G★@8

2 + (1 − c8 ) 



G\8:−�8

:

− G★\8




2 .

Then by induction, using the triangle inequality instead of convexity, one gets that
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for ? ≥ 2 (and using a8 = (1 − W8`8 )c8 )



D (?) − G★

 ≤ c8 

G (?−1) − G★@8

 + (1 − c8 ) 



G\8:−�8
:

− G★\8






≤ a8


D (?−1) − G★

 + (1 − c8 )√a:−�8

:

≤ a8(?−1)


D (1) − G★

 + [

?−1∑
@=1

a8(@−1) (1 − c
8 )
] √

a:−�8
:

≤ a8(?−1)



G:−�8

:
− G★




 + [
?−1∑
@=1

a8(@−1) (1 − c
8 )
] √

a:−�8
:

≤ a8(?−1)
√
a:−�8

:
+

[
?−1∑
@=1

a8(@−1) (1 − c
8 )
] √

a:−�8
:

=

[
a8(?−1) +

?−2∑
@=0

a8(@) −
1

1 − W8`8
?−1∑
@=1

a8(@)

] √
a:−�8

:

=

[
1 − W8`8

1 − W8`8
?−1∑
@=1

a8(@)

]
︸                        ︷︷                        ︸

:=68 (?)

√
a:−�8

:

noting that 8 = 8:−�8
:
was updating at time:−�8

:
by definition. Using the last inequality

on top of (8.6) or (8.7) leads to the claim, noting that68 (?) = 1 for all ? when `8 = 0. �

8.2.3 Convergence results

In this section, we analyze the convergence of our algorithm in the strongly convex
case.5959Lemma 8.2 also enables to show

the convergence and a sublinear
rate in the (non-strongly) convex
case as presented in (Mishchenko
et al., 2020) and discussed quickly

in Section 8.3.1.

Our results allow us to choose the same stepsize as for vanilla gradient descent
(without any dependence on the delays). The derived rates involve the number of
epochs rather than the number of iterations. In Section 8.2.4, we will examine how
these rates translate in terms of number of iteration when the delays are bounded in
order to compare with the literature.
Theorem 8.3. Let Assumption 8.1 hold. UsingW8 ∈ (0, 2

`8+!8 ], DAve-RPG (Algorithm 8.1)
converges linearly to the solution of (PB−8) on the epoch sequence (:ℓ ). More precisely,
for all : ∈ [:ℓ , :ℓ+1)

G: − G★

2 ≤ (

1 −min
8
W8`8

) 2ℓ
max
8



G80 − G★@8

2 ,
with the shifted local solutions G★@8 = G★ − W8∇5 8 (G★).

Proof. First, for any 8 and any : ∈ [:ℓ , :ℓ+1), we have from Lemma 8.2

G8
:
− G★@8



2 = (1 − W8`8 )268 (?8
:
)2 a:−�8

:
≤ (1 − V)2 a:−�8

:
,



8.2 Analysis 157

with V := min8 W
8`8 . Thus, for any : ∈ [:ℓ ;:ℓ+1),

G: − G★

2 ≤ "∑

8=1

c8 ‖G8
:
− G★@8 ‖2 =

"∑
8=1

c8 ‖G8
:−38

:

− G★@8 ‖2

≤ (1 − V)2
"∑
8=1

c8a:−�8
:
≤ (1 − V)2 max

8
a:−�8

:

Similarly, for any 9


G\9
:
− G★\9




2 ≤ (1 − c 9 )−1 ∑
8≠9

c8



G8
:−38

:

− G★@8



2 ≤ (1 − V)2 max

8
a:−�8

:
.

Finally, we get

a: ≤ (1 − V) 2 max
8

a:−�8
:

which is the workhorse for the rest of the proof.
Let ℓ > 0 and : ∈ [:ℓ , :ℓ+1), then the definition of the epoch sequence (:ℓ ) gives

: − �8
:
≥ :ℓ−1 and then

a: ≤ (1 − V) 2 max
8

a:−�8
:
≤ (1 − V) 2 max

:′∈[:ℓ−1,:)
a:′

and applying this inequality sequentially to :ℓ , :ℓ + 1, . . . , :ℓ+1 − 1, we get

a:ℓ ≤ (1 − V)2 max
:′∈[:ℓ−1,:ℓ )

a:′, (8.8)

a:ℓ+1 ≤ (1 − V)2 max

(
max

:′∈[:ℓ−1,:ℓ )
a:′, a:ℓ

)
≤ (1 − V)2 max

:′∈[:ℓ−1,:ℓ )
a:′ (using Eq. (8.8))

...

max
:∈[:ℓ ,:ℓ+1)

a: ≤ (1 − V)2 max
:′∈[:ℓ−1,:ℓ )

a:′

≤ (1 − V)2ℓ max
:′<:0

a:′ ≤ (1 − V)2ℓ max
8



G80 − G★@8

2 .
Finally, since the proximity operator of a convex function is non-expansive, we have
for all : ∈ [:ℓ ;:ℓ+1),

‖G: − G★‖2 = ‖proxW6 (G: ) − proxW6 (G★)‖2 ≤ ‖G: − G★‖2

≤ max
:∈[:ℓ ,:ℓ+1)

a: ≤ (1 − V)2ℓ max
8



G80 − G★@8

2
which concludes the proof. �

Notice that the rate provided by this theorem is valid for any choice of number
of local iterations at any worker/time. The local contraction at agent 8 can indeed be
improved by doing ? local repetitions by a factor

A 8 (?) = 1 − W8`8
?−1∑
@=1

(1 − W8`8 )@−1 (c8 )@ = 1 − W8`8c8 1 − (1 − W
8`8 )?−1 (c8 )?−1

1 − (1 − W8`8 )c8
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where A 8 (1) = 1 and A 8 is decreasing with ? and lower-bounded by

A 8 (∞) = 1 − W8`8c8

1 − (1 − W8`8 )c8 .

If all workers, or at least the ones with the slowest rates, perform several local
iterations, the rate can thus be improved from (1 −min8 W

8`8 )2 to

max
8,:

(
1 − W8`8

) 2
A 8 (?8

:
)2 .

However, local iterations practically slow down the actual time between two
epochs thus the number of local repetitions have to be carefully tuned in practice. The
flexibility allowed by our algorithm enables a wide range of selection strategies such
as online tuning, stopping the local iterations after some fixed time, etc.

8.2.4 Comparison of the results with the literature

The main feature of the epoch sequence introduced in Section 8.2.1 is that it automati-
cally adapts to variations of behaviors of machines across time (such as one worker
being slow at first that gets faster with time). The sequence then allows for a intrinsic
convergence analysis without any knowledge of the delays, as shown in the previous
sections. This simple but powerful remark is one of the main technical contributions
of this paper.

For comparisons with the literature, the following result provides explicit connec-
tions between number of iterations and number of epochs with two standard bounds
on delays uniformly in time.

Proposition 8.4 (epoch scaling with delays). For" > 1 machines,6060For" = 1 machine, we have
:ℓ = ℓ as mentioned in Section 8.2.1

and we recover exactly the
convergence rates of the vanilla

proximal gradient.

uniformly over
time:

• if the delays are uniformly bounded by 3 over the workers, i.e. 38
:
≤ 3 for all 8 ,

then 3 ≥ " and the epoch sequence has complexity :ℓ = O(ℓ");
• if the average delay is bounded by 3 , i.e. 1/" ∑"

8=1 3
8
:
≤ 3 , then 3 ≥ (" − 1)/2

and the epoch sequence has complexity :ℓ = O(ℓ").

uniform bound average bound

Condition 38
:
≤ 3 for all 8 1

"

∑"
8=1 3

8
:
≤ 3

Unimprov. bound 3 = " + g ; g ≥ 0 3 = "−1
2 + g ; g ≥ 0

1 Epoch :ℓ+1 − :ℓ ≤ 23 + 1 :ℓ+1 − :ℓ ≤ 2" (23 −" + 3) − 3

Epoch sequence :ℓ ≤ (2" + 2g + 1)ℓ :ℓ ≤ 4" (g + 1)ℓ

Bounding the average delay among the workers is an attractive assumption which
is however much less common in the literature. The defined epoch sequence and
associated analysis subsumes this kind of assumption.

In the case of uniformly bounded delays, the derived link between epoch and time
sequence enables us to compare our rates in the strongly convex case (Theorem 8.3)
with the ones obtained for PIAG (Aytekin et al., 2016; Vanli et al., 2016, 2018). To
simply the comparison, let us consider the case where all the workers share the same
strong convexity and smoothness constants ` and !. The first thing to notice is that
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the admissible stepsize for PIAG depends on the delays’ uniform upper bound 3 which
is practically concerning, while the usual proximal gradient stepsizes are used for the
proposed DAve-RPG. Using the optimal stepsizes in each case, the convergence rates
in terms of time : are:

DAve-RPG PIAG

Reference Th. 8.3 Th. 3.4 of (Vanli et al., 2016)

Stepsize W = 2
`+! W = 16

`

[
(1 + `

48! )
1

3+1 − 1
]

Rate
(
1 − 2

1+ !
`

) :
3+0.5

(
1 − 1

49 !
`

) :
3+1

We notice in both cases the exponent inversely proportional to the maximal delay
3 but the term inside the parenthesis is a hundred times closer to 1 for PIAG. Even if
our algorithm is made for handling the flexible delays, this comparison illustrates the
interest of our approach over PIAG for distributed asynchronous optimization in the
case of bounded delays.

8.3 Extensions and Further developments

8.3.1 About the proof techniques & assumptions

The proof above illustrates our technique for encompassing delays without treating
them as noise. What we lose in counterpart is that we only consider one update per
agent and epoch while there could be many more. However, since in one epoch the
slowest agent updates exactly twice, we claim that this loss is reasonable with respect
to the whole objective.

The proof is heavily based on maintaining the average of the users contribution
and then directly working on the local improvements of the users towards their
shifted minimizers. This work on the iterates is inspired by the monotone operators’
theory, and thus necessitates convexity. However, strong convexity is not required for
convergence. We have shown the following result in (Mishchenko et al., 2020).
Theorem 8.5. Let the (5 8 ) be convex !8-smooth, 6 be convex lower semi-continuous,
and W8 ∈ (0, 2/!8 ). Then, if G★ is the unique minimizer of (PB−8), the sequence (G: )
converges to G★. Moreover, if Problem (PB−8) has multiples minimizers, then (G: ) still
converges to a minimizer of (PB−8), under two additional assumptions: (i) the difference
between two consecutive epochs :ℓ − :ℓ−1 is uniformly bounded; and (ii) the number of
inner loops is uniformly bounded.
Furthermore, for any : ∈ [:ℓ , :ℓ+1), we have

min
:′≤:

‖m� (G:′)‖ ≤
2
√
2
√
ℓ

max8


G80 − G★@8



min9

(
W 9

√
2 − W 9! 9

) ,
where ‖m� (G:′)‖ B minℎ∈1/" ∑

8 ∇5 8 (G:′ )+m6 (G:′ ) ‖ℎ‖.

8.3.2 The special case of similar functions

Let us now focus on the case when the smooth functions � 8 are similar in the sense
that they have similar conditioning. In this case, we can rescale them so that they have
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similar smoothness and strong convexity parameters.
The typical application we can have in mind is when the agents have empirical

losses of the form
∑
9 ∈S8< ℓ (1 9 , %G (a9 )) on a local dataset S8< .

Thus, we will now consider the case where the workers functions are of the form

� 8 (G) = U8
(
5 8 (G) + 6(G)

)
with U8 ∈ (0, 1) and ∑"

8=1 U
8 = 1. This leads to a slightly different global objective

min
G ∈ℝ=

� (G) :=
"∑
8=1

� 8 (G) =
"∑
8=1

U8 5 8 (G) + 6(G) (P ′B−8)

and a different kind of assumption with common smoothness and strong convexity
parameters.

Assumption 8.6. For each 8 = 1, .., " , the function 5 8 : ℝ= → ℝ is `-strongly convex
and !-smooth; the function 6 : ℝ= → ℝ is convex, proper, and lower semi-continuous.

Then, Algorithm 8.1 can be quite directly changed by replacing the c8 by U8 and
taking the same stepsize everywhere.

Algorithm 8.2 DAve-RPG for (P ′B−8)

Coordinator:

1: Initialize G = G0, : = 0
2: while test C not verified do
3: Receive adjustment Δ: from

worker 8:
4: G: = G:−1 + Δ:
5: Send G: to the worker in return
6: : ← : + 1
7: end while
8: Interrupt all workers
9: Output G: = proxW6 (G: )

Worker 8:

1: Initialize G = G8 = G

2: while not interrupted by coordina-
tor do

3: Receive G from the coordinator
4: Select a number of repetitions ?
5: Δ← 0
6: for @ = 1, .., ? do
7: D ← proxW6 (G + Δ)
8: ~ ← D − W∇5 8 (D)
9: Δ← Δ + U8 (~ − G)
10: G ← ~

11: end for
12: Send adjustment Δ to the coordi-

nator
13: end while

Then, Lemma 8.2 and Theorem 8.3 can be slightly modified to get the following
result (see (Mishchenko et al., 2018) for details).
Theorem 8.7. Let Assumption 8.6 hold. Using W ∈ (0, 2

`+! ], DAve-RPG (Algorithm 8.2)
converges linearly to the solution of (P ′B−8) on the epoch sequence (:ℓ ). More precisely,
for all : ∈ [:ℓ , :ℓ+1) 

G: − G★

2 ≤ (1 − W`) 2ℓ max

8



G80 − G★@8

2 ,
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with the shifted local solutions G★@8 = G★ − W∇5 8 (G★).

8.3.3 On the communications

Communications are of utmost importance in computing networks. In the previous
sections, we insisted on the fact that asynchronous exchanges can be managed. Now,
the communications can also be reduced.

Scarse communications

We actually have the additional feature that multiple “local steps” can be performed
before exchanging with the coordinator. This means that our method has the possibility
to adapt not too often and this will even improve the actual rate in terms of epochs.
However, the gain is not clear in terms of wallclock time is highly system-dependent
(since the epochs durations are longer).

Sparse communications

We saw in Part A that proximity operators could bring structure (e.g. sparsity) to
the iterates. This structure could then be used to encode the vectors communicated
between the coordinator and some worker. Unfortunately, in either Algorithm 8.1 or
Algorithm 8.2, the “gradients” are communicated, not the proximity operator output.

This can be remediated when we restrict ourselves to 1 local repetition. Indeed,
in that case, the “average point” G is not needed anymore on the worker side, only
proxW6 (G) is required (U8 is not need either on the worker side). We display this
modification in Algorithm 8.3.

This way, the communications from the coordinator to the worker will be become
structured as described in Chapter 3 as per the following result.
Theorem 8.8. Let Assumption 8.6 hold. Suppose that G★ belongs to some manifoldM
and that (G: ) is a sequence produced by DAve-PG (Algorithm 8.3) with W ∈ (0, 2

`+! ]. If:
1) there is Y > 0 such that

for all ~ ∈ B(G★, Y), proxW6 (~) ∈ M, (PQC)

or 2) 6 is partly-smooth relative toM at G★ and

0 ∈ ri m� (G★) (SQC)

then, after some finite time number of epochs, G: ∈ M.

Proof. By observing the end of the proof of Theorem 8.3, we observe that (G: ) con-
verges to G★ as ℓ goes to infinity and that G: = proxW6 (G: ). The result with the first
set of assumptions is then a direct application of Theorem 3.2 while the second set of
assumptions comes from Corollary 3.15. �
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Algorithm 8.3 DAve-PG for (P ′B−8)

Coordinator:

1: Initialize G = G0, : = 0
2: while test C not verified do
3: Receive adjustment Δ: from

worker 8:
4: G: = G:−1 + U8:Δ:
5: G: = proxW6 (G: )
6: Send G: to the worker in return
7: : ← : + 1
8: end while
9: Interrupt all workers
10: Output G:

Worker 8:

1: Initialize G = G8

2: while not interrupted by coordina-
tor do

3: Receive G from the coordinator
4: ~ ← G − W∇5 8 (G)
5: Δ← ~ − G8
6: G8 ← ~

7: Send adjustment Δ to the coordi-
nator

8: end while

Thus, by encoding appropriately the exchanges from the coordinator to the workers
(typically by encoding for sparse vectors), the communication cost can be reduced
without any performance loss.

A natural follow-up is thus whether the communication from the workers to the
coordinator can also be reduced by some form sparsification, keeping in mind the
adaptive sparsification concepts from Chapter 5.

8.4 Exchanges reduction for sparse problems

In this section, we will focus on sparsity inducing nonsmooth functions for 6.6161As in Chapter 5, our results do
not rely on separability and can

thus encompass various functions. 8.4.1 Random sparsification of the workers updates

A direct approach to reduce the worker to coordinator exchanges in DAve-PG is
to update only a random subset of the coordinates. Mathematically, at iteration : ,
the random subset of entries that worker 8: updates is denoted by Y:−�8

:
(in bold,

emphasizing that it is the only random variable in the algorithm, the time index : − �8
:

meaning that it is drawn just after G:−�8
:
is computed). The update writes

G
8 [ 9 ]
:

=


(
G:−�8

:
− W∇5 8 (G:−�8

:
)
) [ 9 ]

if

������ 8 = 8:9 ∈ Y:−�8
:

G
8 [ 9 ]
:−1 otherwise

G: = proxW6 (G: ) with G: =

"∑
8=1

U8G8
:
,

where G8 [ 9 ]
:

denotes the 9 coordinate of G local at worker 8 at time : .
With this sparsification, the local updates correspond to a random block coordinate

descent step for the workers. However, this algorithm does not boil down to an
asynchronous stochastic block-coordinate descent algorithm such as (Liu et al., 2015;
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Peng et al., 2016; Richtárik and Takáč, 2016a; Sun et al., 2017), since our method
maintains a variable, G: , aggregating asynchronously all the workers’ contributions.

Assumption 8.9 (On the random sparsification). The sparsity selectors (Y: ) are
independent and identically distributed random variables. We select a coordinate in
Y: as follows:

ℙ[ 9 ∈ Y: ] = ? 9 > 0 for all 9 ∈ {1, .., =},

with p = (?1, .., ?=) ∈ (0, 1]= . We denote pmax = max8 ?8 and pmin = min8 ?8 .

The selectors (Y: ) being the only random variables of the algorithm, it is natural
to define the filtration F: = f ({Y:′}:′<: ) so that all variables at time : (G8

:
, G: , G: , 38: ,

�8
:
) are F: -measurable but Y: is not.
Using this sparsification DAve-PG becomes Algorithm 8.4, that we call DAve-

SPG. Similarly to DAve-PG, none of the ingredient of method, including the stepsize
choice, depend on the computing system. It also shares the feature that although each
coordinator update involves only one worker (and thus part of the data), all the data
is always implicitly involved in the coordinator variable; which allows the algorithm
to cope with the heterogeneity of the computing system (data distribution, workers
delays).62 62We recall our notation: for a

vector of G ∈ ℝ= and a subset ( of
{1, .., =}, [G ]( denotes the sparse
size-= vector where ( is the set of
non-null entries, for which they
match those of G , i.e.
( [G ]( ) [ 9 ] = G [ 9 ] if 9 ∈ ( and 0

otherwise.

Algorithm 8.4 DAve-SPG on ((U8 ), (5 8 ), 6 ; p) with stopping criterion C

Coordinator:

1: Initialize G = G0, : = 0
2: while test C not verified do
3: Receive adjustment [Δ: ]

Y
:−�8:

:

from worker 8:
4: G: ← G:−1 + U8: [Δ: ]

Y
:−�8:

:

5: G: = proxW6 (G: )
6: Draw sparsity Y: with prob. p
7: Send G: , Y: to the worker in re-

turn
8: : ← : + 1
9: end while
10: Interrupt all workers
11: Output G:

Worker 8:

1: Initialize G = G8

2: while not interrupted by coordina-
tor do

3: Receive G and Y from the coordi-
nator

4: [~]Y ← [G − W∇5 8 (G)]Y
5: Δ← ~ − G8
6: Send adjustment Δ to the coordi-

nator
7: [G8 ]Y ← [~]Y
8: end while

The communications per iteration are (i) a blocking send/receive from a worker to
the coordinator (in blue) of size |Y |, and (ii) a blocking send/receive from the coordinator
to the last updatingworker (in orange) of the current iterate. Theworker-to-coordinator
communications are thus made sparse by the algorithm and the coordinator-to-worker
communications costs depend on the structure of G: , which is the output of a proximal
operator on 6 as previously discussed.
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8.4.2 Convergence Analysis & Limits of Sparsification

By incorporating the random sparsification procedure of DAve-SPG in the proofs
above, we obtain the following result.
Theorem 8.10 (Reaches and Limits of Sparsification). Let Assumption 8.6 hold. Take
W ∈ (0, 2

`+! ]. Suppose that Assumption 8.9 holds for the probability vector p with
pmin

pmax
≥ (1 − W`)2 .

Then, DAve-SPG on ((U8 ), (5 8 ), 6 ; p) verifies for all : ∈ [:ℓ , :ℓ+1)

�


G: − G★

2 ≤ ©­«pmax

(
1 − ^(P′B−8)
1 + ^(P′B−8)

) 2

+ 1 − pmin
ª®¬
ℓ

� for maximal W =
2

` + ! (8.9)

≤
(
pmax (1 − W`)2 + 1 − pmin

) ℓ
� for any W ∈

(
0,

2

` + !

]
. (8.10)

with � = max8


G80 − G★@8

2 and G★@8 = G★ − W∇5 8 (G★).

This result establishes bounds that lead to convergence whenever the selection
probabilities are well chosen. First, if all probabilities are equal to 1, the algorithm
boils down to DAve-PG and Theorem 8.10 coincides with Theorem 8.7. In more general
cases, this result has to be interpreted more carefully as developed next.

Proof. From the solution G★ of (P ′B−8) (unique from strong convexity), we define (as
before) for each worker 8 the local shift G★@8 = G★ −W∇5 8 (G★), as well as their average
G★ =

∑"
8=1 U

8G★@8 . First-order optimality conditions 0 ∈ ∑
8 U

8∇5 8 (G★) + m6(G★) imply
that

G★ =

"∑
8=1

U8G★@8 = G★ − W
"∑
8=1

U8∇5 8 (G★) ∈ G★ + Wm6(G★)

which directly leads to proxW6 (G★) = G★.
Note now that, for a time : and a worker 8 , we have that G8

:
= G8

:−38
:

depends on
G:−�8

:
(which is F:−�8

:
-measurable) and on Y:−�8

:
(which is i.i.d.). First, we control the

term ‖G8
:
− G★@8 ‖2.

Let us define ‖G ‖2p =
∑=
9=1 ? 9 (G [ 9 ])2 where (?1, .., ?=) is the vector of probabilities

of Assumption 8.9. The conditional expectation can be developed as follows:

�[‖G8
:
− G★@8 ‖2 |F:−�8

:
] = �[‖G8

:−38
:

− G★@8 ‖2 |F:−�8
:
] =

=∑
9=1

�[(G8 [ 9 ]
:−�8:

− G★@8 [ 9 ])2 |F:−�8
:
]

= ‖G:−�8
:
− W∇5 8 (G:−�8

:
) − (G★ − W∇5 8 (G★))‖2p + ‖G8:−�8

:

− G★@8 ‖21−p.

Let us now bound both terms of this sum.

‖G:−�8
:
− W∇5 8 (G:−�8

:
) − (G★ − W∇5 8 (G★))‖2p + ‖G8:−�8

:

− G★@8 ‖21−p
≤ pmax‖G:−�8

:
− W∇5 8 (G:−�8

:
) − (G★ − W∇5 8 (G★))‖2 + (1 − pmin)‖G8:−�8

:

− G★@8 ‖2 .
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We now use the `-strong convexity and !-smoothness of 5 8 (Lemma 2.34) to write

‖G:−�8
:
− W∇5 8 (G:−�8

:
) − (G★ − W∇5 8 (G★))‖2

≤
(
1 − 2W`!

` + !

) 


G:−�8
:
− G★




2 − W (
2

` + ! − W
) 


∇5 8 (G:−�8

:
) − ∇5 8 (G★)




2
≤

[ (
1 − 2W`!

` + !

)
− `2W

(
2

` + ! − W
) ] 


G:−�8

:
− G★




2 = (1 − W`) 2



G:−�8

:
− G★




2
for any W ∈ (0, 2/(` + !)]. Thus,

�[‖G8
:
− G★@8 ‖2 |F:−�8

:
] ≤ pmax (1 − W`) 2




G:−�8
:
− G★




2 + (1 − pmin)‖G8:−�8
:

− G★@8 ‖2

≤ pmax (1 − W`) 2



G:−�8

:
− G★




2 + (1 − pmin)‖G8:−�8
:

− G★@8 ‖2,

where we used that ‖G:−�8
:
−G★‖2 = ‖proxW6 (G:−�8

:
) −proxW6 (G★)‖2 ≤ ‖G:−�8

:
−G★‖2

by definition and non-expansiveness of the proximity operator of 6.
Taking full expectation on both sides and using G:−�8

:
−G★ =

∑"
8=1 U

8 (G8
:−�8

:

−G★@8 ),
we get

�‖G8
:
− G★@8 ‖2 ≤ pmax (1 − W`) 2

"∑
9=1

U 9�





G 9:−�8
:

− G★@9




2 + (1 − pmin)�‖G8:−�8

:

− G★@8 ‖2

≤ pmax (1 − W`) 2 max
9=1,..,"

�





G 9:−�8
:

− G★@9




2 + (1 − pmin) max

9=1,..,"
�‖G 9

:−�8
:

− G★@9 ‖2

≤
(
pmax (1 − W`) 2 + 1 − pmin

)
max
9=1,..,"

�





G 9:−�8
:

− G★@9




2 .

Let 2: = max8=1,..," �




G 9
:
− G★@9




2 and V =
(
pmax (1 − W`) 2 + 1 − pmin

)
(note

that the assumptions imply that V ≤ 1), then the above result implies that 2: ≤
Vmax9=1,..," 2:−� 9

:

and using the definition of the sequence (:ℓ ), we get

2:ℓ ≤ V max
9
2
:ℓ−� 9

:ℓ

≤ V max
:′∈[:ℓ−1,:ℓ )

2:′

2:ℓ+1 ≤ V max(2:ℓ , max
:′∈[:ℓ−1,:ℓ )

2:′) ≤ V max
:′∈[:ℓ−1,:ℓ )

2:′ .

Thus for all : ≥ :ℓ , 2: ≤ Vmax:′∈[:ℓ−1,:ℓ ) 2:′ . This implies that the sequence 2̃ℓ
defined by 2̃ℓ = max:′∈[:ℓ−1,:ℓ ) 2:′ decays exponentially: 2̃ℓ ≤ V2̃ℓ−1 ≤ Vℓ 2̃0 ≤
Vℓ max8=1,..," ‖G80−G★@8 ‖2. Finally, we use again the non-expansivity of the proximity
operator of 6 to get that for all : ∈ [:ℓ , :ℓ+1),

�‖G: − G★‖2 ≤ �‖G: − G★‖2 ≤
"∑
8=1

U8�‖G8
:
− G★@8 ‖2 ≤ 2: ≤ Vℓ max

8=1,..,"
‖G80 − G★@8 ‖2,

which concludes the proof. �

In the totally distributed setting, all machines are responsive, which means with
our notation: ℓ →∞ when : →∞. Then, Theorem 8.10 gives linear convergence of
the mean squared error in terms of epochs if

pmin

pmax
> (1 − W`)2

W= 2
`+!
≥

(
1 − ^(P′B−8)
1 + ^(P′B−8)

) 2

(8.11)
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and thus the behavior of the algorithm depends if the selection is performed uniformly
(and thus structure-blind) or non-uniformly.

If the selection is uniform, i.e. ?8 = ? ∈ (0, 1] for all 8 , we directly get convergence
from (8.10) as the mean squared error vanishes linearly in terms of epochs with a rate
(1−?W` (2−W`)), degraded compared to the (1−W`)2 rate of DAve-PG. Unfortunately,
such uniform selection also results in poor performance in many cases (as illustrated
in (Grishchenko et al., 2021)). Adaptivity is key for sparsifying efficiently.

We adopt here the general idea of Chapter 5 specialized for the coordinate selection:
when some coordinates get null, there is some hope that they will remain null for
subsequent iterations, and it is thus natural to update preferentially the non-null
coordinates. Mathematically, this means that we select coordinates in the active
support as follows:

ℙ[ 9 ∈ Y: ] =

? if G [ 9 ]

:
= 0

1 if G [ 9 ]
:

≠ 0
for all 9 ∈ {1, .., =} and ? ∈ (0, 1] .

In words, we communicate the coordinates in the support of the coordinator point
G: , together with some coordinates outside the support, randomly selected with some
exploration probability ? .

This adaptive sampling often shows tremendous gains in practice compared to
uniform sampling; however, it may not converge in some situations. This is due to
two technical points:

(1) The sampling is not i.i.d. anymore since the probabilities depend on the points
generated by the algorithm.

(2) A good conditioning is necessary to allow for a small ? = pmin (with pmax = 1).
More precisely, from (8.11), we get that the minimal conditioning to allow for a
probability ? of selection outside the support is:

^(P′B−8) > ^min :=
1 − √?
1 + √? . (8.12)

Since we aim at taking ? small to communicate little, this is a stringent condi-
tion.6363This difficulty could be managed

with a small algorithmic fix that
unfortunately degrades practical

performances and a refined
analysis, but the upcoming

methods directly address this point.

While these two issues appear separate, they can both be overcome by iteratively
reconditioning the problem, as developed next.

8.4.3 Proximal reconditioning for adaptive sparsification

Proximal reconditioning methods consist in iteratively regularizing the problem at
hand with the squared distance to some center point. We call outer iteration the process
of (approximatively) solving such a reconditioned problem. At outer loop<, we define
worker 8’s regularized function ℎ8< as

ℎ8< (G) = 5 8 (G) +
d

2
‖G − G< ‖22 for any G ∈ ℝ=

where d is the regularization factor and G< the center point at outer loop <. The
reconditioned problem for loop< then writes

min
G ∈ℝ=

�< (G) :=
"∑
8=1

U8
(
5 8 (G) + d

2
‖G − G< ‖22

)
︸                        ︷︷                        ︸

ℎ8< (G)

+ 6(G). (R<)



8.4 Exchanges reduction for sparse problems 167

For `-strongly convex !-smooth functions (5 8 ), the regularized functions ℎ8< are
(` + d)-strongly convex and (! + d)-smooth. Hence, the condition number of the
smooth part of (R<) writes

^(R< ) =
` + d
! + d

(
≥ ^(P′B−8) =

`

!

)
.

The optimal solution of (R<) is exactly the proximal point of �/d at G< . This lead
to a (inexact) proximal algorithm for solving (P ′B−8), which writes64 64The proximal point algorithm is a

standard regularization approach in
optimization: it was presented in
(Bellman et al., 1966, Chap. 5) to
recondition a convex quadratic
objective; and popularized by the
seminal works (Martinet, 1970;
Rockafellar, 1976). The study of the
algorithm and its inexact variant,
has attracted a lot of attention; see
e.g. (Fuentes et al., 2012; Güler,
1992; Lin et al., 2017, 2019; Solodov
and Svaiter, 2000).

G<+1 ≈ argminG ∈ℝ= �< (G) = argminG ∈ℝ=

"∑
8=1

U8 5 8 (G) + 6(G)︸                 ︷︷                 ︸
=� (G)

+d
2
‖G − G< ‖22(8.13)

= prox�/d (G<).

Implementing this algorithm requires an inner algorithm to compute the proximal
point (we will use DAve-SPG here) and a rule to stop this algorithm (we will use the
standard criteria of (Rockafellar, 1976)).

At the outer iteration<, we run DAve-SPG for solving (R<) with i.i.d. non-uniform
sparsification probabilities given, for a fixed 0 < 2 ≤ =, by

? 9,< =


?< := min

(
2

| null(G<) |
; 1

)
if G [ 9 ]< = 0

1 if G [ 9 ]< ≠ 0

for all 9 ∈ {1, .., =}. (8.14)

The sparsification level over outer iterations is then bounded from below by

? :=
2

=
≤ inf

<
?<

Wenow choose the reconditioning parameter d from ? so that DAve-SPG converges
linearly to the solution of the reconditioned problem (R<). We know, from (8.11), that
this is the case as soon as

^(R< ) =
` + d
! + d > ^min ⇐⇒ d >

^min! − `
1 − ^min

with ^min =
1 − √?
1 + √? as in (8.12).

To properly handle the strict inequality above, we propose to choose a conditioning
which guarantees a (1−V) rate for DAve-SPG on the reconditioned problems uniformly
over<. Mathematically, for 0 < V < ? (for instance V = ?/2), we choose

d =
^(R< )! − `
1 − ^(R< )

with ^(R< ) =
1 −

√
? − V

1 +
√
? − V

.

Then, the contraction factor of DAve-SPG with the maximal stepsize (see (8.9)) for the
reconditioned problem (R<) becomes( (

1 − ^(R< )

1 + ^(R< )

) 2
+ 1 − ?<

)
= (c − V + 1 − ?<) = (1 − V − (?< − ?))︸                  ︷︷                  ︸

=:(1−V<)

≤ 1 − V < 1.
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Hence, DAve-SPG converges linearly on the reconditioned problem (R<). It can
thus be safely used as an inner method in the inexact proximal algorithm (8.13) to
solve the original problem (P ′B−8).

The remaining part is to the choice of a stopping criterion for the inner loop. We
propose to use three different criteria: epoch budget, absolute accuracy, and relative
accuracy (called C1,C2, and C3 respectively). Stopping criteria based on accuracy are
usually more stringent to enforce (see e.g. (Lin et al., 2017, Sec. 2.3) and references
therein), however they may bring significant performance improvement when the
instantaneous rate is better than the theoretical one.

The resulting algorithm, called Reco.-DAve-SPG, is presented as Algorithm 8.5.
Under any of the three stopping criteria, we recover the same convergence result,
formalized below.

Algorithm 8.5 Reco.-DAve-SPG on ((U8 ), (5 8 ), 6)
1: Initialize G0, = ≥ 2 > 0, and X ∈ (0, 1).

Set d =
^! − `
1 − ^ and W ∈

(
0,

2

` + ! + 2d

]
with ^ =

1 −
√
? − V

1 +
√
? − V

;? =
2

=
and V =

2

2=
.

2: while the desired accuracy is not achieved do
3: Observe the support of G< , compute p< as

? 9,< =


?< := min

(
2

| null(G<) | ; 1
)

if G [ 9 ]< = 0

1 if G [ 9 ]< ≠ 0
for all 9 ∈ {1, .., =}.

4: Compute an approximate solution of the reconditioned problem (R<) using
DAve-SPG on

(
(U8 ), (ℎ8<), 6; p<

)
with G< as initial point and with the stopping

criterion:
C1 (epoch budget): Run DAve-SPG with the maximal stepsize for

M< =


(1 + X) log(<)

log
(

1
1−V+?−?<

) + log
(

2`+d
(1−X)d

)
log

(
1

1−V+?−?<

)  epochs.

or C2 (absolute accuracy): Run DAve-SPG until it finds G<+1 such that

‖G<+1 − prox�/d (G<)‖2 ≤
(1 − X)d
(2` + d)<1+X ‖G< − prox�/d (G<)‖

2 .

or C3 (relative accuracy): Run DAve-SPG until it finds G<+1 such that

‖G<+1 − prox�/d (G<)‖2 ≤
d

4(2` + d)<2+2X ‖G<+1 − G< ‖
2.

5: end while

Theorem 8.11. Let Assumption 8.6 hold. Then, the sequence generated by Reco.-DAve-
SPG on ((U8 ), (5 8 ), 6) with stopping criterion C1,C2, or C3 converges almost surely to a
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minimizer of � and 65 65We use the standard notation:
0< = Õ ( (1 − A )<) denotes that
there exists�, ? such that
0< ≤ �<? (1 − A )< .

�

[

G<+1 − G★

2] = Õ
( (
1 − `

` + d/2

)<)
for criterion C1;

G<+1 − G★

2 = Õ

( (
1 − `

` + d/2

)<)
for criteria C2,C3 .

Proof. The proofs of the three cases follow the standard rationale of the seminal work
(Rockafellar, 1976) and the recent (Lin et al., 2017). They are detailed in (Grishchenko
et al., 2021). �

This result thus establishes that Reco.-DAve-SPG converges linearly to a solution
of (P ′B−8). This means that Reco.-DAve-SPG has qualitatively the same behavior as
DAve-PG, with the additional feature of having sparse local updates and therefore
sparse worker-to-coordinator communications. In other words, our algorithm is
similar to the baseline in terms of iterations, but it is expected to be faster in terms
of communications (more precisely in terms of quantity of information exchanged
between coordinator and workers) which would result in a wallclock gain in practice,
as shown in Section 8.5. Before this, we further investigate in the next section the
theoretical gain of our sparsification technique in the case of sparse optimal solutions.

Remark 8.12 (Acceleration). In this paper, we are interested in sparsifying commu-
nications and we primarily consider the reconditioning aspect of proximal methods,
leaving aside other aspects, including acceleration. Indeed the iterations of the inexact
proximal algorithm can be accelerated using Nesterov’s method (Güler, 1992; Nesterov,
1983) and the recent works (Lin et al., 2017, 2019) also propose accelerated and quasi-
Newton variants of the inexact proximal algorithm as a meta-algorithm to improve
the convergence of optimization methods driven by machine learning applications.
The developments of this section could be extended to accelerated versions, following
the meta-algorithm of (Lin et al., 2017). J

8.4.4 Identification and consequences

The iterates of proximal algorithms usually identify the optimal structure as covered
in Chapter 3. In the case of ℓ1-regularization, this means that proximal algorithms
produce iterates that eventually have the same support as the optimal solution of
(P ′B−8). In the previous sections, we showed that our sparsified method converges after
proximal reconditioning. By construction, the coordinator-to-worker communications
depend on the structure of G: (the coordinator point of the inner method), which is
the output of a proximal operator on 6. We can thus show that G: eventually become
sparse after some iterations. This automatically makes our algorithm a “two-way
sparse” algorithm.

Now, we make the additional assumption that our problem has a strongly sparse
solution. This assumption is divided into two parts: i) the regularizer 6 should induce
a stable support at the optimum (through its proximity operator, in the sense of
(PQC – Proximal Gradient) in Chapter 4); and ii) this optimal support supp(G★) should
be small with respect to the ambient dimension.

Assumption 8.13 (Strongly sparse optimal solution). Assumption 8.6 holds and the
unique solution G★ of Problem (P ′B−8) verifies
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i) there is Y > 0 such that

for all ~ ∈ B
(
G★ −

"∑
8=1

U8∇5 8 (G★), Y
)
, supp(G★) = supp

(
prox6 (~)

)
;

ii) the size B★ = | supp(G★) | of the optimal support is small compared to =: B★ � =.

The proximal qualification condition in i) can be made explicit when 6 = _‖ · ‖1:

"∑
8=1

U8∇ [ 9 ] 5 8 (G★) ∈ (−_, _) for all 9 ∈ null(G★).

This condition matches the nondegeneracy condition for sparse solutions com-
monly admitted for exact recovery in machine learning; see e.g. (Nutini et al., 2019; Sun
et al., 2019). The interest of the general assumption i) is that it accounts for a variety of
sparsity-inducing regularizations, including weighted ℓ1-norms, “group” ℓ1/ℓ@-norms;
see (Bach et al., 2012, Sec. 3.3).

Using this assumption and combining the arguments of the proofs of Theorem 8.8
and Theorem 8.11, we can show that the (inner and outer) iterates identify the optimal
support in finite time with probability one.
Theorem 8.14 (Identification). Let Assumption 8.13 hold. Then, the outer and inner
iterates of Reco.-DAve-SPG identify the optimal structure in finite time: with probability
one, there is Λ < ∞ such that

supp(G<,: ) = supp(G<) = supp(G★) for any : and all< ≥ Λ

where G<,: denotes the :-th iterate produced by DAve-SPG during the<-th outer loop.

This identification has two consequences on communications in our distributed
setting. First, identification implies that the variables communicated by the coordinator
to the workers will eventually be sparse. Second, this sparsity is also leveraged in the
sparsification strategies of Reco.-DAve-SPG where only the coordinates in (G<) are
randomly zeroed. Thus, for sparsity inducing problems, our distributed algorithm has,
structurally, two-way sparse adaptive communications.

Even better, once this identification occurs, the rate of the inner algorithm DAve-
SPG dramatically improves to match the rate of its non-sparsified version DAve-PG. To
get this improved rate, a small additional property is needed on the regularizer: 6 has
to be separable with respect to supp(G★) i.e. 6(G) = 61 ( [G]supp(G

★) ) + 62 ( [G]null(G
★) )

which holds true for almost all sparsity inducing regularizations (Bach et al., 2012,
Sec. 3.3).
Theorem 8.15 (Improved rate). Let Assumption 8.13 hold. Then, the inner iterates of
Reco.-DAve-SPG benefit from an improved rate after identification. There is Λ < ∞ such
that for all< > Λ and : ∈ [:ℓ , :ℓ+1), using the maximal stepsize W = 2

`+!+2d ,

G<,: − G★<

2 ≤ (
1 − ^(R< )

1 + ^(R< )

) 2< 

G< − G★<

2
where G<,: denotes the :-th iterate produced by DAve-SPG during the<-th outer loop.
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Proof. The proof follows similar arguments as the one of Theorem 5.17 in Chapter 5.
Since G<,: has the same support as G★ after some time and 6 is separable with respect to
the optimal support, the other coordinates do not play a role anymore. This is true for
the main variable G but also for the average of the agents contributions G . This means
that DAve-SPG eventually generates the same iterates as DAve-PG in the support of
the optimal solution while the coordinates outside the support are null. Hence, they
have the same rate. A detailed proof is provided in (Grishchenko et al., 2021). �

Theorem 8.15 intuitively tells us that after identification, the obtained iterates no
longer depend on the sparsification since the coordinates in the support are always
selected with Reco.-DAve-SPG (which is the fundamental reason behind our sparsifi-
cation choice (8.14)). This means that the rate of our method is eventually the same
as if no sparsification was made (i.e. when ? 9,< = 1 for all 9,<). Since our sparsified
method sends less coordinates per iteration, it will thus outperform its non-sparsified
counterpart in terms of communications.

8.4.5 Communication complexity

Finally, we study in this section the asymptotic communication complexity of our
method in terms of number of coordinates ( real numbers) exchanged between the coordi-
nator and the workers.66 66Even though sparse vectors have

to encode the location of non-zero
elements, the communication cost
of Reco.-DAve-SPG can narrowly
approximated by the number of
coordinates sent.

To do so, we define our communication complexity as

C(Y) = (c2�| + c|�2 ) LM(Y)

where i) c2�| (resp. c|�2 ) is the (expected) number of coordinates communicated from
the coordinator to the active worker (resp. from the active worker to the coordinator)
during one iteration and  is the average number of iterations per epoch; ii) L is the
(expected) number of inner epochs per outer loop; and iii) M(Y) is the number of outer
loops to reach accuracy Y.

Focusing on the final regime of the algorithm when identification has taken place
(i.e. when | supp(G<,: ) | = | supp(G★) | = B★ as per Theorem 8.14), we get:67 67For Reco.-DAve-SPG: following

(8.14), we have
L = $̃ (1/(W (` + d)) for both C2

and C3 from Theorem 8.15, as well
as M(Y) = $

(
`+d/2

`
log

( 1
Y

) )
from Theorem 8.11. For DAve-PG:
we can consider that every epoch
constitutes an outer iteration with
d = 0, hence L = 1 and the outer
loop complexity M(Y) boils down
to the epoch complexity.

c2�| c|�2 L M(Y)

Reco.-DAve-SPG B★ B★ + 2 Õ(1/(W (` + d))) O((` + d/2)/` log(1/n))

DAve-PG B★ = 1 O(^(P′B−8) log(1/n))

As a consequence, in terms of communication complexity, our algorithm offers the
following gain (ratio of communication complexities: the greater, the better for our
method) over DAve-PG, when the parameter 2 is of the order of B★ compared to =

$̃

(
1 + ^(P′B−8)
1 − ^(P′B−8)

min

{√
2

B★
;

√
B★

2

}
= + B★
√
=B★

)
.

This gain shows a product of three terms. The first one is greater than 1 and
depends on the conditioning; the second one is in (0, 1] but should be not far from 1,
provided that the final sparsity is not too poorly estimated. Finally, the last term fully
exhibits the merits of adaptive sparsification with a term in = + B★ for DAve-PG which
is much greater than the

√
=B★ for Reco.-DAve-SPG. This last term thus shows a nice

dependence in the dimension of the problem and optimal solution for the proposed
method. This comparison is formalized in (Grishchenko et al., 2021) and illustrated
numerically in the next section.
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8.5 Numerical Illustrations

In this section, we run some numerical experiments to illustrate the behavior of the
different methods presented in this chapter. To do so, we consider the problem of
minimizing a logistic loss with elastic-net regularization on a dataset split among"
workers. The objective can be written as

min
G ∈ℝ=

1

"

"∑
8=1

∑
9 ∈S<8

log
(
1 + exp(−1 9a>9 G)

)
+ _2

2
‖G ‖22︸                                               ︷︷                                               ︸

5 8 (G)

+ _1‖G ‖1︸  ︷︷  ︸
6 (G)

,

where for each example 9 , the pair (a9 , 1 9 ) represents the features a9 ∈ ℝ= together
with the corresponding label 1 9 ∈ {−1, 1}. The set S<8 corresponds to the examples
stored locally at machine 8; the total number of examples is denoted by<.

The experiments were run on a CPU cluster, one core corresponding to one worker.
Each core had 4 GB of memory and used one thread to produce updates. The code was
written in Python using standard libraries only. The datasets used for the experiments
are URL (= = 3, 231, 961,< = 2, 396, 130), KDDA (= = 20, 216, 830,< = 8, 407, 752),
madelon (= = 500,< = 2, 000), and RCV1 train (= = 47, 236,< = 20, 242) from the
LIBSVM datasets library (Chang and Lin, 2011).

8.5.1 Performance of DAve-RPG

In Fig. 8.5a, we plot the suboptimality versus wallclock time for the proposed DAve-
RPG with ? = 1, the usual synchronous proximal gradient, and PIAG for the KDDA
dataset with _1 = 10−6 and _2 = 1/< . For all algorithms, we used the maximal stepsize.
We use the first 200, 000 features and split evenly the examples over 60 workers. Even
in this case where the workers have similar computational loads, the performance of
DAve-RPG is clearly better than that of the synchronous gradient descent. DAve-RPG
also outperforms PIAG, notably thanks to its robustness (as expected from Fig. 8.3).
Then, in Fig. 8.5b, we illustrate the repetition of local iterations: we plot the subopti-
mality versus wallclock time for the proposed DAve-RPG with ? = 1, 4, 7, 10 on the
full URL dataset with _1 = 10−6 and _2 = 1/< split evenly over 100 workers. We see
that a tradeoff appears between computation and communications/updates; in this
particular case, the performance improves up to ? = 7 and then degrades afterwards.

8.5.2 Delay tolerance

In Fig. 8.6, we exhibit the resilience of our algorithm to delays by introducing additional
simulated delays. We use the RCV1 train dataset distributed evenly among " = 10
machines, meaning that a long delays for one machine would hold out 10% of the data.
Delays are simulated by randomly stopping any machine for some random time. We
can see that while delays obviously affect the convergence rate, the speed remains
comparable. This is an important feature of our algorithm, especially when looking
at the maximal delay 3: = max8 3

8
:
record which is varying a lot as expected from

a practical point of view. Notice that the delays are only upper bounded by a large
value 3 ≈ 300 which would deeply affect the stepsize and convergence of competitor
algorithms, but not ours.
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Figure 8.5: Illustration of the wallclock time performance of DAve-RPG.
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Figure 8.6: Illustration of the resilience of DAve-RPG to additional delays. On the left,
performance on RCV1. On the right, maximal delay over one run.

8.5.3 Effect of adaptive sparsification

In this section, to have very sparse solutions, we take hyperparameters as follows: for
madelon, _2 = 0.001 and _1 = 0.03 chosen to reach 99% sparsity (i.e. | supp(G★) | = 5);
for RCV1, _2 = 0.0001 and _1 = 0.001 to reach 99.7% sparsity (i.e. | supp(G★) | = 61).
The datasets are split evenly between the" workers (" = 10 for madelon and" = 20
for rcv1).

We illustrate our sparsified algorithm Reco.-DAve-SPG (Algorithm 8.5) for different
the amount of randomly chosen coordinates 2 . We take a simplified stopping criteria
C1 with Mℓ = 1; we thus stop the inner iterations after two passes over the data,
following the practical guidelines of Catalyst (Lin et al., 2017). We observe that this
simple stopping rule gives similar empirical convergence as C3 with respect to both
iterations and scalars exchanged (without the additional computational cost of the test,
for a numerical illustration, see the supplement of (Grishchenko et al., 2021)).

We display the performances of the algorithms in three ways:
• size of support vs number68 68Identification is illustrated by

plotting the size of supp(G: ) . For
Reco.-DAve-SPG, G: refers to the
value of G after : exchanges with
the master in total.

of inner iterations, showing the identification
• functional suboptimality vs total number of inner iterations,
• functional suboptimality vs communication cost, modelled as the number of
couples (coordinate, value) sent from and to the coordinator.



174 Chap. 8 - Asynchronous Distributed Optimization

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

0

50

100

supp(G★) = 1%

Number of (inner) iterations

su
p
p
(G

:
)i
n
pe
rc
en
ta
ge

of
=

Baseline: DAve-PG
Reco.-DAve-SPG w/ 2 = 5
Reco.-DAve-SPG w/ 2 = 10
Reco.-DAve-SPG w/ 2 = 25
Reco.-DAve-SPG w/ 2 = 50

0 1 2 3

·105

10−15

10−7

101

(inner) Iterations

Su
bo

pt
im

al
ity

0 0.5 1

·107

10−15

10−7

101

Scalars exchanged

Su
bo

pt
im

al
ity

Figure 8.7: Comparison on the madelon logistic regression problem.

We make the following observations from Fig. 8.7. When the support of iter-
ates is far from the optimal one, sparsification is generally bad for convergence in
terms of iterations (as shown by the slopes in the plots “suboptimality vs iterations”),
and even in terms of communications (see the beginning of the curves “suboptimal-
ity vs exchanges”). But, when the iterates get closer to the optimal support, adaptive
sparsification becomes highly beneficial as illustrated by the slopes of the plots “sub-
optimality vs exchanges”.

Since there is no guarantee that the currently identified support is the optimal one,
it is impossible to restrict ourselves to a subset of the coordinates; here comes the need
for our adaptively sparsified method, that keeps exploring dimensions, additionally
to those in the current support. The number of randomly chosen coordinates 2 has
an impact: we see on that (relatively) small and large values of 2 (yellow and black
curves) lead to slightly worse slopes on the convergence plots, compared to 2 being
in the range of 1 to 3 times the optimal support (green and pink curves) which is our
recommendation both theoretically and in practice.

Finally, in order to mitigate the above-mentioned negative effects of sparsification
in the first iterations for large problems, we propose to use a warmstart strategy: in
the first iterations, we use a non-sparsified (typically DAve-PG) to allow for a sharp
initial functional decrease, leading to some partial identification; after this warmstart
we switch to our sparsified method to fully benefit from identification. This strategy
is illustrated in Fig. 8.8, with warmstarted algorithms on the right-hand-side vs. the
non-warmstarted ones on the left-hand-side. We see a drastic improvement in terms
of communication offered by the quick identification, for all versions of the sparsified
method.
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Figure 8.8: Comparison on the RCV1 logistic regression problem. On the right-hand
side plots, the algorithms are warm-started to an initial suboptimality of 10−2 and
density of 1%, reached within less than 5% of the total number of exchanges to target
precision.

8.6 Concluding remarks

In this chapter, we described original ways of extending the proximal gradient algo-
rithm for asynchronous distributed optimization. A key property of these algorithms
is that they do not require unrealistic assumptions nor any kind of bound on delays.

A key feature of these methods is the conservation by the coordinator of the
average of all the agents updates with the right weighting. This lead us to two key
theoretical findings: i) an epoch-based analysis adapted to any kind of delays; and ii)
the use of the same stepsizes as in the classical proximal gradient algorithm.

This construction is highly flexible and notably enables the use of local tailored
stepsizes, local iterations for each worker, sparsification, etc.

Furthermore, when the nonsmooth part of the objective is sparsity-inducing, we
showed that we could recondition our methods to adaptively sparsify the points
exchanged between the workers and the coordinator leading to a nice improvement of
the communication complexity of the method.

��
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9 Perspectives

Et dans mes petits poings sanglants
d’où pendaient quatre ailes dorées,

je haussais vers le ciel
la gloire de mon père

en face du soleil couchant.
Marcel Pagnol – La gloire de mon père (1957)

I am often lead to new research topics by stumbling upon beautiful mathematical
objects, reasoning, or computational frameworks. As an applied mathematician, I
like problems that mix interesting developments with numerical observations, or try
to make the most of a computing framework’s abilities while preserving theoretical
guarantees. A particularity that appears in several of my works is the wish to have
adaptive/automatic methods in the sense that if my goal is to exploit some particular
information, it should not be a manually tuned parameter of the algorithm. For
instance, if we want to exploit some sparsity structure, the pattern should be learned
by the method. If we want to adapt to asynchronous oracles or varying number of
agents, we should not rely on a bound on the response time; or if such a bound is
necessary, the algorithm should explicitly handle the cases where it is violated. A
drawback of this approach is that the performance gain of these adaptive methods
is often hard to evaluate (at least mathematically), in the gray zone between “blind”
and “omniscient” methods. That is why i) many theoretical results are of the form “we
are at least as good as the blind method but can be as good as the omniscient one if
everything goes right”; and ii) a numerical implementation is necessary to evaluate
the proposed method, confront our intuition to practice, and foster new ideas.

Going further with nonsmooth structure

The numerical exploitation of the nonsmooth structure in optimization problems
is probably my favorite research topic at the moment. As developed in Part A, I
particularly like how the structure can be automatically identified by a proximity
operator, partially at first, then exactly for qualified solutions. This found a practical
echo in the case of regularized data science problems where structure is important
since it bears valuable information. The objectives of these problems as a sum of a
smooth plus a nonsmooth structure-enhancing term naturally leads us to higher-order
methods on the identified structure manifold. Numerically, this is especially interesting
when the dimension of this manifold is small compared to the ambient space.

Exploring this idea in Chapter 6, a necessary prerequisite (and maybe shortcom-
ing) was the need for i) an explicit proximity operator (giving the structure of the
output), and ii) a full Riemannian “panoply” (in particular, a second-order retraction
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and derivative). These requirements are often verified for in data science problems,
which were our primary target then, but also open on to interesting leads.

Beyond explicit structure

First, we can observe that some nonsmooth functions may not have an explicit prox-
imity operator while still exhibiting exploitable structure. In particular, this can be
the case for compositions of functions in the form 6 ◦ q where q is a smooth mapping
and 6 has an explicit proximal operator with an associated structure (as in Chapter 3).
Such an objective is the typical target of prox-linear methods (Bolte et al., 2020; Cartis
et al., 2011; Drusvyatskiy and Paquette, 2019; Lewis and Wright, 2016) which are also
known to identify some structure (see e.g. Section 4.5 in (Lewis and Wright, 2016)).
However, the quantity that identifies lies in the input space of 6 and not the vari-
able space. Mathematically, a prox-linear operation finds a direction 3:+1 such that
~:+1 := q (G: ) + ∇q (G: )3:+1 has some structure induced by 6; however, it is impossible
in general to recover a point G:+1 such that q (G:+1) = ~:+1 and thus all structure is
lost when restoring the feasibility of the main iterate. In addition, prox-linear steps are
not always easily computable even when the proximity operator of the outer function
is explicit. Nevertheless, the case of compositions is very attractive in practice and
also allows to handle the additive case considered in Part A by a direct reformulation,
which opens the way to more generic implementations.

More generally, the interesting situation that appears above is the following: some
nearby structure is identified, and even though we cannot project efficiently on it, we
have an explicit local equation for this manifold. Furthermore, we known that this
manifold bears all the non-differentiability points of the function. Hence, if we manage
to exploit this information numerically, we could outperform generic nonsmooth
optimization methods.

A typical example of this case is the minimization of the maximal eigenvalue of
an affine combination of symmetric matrices: minG ∈ℝ= _max (�0 +

∑=
8=1 G

[8 ]�8 ) (see
e.g. equation (8.7) in (Lewis and Wylie, 2019)). The problem is nonsmooth but the
maximal eigenvalue of matrix obtained with the solution �★ := �0 +

∑=
8=1 G

★ [8 ]�8
is often of multiplicity A > 1. Then, the manifold M = {G ∈ ℝ= : _max (�0 +∑=
8=1 G

[8 ]�8 ) is of multiplicity A } contains all non-differentiability points locally around
the solution in ℝ= and the objective is smooth onM. Even though it is hard to project
onM, this information can be used. For instance, (Noll and Apkarian, 2005) directly
solve the problemminG ∈M _max (�0 +

∑=
8=1 G

[8 ]�8 ) by an algorithm close to Sequential
Quadratic Programming thus deferring the nonsmoothness to the constraints and
taking full advantage of second-order models, see also (Oustry, 1999, 2000; Overton,
1988; Shapiro and Fan, 1995). This resulted in practical successes but relying on the
knowledge of the final multiplicity or on heuristics.

An interesting project would thus be to see if this kind of structure could be
identified by using more explicitly the properties of the outer function 6 (typically,
the proximity operator of _max can serve as a structure oracle giving a guess on the
final multiplicity). This kind of approach can be placed between the full-knowledge
case, where we know exactly the structure manifold, and structure adaptive methods
(such as the :-Bundle of (Lewis and Wylie, 2019)), where the structure is approximated.
Indeed, we would exploit here the proximity operator of the nonsmooth function to
obtain an educated guess of the local structure.

We noted in preliminary experiments that this nearby structure information can
also be used to check optimality numerically. Indeed, it seems possible in many
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cases of interest to extend continuously the subdifferential of 6 around the identified
manifold. Doing so (and under some additional qualification), we can form a quantity
that converges to 0 as the iterates approach a critical point (of 6 ◦ q) situated on the
identified manifold, even though the function is nonsmooth (and even sharp) at this
point (which is problematic for termination in general, see (Shamir, 2020) for a recent
discussion). This could provide a more explicit alternative to the optimality measures
based on bundle information (Lewis and Wylie, 2019).

Finally, it seems important for such a project to be backed by an efficient imple-
mentation. Fortunately, the implementations of manifold representations, routines,
and optimization have been constantly evolving, from Matlab toolboxes as Manopt
(Boumal et al., 2014) to Python and Julia implementations (Axen et al., 2021; Bergmann,
2019; Townsend et al., 2016) that offer remarkable performances as well as support
for advanced computing techniques such as automatic differentiation (e.g. Tensorflow
(Abadi et al., 2016) or PyTorch (Paszke et al., 2017) in Python, the various packages in
Julia (Bezanson et al., 2017) –ForwardDiff, BackwardDiff, Zygote,…–, JAX (Bradbury
et al., 2018), etc.) which is ubiquitous in machine learning (see (Bolte and Pauwels,
2020) for theoretical aspects). This would allow us to clearly see where this additional
information leads to a performance gain compared to nonsmooth quasi-Newton meth-
ods (Keskar and Wächter, 2019; Lewis and Overton, 2013), gradient sampling (Burke
et al., 2020), or manifold sampling (Larson et al., 2016, 2020) in a slightly different
context. Additionally, this is a motivation to be more “generic” in terms of input by
requiring only the functions’ implementation, leaving the differentiation to automatic
differentiation routines (as mentioned above) or constructing it by querying function
values at several points as in (Hare et al., 2020) in our context.

Structure stability: Optimization, Statistics, & Implementation

A longer-term perspective for my ressearch would be to provide “structure stability”
guarantees given a smooth objective and a nonsmooth regularization. Typically, we
are given by a black-box method some Y-optimal and structured point, and we want to
have an indication if this structure is stable (e.g. if diminishing/tilting the objective
would not necessarily destroy the structure).

A typical use case is when a (sub-)problem involves an external routine (e.g. a QP
with sparsity inducing constraints) and post-processing the solution (e.g. manually
zeroing small coordinates). The use of the function implementation and proximity
operator of the regularization may enable us to output some stability or qualification
guarantee for the candidate structure, which can be quite useful for practitioners when
structure bears valuable information such as feature importance.

This would also be interesting in the stochastic case where the part of the function
is only accessible though a noisy oracle. In this case, the structure stability problem
could be posed as a distributionally robust objective; see e.g. (Blanchet et al., 2018;
Esfahani and Kuhn, 2018; Rahimian and Mehrotra, 2019).

Going one step further, I would like to understand more precisely the relation
between this kind of structure bringing a numerically exploitable conditioning gain
and properties like RIP for low-rank matrix recovery (see e.g. (Charisopoulos et al.,
2021; Ding et al., 2020) for recent takes on the topics). More generally, I wish to
understand better the connection between “optimal” sparsity as presented in this
manuscript and “statistical” sparsity, especially in terms of local qualification and rate
with respect to the recovery possibilities. This is particularly interesting in view of
the link between computational complexity and recovery or estimation developed for
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instance in (Bandeira et al., 2018; Donoho and Tsaig, 2008; Roulet et al., 2020).
Another angle of attack would be to build on the idea of performance estimation

by semi-definite programming introduced in (Drori and Teboulle, 2014) in order to
study the “worst identification” performance for classes of functions and algorithms.
For instance, we could formulate the problem of minimizing the structure of the final
point (e.g. by maximizing the 0 semi-norm for sparsity patterns) under the constraint
that it was generated by a prescribed number of proximal gradient steps using the
tools developed in (Taylor et al., 2017a, 2018) (see also (Taylor et al., 2017b) for an
implementation).

Beyond minimization but still with structure

Variational inequalities have recently attracted a considerable amount of attention in
machine learning as a flexible paradigm for “optimization beyond minimization”. In
these problems, finding an optimal solution does not necessarily involve minimizing
a loss function but rather optimizing against a “worst-case”, an adversary, or some
uncertainty element (adversarial machine learning, robust reinforcement learning,
learning in games, etc.).

Given aℝ= → ℝ= Lipchitz vector field { and a closed convex constraint setX ⊂ ℝ= ,
solving the associated (Stampacchia) variational inequality consists in finding G★ such
that

〈{ (G★), G − G★〉 ≥ 0 for all G ∈ X.

For instance, finding a saddle-point of a smooth convex-concave objective (G1, G2) ↦→
Φ(G1, G2) can be directly formulated as a variational inequality with the vector field
{ = (∇G1Φ,−∇G2Φ). A direct extension of projected gradient descent fails to converge
in general but a this can be remediated by resorting to the extragradient method of
(Korpelevich, 1976) which can be written as

G:+1/2 = projX (G: − W: { (G: ))

G:+1 = projX
(
G: − W: { (G:+1/2)

) .

Now, we may also extend this method to Bregman geometries. For a proper
strictly convex lower semicontinuous function ℎ and a continuous selection ∇ℎ of its
subdifferential, the associated Bregman divergence betweenD ∈ dom mℎ andG ∈ domℎ

is �ℎ (D, G) = ℎ(D) − ℎ(G) − 〈∇ℎ(G), D − G〉. The projection can be replaced using the
Bregman proximal mapping defined for G ∈ dom mℎ as %G (~) = argminD∈X{〈~, G −
D〉 + �ℎ (D, G)}, which leads to the mirror prox algorithm (Nemirovski, 2004):

G:+1/2 = %G: (−W: { (G: ))

G:+1 = %G:
(
−W: { (G:+1/2)

) .

The behavior and “computationability” of the algorithm depends heavily on the
choice of ℎ, often called the distance generating function. Taking ℎ in accordance with
X can ease the proximal step by replacing the Euclidean projection (corresponding to
ℎ(G) = G2/2) by a simpler update in a different metric. Typically, for the =-dimensional
simplex X = {G ∈ ℝ=+ :

∑=
8=1 G

[8 ] = 1}, the proximal mapping associated with the
entropy ℎ(G) = ∑=

8=1 G
[8 ] log(G [8 ]) simply consists in a multiplicative update and a

rescaling, which is much simpler than the Euclidean projection.
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However, this has consequences in terms of identification. If the solution G★ lies
on the boundary of X, the iterates of the algorithm will also lie on the boundary after
some time in the Euclidean case (under some qualification condition). In Bregman
geometries, this may not be the case since the output of the proximal map is sandwiched
between riX and X, depending on the domain of mℎ. Intuitively, if ∇ℎ explodes at the
boundary, the iterates can never identify the boundary of the domain near G★ (since
it is at an infinite distance in this geometry). But this identification failure does not
mean that the behavior of the algorithm around boundary and interior solution is the
same.

Motivated by our recent works on related methods in the stochastic setting (Az-
izian et al., 2021; Hsieh et al., 2019, 2020a), a current research interest is the precise
characterization of the last iterate convergence rate of mirror prox when G★ is on the
boundary. Preliminary results show that the rate depends heavily on the distance
generating function used and that it is attained with very different stepsizes. To obtain
these results, our approach is to define a Legendre exponent that characterizes tightly
how the Bregman divergence to the optimum �ℎ (G★, G) behaves compared to the
ambient norm locally around a border solution G★.

These results are local by nature and a practical drawback is that the stepsize policy
needed to obtain the best rates depend on the knowledge of the structure of G★ (which
may not be identified). An interesting direction would thus be to try and devise this
optimal structure, for instance by performing one Euclidean step from time to time.
This would enable us to adapt the geometry as well as the optimal stepsize on the run.

Collaborativeoptimizationwithloosely connectedagents

Distributed methods are employed in a continuum of situations ranging from i) using
computation/storage parallelism on hyper-connected clusters to boost the wallclock
computing time; to ii) variable-sized groups of autonomous agents that seldom co-
operate to solve global task. These problems are very different due to their various
objectives and, most importantly, the communication possibilities, notably in terms of
synchronization.

In this spectrum, I am drawn towards the second end of the range, focusing more
on loosely connected fleet of autonomous agents. In particular, a direction that I am
currently pursuing is the question of collaborative optimization in open networks. In
this situations, agents can come and go (even for good) which means that the objective
to minimize can change with time. A natural idea is thus to model the situation as an
online optimization problem. Building on our preliminary work on online optimization
with delays (Hsieh et al., 2020b), we can show that dual averaging offers satisfactory
properties for this situation thanks to the equal treatment of gradients in the updates
(Hsieh et al., 2021). This kind of reasoning can offer interesting solution in practice
and in theory, that still have to be confronted to more real-life problems.

In the vein of loosely connected networks (more far-fetched and exploratory
but also stimulating), is it possible to have a flocking dynamics when solving an
optimization (e.g. a regression problem)? More precisely, let each agent be given
a local function; suppose that at each time, it minimizes it and averages its current
parameter with the closest parameters in the networks (i.e. it only communicates with
agents having a similar parameter). Does this behavior lead to a situation where the
agents are clustered and eventually agree on a common parameter per cluster as in
the (cluster) flocking dynamics of e.g. (Beaver and Malikopoulos, 2021; Biccari et al.,
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2019; Blondel et al., 2005; Olfati-Saber, 2006)? In terms of statistical regression, this
would mean that the agents somehow clustered themselves by distribution proximity.

A more down-to-earth perspective I find particularly interesting is considering the
agents as “social” individuals instead of bare computing units. For instance, this raises
the problem of fairness between the agents which could be tackled by replacing the
sum of the agents by a median (already studied in the context of Byzantine attacks,
see (El-Mhamdi et al., 2021) and references therein) but also with a Conditional Value-
at-Risk (Laguel et al., 2020) or a re-weighting procedure (I imagine something in the
vein of Iteratively Reweighted Least Squares or Weiszfeld’s algorithm, see (Daubechies
et al., 2010; Weiszfeld, 1937)). Finally, the question of communication incentives to
guide the communication of autonomous agents would also be an original direction.

Another research project that came to my attention while working with inexact
bundles (see Section 7.4 and (Iutzeler et al., 2020)) is the question of inexact distributed
oracles. Indeed, distributed (splitting) methods are based on combining oracles from
several sources. These oracles were exact (sub-)gradients in most of Part B. However,
there is a large variety of splitting methods based on other types of objects such as
proximity operators (in e.g. Chambolle-Pock, Condat-Vũ, 3OP, Davis-Yin) or related
subproblems (in ADMM); see (Condat et al., 2019) for a recent overview. These sub-
problem are usually solved using external solvers (QP or otherwise) that can often be
stopped at a prescribed precision. Spending too much time generating a high-precision
solution is intuitively nefarious if the disagreement between the agents is large or
if the functions evolve over time; nevertheless, this kind of reasoning is difficult to
formalize mathematically.

Last, but not least, as many of my colleagues, I am prone to drop what I am doing
if presented with a cute little problem.6969https://xkcd.com/356/ –

Isn’t it, Panayotis!

��
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Closing words

Thank you for reading this manuscript. While this text is rather personal by nature, it
is the fruit of numerous discussions and collaborations with the persons I have had
the chance to meet. To them, I extend my most sincere thanks.

As for the future, I can only hope that the next years will be as stimulating as these
last ones. And on these words, back to blackboard!

��
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APPENDIX A Summary of my previous con-
tributions

I trained as engineer before pursuing with a PhD in signal processing around problems
related to estimation in wireless sensor networks (Iutzeler, 2013).70 70More precisely, I started with the

analysis of a rumor spreading
method on graphs based on
broadcast communications (Iutzeler
et al., 2012). Then, I studied the
convergence rate of an averaging
methods based on broadcast
communication (Iutzeler et al.,
2013b). Finally, we analyzed the
rate of a distributed ADMM method
on graphs (Iutzeler et al., 2015).

This rather trans-
verse topic allowed me to develop a taste for different disciplines: signal processing,
statistics and probabilities, computer science (especially graph theory), and finally
optimization. It is this last theme that has been at the heart of my research since then.

Decentralized optimization

The questions that interested me most at the end of my PhD and at the beginning
of my career were mainly centered on the development of randomized methods for
decentralized optimization. Decentralized optimization consists in minimizing the
individual functions of the agents of a network under the constraint that the solution
found by two neighboring agents must be equal. This leads to the search for a consensus
around the minimum of the sum of the functions of the agents when the network
is (strongly) connected. To solve this kind of problems, it is natural to separate the
problem between the individual minimization on the agents’ side and the constraints
of equality over the network. This can be directly obtained by splitting methods
such as the proximal gradient or the Alternating Direction Method of Multipliers
(ADMM). These algorithms can be studied under the formalism of monotone operators,
i.e. by formulating them as fixed point iterations of a certain operator. Driven by the
observation that the coordinates of this operator generated local consensus in the graph,
one of the main results of my early career was to show that it was possible to draw
some of these coordinates randomly, update them, and leave the others unchanged
(Bianchi et al., 2016; Iutzeler et al., 2013a). This kind of result was rather original at the
time (2013-2015), and has since been improved in many ways by Patrick Combettes,
Jean-Christophe Pesquet, and Wotao Yin for example (Combettes and Pesquet, 2015;
Peng et al., 2016).

The above result provides, after careful but straightforward computations, “asyn-
chronous” optimization algorithms in networks where each iteration corresponds to
drawing a subset of the graph (e.g. two neighbors), make them perform a minimization
step on their local function and exchange information between them, without the rest
of the network working or communicating (Bianchi et al., 2014a,b).

I have also worked on practical applications of these algorithms. For example, in
cognitive radio (Iutzeler and Ciblat, 2013), for flow optimization in electrical networks
(DC-OPF) with Mérouane Debbah and Romain Couillet (Abboud et al., 2015), or much
more recently (2020) in multi-level stochastic programming (Bareilles et al., 2020b),
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with Jérôme Malick and a group of students. Another type of application has been the
distributed computation of quantiles of agent values (Iutzeler, 2017) and the distributed
projection of these values on the simplex, in collaborationwith Laurent Condat (Iutzeler
and Condat, 2018).

Decentralized optimization is clearly more representative of my earlier works than
my current research interests. Nevertheless, it naturally led me to the study of dis-
tributed optimization algorithms at large, always with the idea of avoiding as much as
possible synchronous communications between the agents. Thus, I became interested
in 2017 in distributed optimization algorithms where several agents communicate
asynchronously with a common coordinator. At that time, I started to collaborate with
Massih Amini, around Bikash Joshi’s thesis, on optimization for distributed learning
(Joshi et al., 2016, 2018).

Based on this collaboration, I decided to set up a project with Massih Amini and
Jérôme Malick to continue in this direction. This project funded the internship of
Konstantin Mishchenko (2017) and the thesis of Dmitry Grishchenko (2017-2020). This
allowed us to develop methods for asynchronous learning and to reach out to both the
learning and mathematical optimization communities which were presented in Part B.

Numerical optimization

Starting in 2015 (i.e. when I was in Louvain-la-Neuve), I also started to focus on
numerical optimization methods and more specifically on Nesterov-type acceleration
methods. My first intuition was to consider a class of algorithms that can be analyzed
by the theory of monotone operators (already used above). However, the results on the
acceleration of monotone operators are very restrictive and do not allow to observe in
theory the gain seen in practice. This is one of the reasons why this kind of acceleration
has been limited for a long time to variants of the gradient algorithm. Thus, I was
interested in practical methods of acceleration, trying to be as adaptive as possible
to the local geometry of the problem. For example, one of my goals was to provide a
common acceleration method for strongly convex and simply convex functions (which
require different analyses in the accelerated Nesterov gradient).

As a first step, I designed a generic acceleration algorithm that estimates the current
speed of the algorithm (seen as a fixed point iteration) and applies to it the acceleration
that would be optimal if the associated operator was linear (i.e. as if the algorithm
was a gradient descent on a quadratic function) (Iutzeler and Hendrickx, 2019). This
technique allows for an agnostic acceleration of a large class of algorithms, even with
other techniques than inertia. For instance, I have studied the case of alternating
inertia (where the inertial step is applied only every other iteration) which allows
to have good results in some cases while being generally more stable than inertia.
This lead to a first collaboration with Jérôme Malick around the case of the proximal
gradient, where we found that it lead to iterations that monotonically decreased the
functional value allowing for a finer analysis based on Kurdyka-Lojasiewicz conditions
as mentioned in Sections 4.1.3 and 4.1.4.

Then, after numerous discussions with Jérôme Malick, I started a research project
on the practical behavior of the accelerated proximal gradient when the solutions of
the problem are sparse (see Section 4.2.2). This line of work eventually lead to the
results presented in Part A.
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Most of my publications are available on my webpage.
Bibliometry in July 2021 from Google scholar: 882 citations – h-index=14.

Preprints
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