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ABSTRACT weighted gossiprinciple and taking benefit of the broadcast na-

_ N ... ture of the channel. Our proposed algorithm gathers the respective
The distributed estimation of the average value of the sensors 'n't'igjenefit of the broadcast agprgach (fas?convergence spedadjmg
measures is one of the most popular issues in the Wireless Sen

%ﬁéighted gossip approach (the true consensus). The main contribu-

Networks (W.SN) area. In V_VSNS' broadcasting data seems natura#n of the paper is twofold: the algorithm design and its theoretical
to exchange information quickly because of the broadcast nature erformance analysis

the Wireless channel. Nevertheless, although broadcast-based algo- The paper is organized as follows: in Section 2, we introduce
rithms converge faster than pairwise algorithms, the obtained CON5 i+ broadcast-based weighted gossip- algorithm Inl Section 3. we
sensus is not necessarily the true average. By the means of additio Ll)ve that the proposed algorithm converges to tlhe true averag,e In
side-infc_;rmatio_n exchange, we propose a broadcast-based algorit ction 4, we prove that the square error is upper-bounded by an .ex-
converging rapldly_to the true_average. The convergence O.f t.h'S ne onentially decreasing function with high probability. In Section 5,
algorithm is established and its convergence speed is exhibited.

! o e provide a heuristic improvement to our algorithm by modify-
remark that the proposed algorithm outperforms the existing ones. ing the sensor clocks in a distributive manner without any additional

Index Terms— distributed estimation, averaging, sensor net-cost. Our results are numerically illustrated in Section 6. Finally
work, broadcast, consensus Section 7 is devoted to concluding remarks.

1. INTRODUCTION 2. PROPOSED ALGORITHM

Distributed algorithms over Wireless Sensors Networks (WSN) hav@.1. Signal Model
been widely studied since the pioneer work in [1]; in particular, a lot i )
of results have been obtained for the problem of averaging [2, 3]t US consider aV-sensors network modeled by an unweighted

However, only a few averaging algorithms take benefit of the broadtndirected graply = (V, E) whereV" is the set of vertices/sensors
cast nature of the wireless communication channels [4, 5]. In [4](V| = IV) and E'is the set of edges/perfect links between the sen-

at each clock tick, one (randomly chosen) sensor broadcasts its ifo"S: We @ssumé is connected. Each sensomay exchange data

formation to all its neighbors, then each neighbor averages its ow}ith its neighborhoodV; = {j € V|(i, j) € E}. Letd; = |\

value with the received one. With such an algorithm, the network'€€notes the degree of the sensole also defineA the so-called

global sum is not preserved. This implies that the corresponding udiacency matrix of the grapl) = diag(ds, - -+, d) the degree

date matrix is not doubly-stochastic, and so preventing the algorithf'atrix and the Laplacian matrik = D — A [8].

to converge to the true average. Each sensor has_lts own independent P0|_sson_clock of param-
Recently, to overcome this drawback, [5] has proposed a nefteri. _At f_|rst, we will consider that all\; are identical and eql_JaI

broadcast-based algorithm relying on the transmission of two varit® A Which is equivalent to a global clock of parameféA and uni-

ables (instead of one) at each clock tick: nevertheless, any convef@'M Selection of the awaking sensor. We will notthe instant of

gence analysis was provided. In the literature, some algorithms hayge-th tick of the global clock. At = 0, the sensof only knows

efficiently overcome the non doubly-stochasticity in a more promisitS individual measure;; (0). Letzave = 1/N3_,_, 2:(0) be the

ing way of the update matrix by introducing the principle of the 2Verage value of the initial m.easurements. At tilrend sensot,

weightedgossip [6, 7]. In such a scheme, the sensor exchange twi§'€ estimated average value is denoted:hy). The purpose of an

variables: the first one represents the sum of the received informatigf€"2ding algorithmiis that; (¢) goes tara... whent goes to infinity

while the second one represents the importance level of the receivéd €ach sensor

information. In [6], such aveighted gossiprinciple is applied to a

wired synchronous network without feedback. The absence of fee®.2. Broadcast based Weighted Gossip algorithm

back leads to non doubly-stochastic update matrix. In [7], this prin- . -

ciple is applied to wireless asynchronous network without feedbackik€ [6: 71, the sensor will update two local values; (¢) andw;(t)

actually, the (randomly chosen) sensor sends its variables to one (aﬁb‘ time_ Y whereas, in standa_rd gossip algorithm, the senapr
only one) neighbor which does not send back its own variables. ates d'reCtlwi.(t)' More prtlamsely,s?-(t).and wi(t) represent the
In this paper, we thus propose to build an algorithm (Ca"edsumof the received information and itgeightrelated to how much

Broadcast based Weighted Gossip -BWGossielving on the information is passed through respectively. In the sequel, we de-
’ P FSmpving notes(t) = [s1(t), -+ sx (0)] w(t) = [wi(t), - ww (D]
This work was partially funded by the French Defense AgetegA)  andx(t) = [z1(t), -+ ,an(t)]” where(.)” stands for the matrix
and the Blecom/Euecom Carnot Institute. transpose.




The proposed algorithm is initialized as follows

e s(0) =x(0)

e w(0)=1
with 1 the column vector composed By ones.

At time ¢, the vector of average estimates is obtaineckfy =
s(t)/w(t) where the division is done element-wise, and whte

andw (¢) are updated as follows :
assuming that, at time the sensof wakes up

» Sensor broadcasts{ it ‘}i}l(i)l)
» At sensors in the neighborhodd;, we have:
{ s;(t+1) =s;(t) + 'N(‘iz}) i EN
wi(t+1) =w;(t) +
» At sensori, we have :
{ si(t+1) = i

wit +1) = R

» All other sensors stay idle.

Using the matrix formalism, the proposed algorithm can be re-

written as follows

{ 7 (1) =7 (t — DK(1) =x" (0)P(1) @
wh(t) = w' (t - DK(t) = 17P(t)
whereP(t) = K(1)K(2)...K(t), K(t) is equal toK; if the sen-

sor is active at timeg, and

Ki=1—¢ie; I1+D) 'L @)

with e; the i-th canonical vector. Notice that, albeit the matrix for-

where> stands for the element-wise inequality afd,. denotes
the maximum degree of all the vertices. Sinkeis the adjacency
matrix of a connected grapm > 0,(I+ A)™ > 0. Hence, for
the samen, E[K]™ > 1/(dmqeeN + N)"(I+ A)™ > 0, which
implies thatE[K] is a primitive matrix.

In [7] (Theorem 4.1), it is proven that any weighted gossip algo-
rithm such thalP1, P2, andP3 hold converges to the true average.
Therefore our proposed algorithm convergescto. ast¢ goes to
infinity.

4. CONVERGENCE SPEED

In this section, we will put the main contributions of the paper cor-
responding to the analysis of the Square Error (SE) of the proposed
algorithm. We will prove that the SE is upper-bounded by an ex-
ponentially decreasing function with high probability. The conver-
gence rate of this function is also exhibited.

First of all, one can easily remark that

|5i(t) — Zavewi(t)]?
wi(t)?
S0 (Patt) ~ & S, Pute)|

Wj (t)2

|2i(t) — Tave|* =

By lower boundingw;(t) with its minimum and using Cauchy-
Schwartz inequality, we obtain that

malism is identical to [6, 7], the algorithms are different since the

matricesK; are different.
One can easily check thE(¢) is row-stochasticife., K(¢)1 =
1) which leads to the followingnass-conservatioproperty

{ SV silt) = TN 24(0) =
SV, wit) = N.

Nxa’vc (3)

3. CONVERGENCE

One can straightforwardly check that the set of matrideést)}, .
satisfies the following properties.

SE(t) = ||x(t) — Zavellly = Zm(t)—mmﬁ
< W) Wa(?) (4)
1x(0)|13

where Wi(t) = O
k

ifj (Prma-n)

i=1 j=1

Uo(t) ’

with J = (1/N)117.

In the sequel, we will prove, on the one hand, tlat(t) is
bounded with high probability and, on the other hand, B{dt. (¢)]
goes exponentially to zero when the number of iterations goes to
infinity.

P1) These matrices are row-stochastic non-negative matrices with  we prove the following theorem meaning that it is unlikely

positive diagonals.
P2) The sequence of these matrices is il.d.
We also have
P3) E [K] is a primitive matrix.

To prove the previous property, we firstly lower-bouBf] as fol-
lows

N
EK] = Nz —eie; +eie; (I+D) ' (A+T)]
i=1
N -1 1
> >
> ~ I+(dmaw+1)N(A+I)_0

lpecause at each global timga sensor (hence a matrix) is chosen uni-

formly as they have independent Poisson clocks with the sanaeneter).

¥4 (t) becomes very large, so a sensor talks too much compared to
the other ones.

Theorem 1.
Uy (t) = Op (1)

where X, = Op(Y,) stands forVd > 0, 3Cs such thatvn,

Proof. As in [6], in order to lower boundnin; w;(t), we con-
sider a timet, and a noden, whose weight is greater thah
(there is obviously one because of the mass conservation ex-
hibited in Eq. (3)). We know from [9] that the expectation of
the diffusion timet, (that is the time for any node to dissemi-
nate its information to the whole network) while broadcasting is
E[tq] AN+ NA -1)In((N —1)/(A = 1)) = tmaz With A

the diameter of the graph. Hence, by Markov's inequality we know



that the diffusion time is bounded in probability which means that atProof. By constructionE[K ® K] is a non-negative matrix. It is
timet = to+t4, all the sensors will be informed with a small portion also a primitive matrix. IndeedEK ® K])N > (Hfil K)®

of the weight ofnio which is greater than = (dma; +1)"*¢ >0 ([]¥ K;) > 0. Let us remark tha{]", K; > (1/(dmar +
because at each iteration the weights can be at most divided %)ﬁ[l n A]7> 0. As A is the adjacerllg)ll matrTx of a connected
dmaz + 1. Finally, let us remark that at= 0, all the sensors have graph, we know that it is irreducible sbn’ € N.m' < N — 1 -
weight 1 hen_ce the _established relation is true fo_rtaIlSo, for_ gll I+ A)m/ > 0. So, by takingm = Nnt/, (E [7K®K})’" >0

t > 0, all weights will be greater than > 0 with high probability which means thak [K ® K] is primitive.

soWs(¢) is bounded with high probability. As E [K ® K] is a row-stochastic non-negative matrix, its spectral
radius isl (see Lemma 8.1.21 in [10]). Moreover, it is easy to see
that1 is an eigenvalue associated with the eigenvettand by the
Peron-Froebenius theorem, we know that this eigenvalue has multi-
plicity 1. So, as this matrix is primitivel, is the unique eigenvalue
of maximal modulus and its eigenspace is spanned.by
() =1- )P @ (I—J)P(t) (5) By using the J_or_dan _normal form and the simple mult_iplicitylof
we know that i) it exists a vectov; equal to the left eigenvector
where® stands for the Kronecker produc(t) is obviously the ~ corresponding to the eigenvalde and i) that the eigenvalues of
sum of the((P () (I — J));)? which are coefficients of the ma- E [K ® K] —1v; are exactly the eigenvalues BfK © K] except
trix Z(t). Consequently, if£[Z(t)] vanishes exponentially to zero, for the eigenvalué which is now0. As a consequence, the modulus
E[W,(t)] also does at least at the same speed. Therefore, we wilf the eigenvalues df [K @ K] — 1v; is strictly lower thanl. []
focus onE[Z(¢)].
Using basic properties of the Kronecker product, we have

Our objective now is to find the behavior @f (¢) whent goes
to infinity. Actually, we will prove that¥,(t) is upper-bounded by
an exponentially decreasing function with high probability. To do
that, let us focus on the analysisBf¥'»(¢)]. Let us introduce

Putting Lemmas 3, 1 and 2 together, we get :

p((I-J)@I-J)EK®K]) <1 @)
We are now able to find an upper boundRj, (¢)] decreasing
then, operating the mathematical expectation given the naturg@xponentially to zero.
filtration of the past event;_; enables us to obtain that Theorem 2. There is a constar® > 0 such thatve > 0

E[Z®)|Fi-1] = Et-1).EK®K]. Yt >0, E[W(t)] <C(+e¢)
withl' = p ((I-J)® (I-7)) EK ® K]).
Proof. From Eq. (7) and by using Lemma 5.6.13 in [10] and the ma-

2(t) = E(t-1). (Kt) @ K(t))

Finally, remarking thaE(#)1 = 0 with 1 = 1 ® 1 leads to

E[E(0)|Fa] = E(t—1). (IE Ko K] - iVT) tg}g(z)rr:uil;}t)trr}::tg;plcg’tggj\;vee (}tifaln t}h]%t}gr:ere exists a constant
andthen E[E(t)] = =(0). (IE KoK] - ivT)t ) EED), <C (p(A-T)©(I-3T) EKoK]) .
for any vectorv and with=(0) = (I - J) ® (I — J). This enables AsE[¥»(t)] is a sum ofN* elements oft [(t)], we have
us to prove the following result. E[W ()] < N°C' (p((I-J) @ (I1-J)) EKK]) +¢).
Lemma 1. If there is a vectow such thapp (E [K @ K] — 1v”) <  Which concludes the proof. =

1, thenkE [=(t)] converges to zero @sgoes to infinity. By using Markov’s inequality on Theorem 2, we directly obtain

Proof. For all matrix norms, we can apply the submultiplicative in- the following theorem.

equality on Eq. (6) and follow the proof of Theorem 5.6.12 in [10] Theorem 3. For anye > 0, we have

to obtain the result. O Us(t) = Op (T + E)t) ‘

By remarking that(I_— HPE) = A-NHPE)I-T), In Theorem 3, one can choosas small as possifle Thus, as
Eq. (5) leads to the following result I' < 1 (see Eq. (8))¥(¢) vanishes exponentially with high prob-

_ . ability. Combining Eq. (4), Eq. (8), Theorem 1, Theorem 3 and an
EEW)=(I-3Ne@I-I]EKK]) . (7)  Union’s bound leads to the main result of this paper.

Lemma 2. E [S(t)] converges to zero agyoes to infinity ifand only ~ Theorem 4. There exist§ < I' < 1 such thatve > 0
fp(I-J)eI-J)EKeK]) <1 SE(t) = Op (T +¢)") .
Proof. Given Eq. (7),E [2(t)] can be written adV* whereM is Roughly speakingife., by neglectinge), one can write that
anN x N real matrix. Then, using directly Theorem 5.6.12 in [10] SE(t) =X exp{—|log(I')|t} wherea =< b stands for & is less or
leads to the result. O equal to a term proportional towith high probability”. The term

|log(I")| corresponds to the convergence slope. Concerning our
The above lemmas enable us to see that the convergence B¥WGossip algorithm, we thus have exhibited a lower-bound of its
E [E(¢)] is closely related to the spectrumBfK ® K]. convergence slope.

2 — i IV i
Lemma 3. If K is as in Eq. (2), then it exists a vectersuch that but one cannot choose = 0 because even if|M*||| behaves like
p(M)* asymptotically for any matrix norrjj| e |||, it is not necessary true

1T
P (E K®K]-1v ) <L for its coefficients (see p.299 in [10]).




5. AN INTUITIVE IMPROVEMENT: CLOCK CONTROL

So far, all the Poisson coefficients of the clocks were identical. This
means that all sensors were waking up uniformly and independentl
from their past actions. Intuitively, it would be more logical that a
sensottalking a lot became less active during a long period.

Thanks to our BWGossip algorithm, each sensor knows whethe
it talks frequently or not (without additional cost) through its own
weight value. Indeed, the more a sentsdks, the smaller its weight

is. Therefore, our idea is to control the Poisson coefficient of each
sensor with respect to their weight. We thus propose to consider th
following rule for each Poisson coefficient

Ai(t) = a+ (1 — a)wi(t)

wherea € (0, 1) is a tuning coefficient. Notice that the global clock
remains unchanged singé > 0, vazl Ai(t) = N. The network
does not so communicate more, but the talking sensors are just be
ter chosen. The complexity of the algorithm is the same because tr
sensor whose weight changes has just to relaunch its Poisson cloc

Even if the convergence and the convergence speed of the BWGos-

sip with clock improvement have not been formally established, our
simulations (see Fig. 1) show that it also converges exponentially to
the average with higher speedhifis well chosen.

6. SIMULATIONS

In Figure 1, we plot the normalized mean square error for various av
eraging algorithms versus the number of clock ticks whem sen-

sors are selected in a Random Geographic Graph [11] with a radit
r = y/4log(N)/N. As already remarked, the Broadcast Gossip
[4] does not converge to the average but decreases rapidly durir
the first iterations. The algorithm introduced by [5] has quite poor
performance compared to the Random Gossip [2]. The BWGossip
is clearly the fastest one, especially when the clock control manage-
ment operates with appropriate In Figure 2, we plot the theoret-
ical upper-bound of the convergence sl¢peg(T")| derived in The-
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(a) Comparison with other averaging algorithms
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/
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(b) Effects of clock control

Fig. 1. Performance of thBWGossiglgorithm.

——Lower bound on convergence slope : | log(T) |

0,05 W + Empirical convergence slope

F

g. 2. Convergence slope of tiR/NVGossimlgorithm.

orem 2 and the convergence slope obtained by linear regression ofd] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione,

the logarithm of the empirical mean squared error versus the number
of sensorsV (in Fig. 1(a), the BWGossip MSE in log scale is almost

linear fort large enough suggesting the exponential decreasing of[5]

the MSE). We observe a very good agreement.

7. CONCLUSION [6]

We provided a new averaging algorithm over Wireless Sensor Net-
works combining the speed of the broadcast-based algorithms and

the convergence of the pairwise-based algorithm. We especially gavé’]

a good approximation of the convergence speed.

8. REFERENCES

(8]

[1] J.N. Tsitsiklis,Problems in decentralized decision making and

computation Ph.D. thesis, M. I. T., Dept. of Electrical Engi- 9]

neering and Computer Science, 1984.

[2] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized
gossip algorithms,IEEE Trans. Inf. Theoryol. 52, no. 6, pp.
2508-2530, 2006.

[3] A.D. G. Dimakis, A. D. Sarwate, and M. J. Wainwright, “Ge-

ographic Gossip: Efficient Averaging for Sensor Networks,” [11]

IEEE Trans. Signal Processvol. 56, no. 3, pp. 1205-1216,
2008.

(10]

“Broadcast Gossip Algorithms for ConsensudEEE Trans.
Signal Processvol. 57, no. 7, pp. 2748-2761, 2009.

M. Franceschelli, A. Giua, and C. Seatzu, “Distributed Aver-
aging in Sensor Networks Based on Broadcast Gossip Algo-
rithms,” IEEE Sensors Jvol. 11, no. 3, pp. 808-817, 2011.

D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based compu-
tation of aggregate information,” iRroc. 44th Annual IEEE
Symp. Foundations of Computer Scier@@03, pp. 482—-491.

F. Benezit, V. Blondel, P. Thiran, J. Tsitsiklis, and M. Vetterli,
“Weighted Gossip: Distributed Averaging using non-doubly
stochastic matrices,” iRroc. (ISIT) Symp. IEEE Int Informa-
tion Theory 2010, pp. 1753-1757.

N. Biggs, Algebraic graph theory Cambridge University
Press, 1993.

F. lutzeler, J. Jakubowicz, W. Hachem, and P. Ciblat, “Dis-

tributed estimation of the maximum value over a Wireless Sen-
sor Network,” in45-th Asilomar Conference on Signals, Sys-

tems, and ComputerBacific Grove (USA), November 2011.

R.A. Horn and C.R. JohnsonMatrix analysis Cambridge
University Press, 2005.

M. Penrose, Random geometric graphsOxford University
Press, 2003.



