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Analysis of max-consensus algorithms

in wireless channels
Franck Iutzeler, Philippe Ciblat and Jérémie Jakubowicz

Abstract

In this paper, we address the problem of estimating the maximal value over a sensor network

using wireless links between them. We introduce two heuristic algorithms and analyze their theoretical

performance. More precisely, i) we prove that their convergence time is finite with probability one, ii) we

derive an upper-bound on their mean convergence time, and iii) we exhibit a bound on their convergence

time dispersion.

I. INTRODUCTION

Wireless Sensor Networks are systems composed of scattered agents with limited power and compu-

tational abilities. These agents may acquire some data and communicate through a wireless link to some

other agents. Their goal is to auto-organize in order to compute a function of the collected data in a

distributed fashion [1]. For instance, if temperature sensors are deployed in a hostile environment (e.g.

mountains) and one wants to know the average temperature in the region by looking at any sensor, a

simple idea would be to make the sensors randomly wake up and average their value with another sensor

so that they all converge to the average value of the initial measurements of the network. Namely, the

sensors want to achieve consensus over the average value of the initial measurements. This problem was

extensively studied in the past few years [2], [3], [4]. However, the average is not always the most useful

value to share. Indeed, in some applications, the maximal value may be of greater interest.
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For example, if a sensor network has to transmit information periodically (e.g. the average temperature

of the region in the previous scheme) through a costly link, it would be of interest to elect the sensor

which has the most power resource to operate that communication. To do so, one has to estimate the

maximal amount of energy left in the sensor battery (along with their ID) in a distributed fashion using

the wireless links between some of them. Another useful application deals with distributed access control

by having the network elect a node to transmit. For instance, the agents that want to send information i)

draw a number in a common window and then ii) reach consensus over the maximal value (and the ID

of the associated agent). The sensor with the maximal value then sends its packet to the access point.

A simple way to estimate the maximum value would be to mimic the algorithm introduced for averaging

[3]. The agents would wake up randomly and exchange their value with another reachable sensor randomly

chosen; both sensors would then keep the maximum between their former and received values. However,

since the communications between the sensors are wireless, it seems more natural for the initiating sensor

to broadcast its value, and then the sensors which have received the information would update their value

accordingly. In this work, we will analyze algorithms i) based on pairwise communications and ii) based

on broadcast communications. Note that an averaging algorithm based on broadcast communications has

been proposed in [5], but it does not perform well due to the non-conservation of the initial sum. This

is not an issue for estimating the maximum value since the maximum value is preserved.

A distributed algorithm is thus relevant to estimating a maximum value over a network through wireless

communications, which we propose to address hereafter. We prove the convergence of both above-

mentioned algorithms and analyze their convergence speed.

This paper is organized as follows: models and algorithms are reported and linked with related works

in Section II. In Section III, we derive our mathematical results. In Section IV, numerical illustrations

are given. Concluding remarks are drawn in Section V.

II. MODELS AND ALGORITHMS

A. Assumptions on the wireless network

Consider a network of N sensors modeled as an undirected graph G = (V,E) where V is the set

of agents – the vertices of the graph – and E is the set of links between agents – the edges of the

graph. We assume that each link is error-free. To indicate that a couple of agents (v, w) are neighbors

(we also use the term adjacent), we use the notation v ∼ w. For any set S, we denote its cardinality

by |S|. Obviously, we have |V | = N . The set of neighbors of agent v is denoted Nv. We also define

∂(S), the set of edges going out of set S (that is, edges with one end in S and one end out of S) and
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αG = minS |∂(S)|/|S| the vertex expansion. Each agent v has an initial scalar measurement x0(v). The

set of all initial measurements is thus stacked in a unique vector x0 ∈ RN . The network is invariant over

time and connected.

The network is assumed asynchronous, meaning that no common clock is available for the agents.

Instead, each agent has its own clock and can initiate a communication with its neighborhood at clock

ticks. Assuming communication time is small compared to the time between clock ticks, it makes sense (as

usually done for other consensus-like algorithms [3], [5]) to assume the absence of collisions between

communicating nodes. We also consider that the agent clocks are modeled by independent Poisson

processes with intensity λv for agent v. It is then equivalent to have a global clock according to a

Poisson process with intensity λ =
∑

v λv, and that each clock tick is then attributed to a given agent.

The probability that agent v wakes up is equal to pv = λv/λ. We will assume, for the sake of simplicity,

that all intensities λv are the same, hence λv/λ = 1/N . We denote by xn(v) the value at agent v after

n global clock ticks, while xn denotes the vector of all values after n global clock ticks.

The goal for the network is to estimate the value M(x0) , maxv∈V x0(v) , in a distributed manner,

that is, only using communications between adjacent nodes.

B. Algorithms

We propose two algorithms for achieving the task of estimating M(x0). Both algorithms are inspired

by those already developed to obtain the average-consensus.

The first algorithm is based on the exchange between the current values of two adjacent nodes chosen

randomly in the following way.

RANDOM-PAIRWISE-MAX:

1) After the n-th clock tick, a node v wakes up1.

2) v chooses a neighbor w uniformly in Nv.

3) xn(v) = xn(w) = max
(
xn−1(v), xn−1(w)

)
.

This algorithm is suitable for wired networks whereas it is clearly not optimal for wireless networks.

Indeed, it does not rely on the broadcasting abilities of the wireless channel, in which all the neighbors

receive the current value of v. Therefore, we propose a second algorithm that benefits from the broadcast

nature of the wireless channel.

RANDOM-BROADCAST-MAX:

1For the sake of clarity, the time index is dropped for the chosen nodes in this section.
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1) After the n-th clock tick, a node v wakes up.

2) v broadcasts its current value to all its neighbors.

3) xn(w) = max
(
xn−1(w), xn−1(v)

)
for w ∈ Nv.

A similar algorithm has already been proposed for calculating the average (in that case, the max

operator has to be replaced with the average one). Unfortunately, in the context of average-consensus,

such an algorithm does not keep the sum constant along time, which prevents it from converging to

the true value. As for the max-consensus, such an algorithm keeps the maximum value and so does not

give rise to an undesirable behavior. Therefore the RANDOM-BROADCAST-MAX will be our flagship

algorithm.

C. Link with existing works

To the best of our knowledge, in the framework of distributed computation, only [6] has focused on max

computation. Actually, [6] has developed a general framework to compute a family of functions (including

the maximum value) of the nodes’ measurements in a distributed fashion. Compared to our set-up, this

work has been done under continuous-time and synchronous clocks assumptions. It can nevertheless be

adapted to our context (discrete-time and asynchronous clocks), but it will perform poorly since each

node goes to the maximum value in an incremental way even if one of its neighbors has the maximum

value. Therefore, our proposed algorithms are much more adapted to max computation.

The protocols presented here are similar to those used for rumor spreading, but the problems and

solutions differ in several respects. In particular, they differ in which nodes transmit and update values

in each time slot. In our framework, a single node v initiates a single transmission: in RANDOM-

BROADCAST-MAX, all neighbors of v perform an update, and in RANDOM-PAIRWISE-MAX, a single

neighbor w exchanges values with v and they both perform an update. By contrast, in rumor spreading

problems, only nodes knowing the rumor are able to transmit, and all such nodes transmit in each

time slot. For rumor spreading, nodes must know whether they have the rumor, whereas in our model,

nodes do not know if they have the max value, so the time spent by each communication has to

be taken into account. Furthermore, only one randomly-chosen node speaks at each clock tick. As

a consequence, our communication system is inherently collision-free, whereas in rumor spreading

synchronous communications are considered and so collisions may occur.

Only a few papers ([7], [8], [9], [10], [11]) have taken into account the broadcasting nature of the

medium in the rumor spreading problem. But in all these papers, the communications are synchronous

and so the main issue is collision between transmissions. Moreover, only the informed nodes wake up.
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Hence, the major difficulty in the technical analysis lies in the study of the collisions. As a consequence,

their set-up is different from ours, and their results do not hold in our context. In [12], the broadcasting

nature of the channel is also considered in the so-called FLOOD-MAX algorithm. But the context is much

simpler than ours since all the nodes wake up simultaneously and the communication is collision-free.

Results obtained for this algorithm are clearly unsuited to our analysis.

All other papers dealing with rumor spreading ([13], [14], [15], [16], [17], [18], [19], [20]) focus

on pairwise communication and so does not take advantage of the broadcasting nature of the channel.

Consequently, their works and results can not be applied for the RANDOM-BROADCAST-MAX. In contrast,

the proposed RANDOM-PAIRWISE-MAX seems closer to them. Actually, in most of these papers, only the

informed nodes wake up and propagate their information to a randomly chosen neighbor, which differs

significantly from our algorithm. However one algorithm, the so-called PUSH-PULL, is closely related

to our algorithm. Indeed, at each clock tick, every informed node propagates its information to one of

its neighbors randomly chosen (push step) whereas every uninformed node asks one of its neighbor for

the information (pull step) [21], [22]. The update step is then clearly equivalent to those of RANDOM-

PAIRWISE-MAX. Nevertheless one fundamental difference exists and prevents us from reusing results of

the PUSH-PULL. Indeed, each node is active at each clock tick in the PUSH-PULL set-up whereas, in

our set-up, one randomly-chosen node is active per clock tick. Consequently one node is active every N

clock ticks on average. This requires using somewhat different tools to analyze the convergence.

Our problem and the proposed algorithms are thus novel, hence deserve our theoretical convergence

analysis given hereafter.

III. PERFORMANCE ANALYSIS

We define convergence time τ as the first time when all the nodes share the same value, i.e.,

τ , inf{n ∈ N : ∀v ∈ V, xn(v) = M(x0)}. (1)

Given an undirected graph G = (V,E) with N nodes, one can define its N × N adjacency matrix

AG with entries: aG(v, w) = 1 if v ∼ w and 0 otherwise. It is a symmetric matrix. We also introduce

the N × N diagonal matrix DG where the i-th diagonal entry is the degree of the node vi, i.e., |Nvi |.

We denote dmax the maximum degree. The symmetric matrix LG = DG − AG is called the Laplacian

of the graph G. Its eigenvalues are non-negative and its kernel has dimension 1 whenever the graph is

connected. We denote by λ1, . . . , λN the eigenvalues of LG sorted in increasing order. The diameter of

graph G is given by ∆G = max{`(v, w) : (v, w) ∈ V 2} where `(v, w) = inf{m ∈ N : [AG]m(v, w) > 0}

corresponds the minimum number of edges needed to connect v to w.
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A. Random-Broadcast-Max

Theorem 1 asserts that all the sensors will share the maximum value after a finite number of clock

ticks.

Theorem 1. For RANDOM-BROADCAST-MAX, we have τ <∞ with probability 1.

The proof is reported in Appendix A. This result is not at all surprising, and we would like now to

have more information about the behavior of τ and, especially, about its mathematical expectation E[τ ]

versus some characteristics of the operating graph.

Theorem 2. For RANDOM-BROADCAST-MAX, one has

E[τ ] ≤ β, where β = N∆G +N(∆G − 1) log

(
N − 2

∆G − 1

)
.

The proof is reported in Appendix B. Note that for complete graphs (∆G = 1), the upper bound of

Theorem 2 is tight since the time needed for propagating the max is the time needed for the max-informed

node to wake up and communicate its value to all other nodes using only one broadcast communication,

hence N in expectation. Moreover, for the ring graph, we can prove that E[τ ] = (N2 −N)/2 while the

bound is equal to N2(1+log(2))/2. By neglecting the term proportional to N , we observe that the mean

and its bound are both scaled in N2.

Let us consider the previous works on max propagation by using the broadcasting nature of the medium

([7], [8], [9], [10], [11]). Even if the framework is strongly different (see Section II-C), it is of interest to

compare the performance bounds. When all the informed nodes wake up simultaneously and thus collide

with each other, the best convergence time behaves like ∆G log(N/∆G) [9]. Surprisingly, this is almost

the same shape as ours except for a factor N .

Having an upper-bound on the expected convergence time is very useful, but does not provide infor-

mation about the outliers, i.e., the events for which the convergence time is extremely long. Therefore,

in Theorem 3, we provide an upper bound for τ that holds with high probability.

Theorem 3. For RANDOM-BROADCAST-MAX, with probability 1− ε,

τ ≤ β +N∆G

(
log

(
∆G

ε

)
− 1

)
The proof is reported in Appendix C. Let us consider the “toy” example of the complete graph. The

extra time cost is equal to N log(1/ε), i.e., N logN if ε = 1/N . Surprisingly, [15] obtained similar

results although the two frameworks are strongly different.

DRAFT



7

B. Random-Pairwise-Max

A similar work can be done for the RANDOM-PAIRWISE-MAX. Actually the convergence can be

proven by following the same approach as that given in Appendix A. In contrast, the proofs about mean

convergence time and concentration rely on quite different tools and thus are introduced hereafter.

Theorem 4. For RANDOM-PAIRWISE-MAX, one has

E[τ ] ≤ α, where α = Ndmax.
hN−1

λ2
,

with the n-th harmonic number hn =
∑n

k=1 1/k.

The proof is reported in Appendix D. In order to illustrate the upper-bound given in Theorem 4, let us

focus on the case where G is a complete graph. For such a graph, dmax/λ2 is of order O(1), hence our

bound is of order O(N logN). In the standard rumor spreading context, the bound is of order O(logN)

[23]. Once again, we pay an extra factor of order N for not knowing which nodes are informed or not.

Theorem 5. For RANDOM-PAIRWISE-MAX, with probability 1− ε,

τ ≤ α

(
1 + log

(
N

ε

)
.

(
1 +

√
1 +

1

log
(
N
ε

))) .
The proof is reported in Appendix E. Note that for small ε, the RHS of Theorem 5 can be replaced

with TRPM(1 + 2 log(N/ε)). By taking ε = 1/N (which is usual in the literature), we obtain TRPM(1 +

4 log(N)). In [24], it is proven that τ for the PUSH-PULL is O(α−1
G log2(N)

√
log(N)) with probability

(1 − 1/N) where αG is the vertex expansion. In Theorems 4 and 5, TRPM can in fact be replaced

with T
′
RPM = NdmaxhN−1α

−1
G /2 by applying the definition of αG in Eq. (3). Therefore, τ for the

RANDOM-PAIRWISE-MAX is O(Ndmaxα
−1
G log2(N)) with probability (1− 1/N). Apart from the factor

N (essentially due to our communication protocol), the trends offer strong similarities.

IV. NUMERICAL ILLUSTRATIONS

The proposed upper-bound for the expected convergence time and the convergence time dispersion

have been evaluated on Random Geometric Graphs (RGG) which are well suited for modelling Wireless

Sensor Networks. They consist in uniformly choosing N points (representing the nodes/sensors) in the

unit square and then drawing an edge between every pair of sensors closer than a pre-defined radius r.

By choosing r =
√

8 log(N)/N , connectivity is ensured with a high probability [25], [4].

In Figure 1, we plot the (empirical) mean number of communications for reaching convergence and

the associated upper-bounds (given by Theorems 2 and 4) for each proposed algorithm versus the number
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of sensors N . We observe that the RANDOM-BROADCAST-MAX outperforms the RANDOM-PAIRWISE-

MAX. When the network size increases, the upper-bounds become quite pessimistic due to the various

used simplifications (in the case of RANDOM-BROADCAST-MAX, we rely on the spanning tree instead

of the whole graph and we broadcast the information layer per layer; in the case of RANDOM-PAIRWISE-

MAX, we use Cheeger’s inequality and the approximation 1/dmax).

As the RANDOM-BROADCAST-MAX is much more interesting in terms of performance, we hereafter

focus on it exclusively. In Figure 2, we plot the histograms of the convergence time as well as the

upper-bounds for the convergence with probability 1− 1/N (given in Theorem 3) when N = 40.

V. CONCLUSION

We have proposed two algorithms for estimating the maximum value in wireless sensor networks. The

convergence times of these algorithms have been analyzed in depth. Furthermore, our problem is close

to the rumor spreading problem, and we show that roughly speaking we pay a factor about the size of

the network for not knowing which nodes have the information (maximum value or rumor).

APPENDIX A

PROOF OF THEOREM 1

Let Kn = {v ∈ V : xn(v) = M(x0)} be the set of nodes sharing the maximum at time n. Let

Xn = |Kn| be the cardinal of Kn and Yn = δ{Xn+1>Xn} be the random variable equal to 1 when

Xn+1 > Xn and 0 otherwise.

As Kn is a nondecreasing sequence of subsets of V , Xn is a nondecreasing sequence of integers

bounded by N and so Xn converges to a random variable X∞ ≤ N . Hence, we have that
∑∞

n=1 Yn <

X∞ ≤ N and, taking expectations,
∑∞

n=1 E[Yn] <∞.

Whenever Xn < N , using the graph connectedness, there is at least one couple (v, w) ∈ Kn×(V −Kn)

such that v ∼ w. The probability that v informs w with M(x0) is greater than p = 1/(Ndmax) > 0

(with both algorithms and for every time n). Then, for all n > 0

E[Yn] ≥ P[Yn = 1, Xn < N ] = P[Yn = 1|Xn < N ]P[Xn < N ] ≥ p P[Xn < N ].

Then, by summing over n > 0, we have

p

∞∑
n=1

P[Xn < N ] ≤
∞∑
n=1

E[Yn] <∞.

Thanks to the Borel-Cantelli lemma, we know that P[Xn < N, infinitely often ] = 0. Hence, there is

a finite time τ such that Xτ = N almost surely.
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APPENDIX B

PROOF OF THEOREM 2

We assume for the sake of simplicity that one single node, say v(0), has the maximum at time n = 0.

Let us partition set V according to nodes’ distances from v(0):

Li = {v ∈ V : d(v(0), v) = i}, i ∈ N

One has V = ∪∆G

i=0Li and Li ∩ Lj = ∅ for i 6= j. We define the (random-variable) times: t0 = 0,

and ti = inf{n ≥ ti−1 : ∀v ∈ Li, xn(v) = M(x0)}. We denote by Fn the σ-algebra spanned by

the nodes sharing the maximum values at time n. Using the same proof framework as in the standard

coupon collector problem (see e.g. [26]), it is easy to show that E[ti+1 − ti|Fti ] ≤ Nh|Li|. The term

E[ti+1 − ti|Fti ] corresponds to the duration to completely fill up layer (i + 1) given the nodes sharing

the maximum value at time ti, i.e., given at least that layer i was already filled up. Therefore we have

E[τ ] ≤
∆G−1∑
i=0

E[ti+1 − ti|Fti ] ≤
∆G−1∑
i=0

Nh|Li| .

By using the inequality hn ≤ log(n) + 1 and the fact |L0| = 1, we obtain

E[τ ] ≤ N

(
∆G +

∆G−1∑
i=1

log |Li|

)
.

Using
∑n−1

i=1 log xi ≤ (n− 1) log( 1
n−1

∑n−1
i=1 xi), with xi = |Li| and n = ∆G concludes the proof.

APPENDIX C

PROOF OF THEOREM 3

Let Avi (t) be the event that the node v (belonging to layer Li) is not switched on after t iterations.

So P[Avi (t)] =
(
N−1
N

)t. When the event tk+1 − tk ≥ t occurs, we know that the event ∪v∈Li+1
Avi (t)

also occurs. Therefore P[ti+1 − ti ≥ t] ≤ P(∪v∈Li+1
Avi (t)). By using the Union bound and the fact that

0 ≤ 1 − y ≤ exp(−y) for y ∈ [0, 1], one can prove that the probability that, after t iterations, some of

the nodes of Li still have not talked is as follows

P[∪v∈Li+1
Avi (t)] ≤

∑
v∈Li

exp

(
− t

N

)
. (2)

For any ε > 0, by choosing tε = N log |Li|+N log(∆G/ε), we then get

P
[
ti+1 − ti ≥ N log |Li|+N log

(
∆G

ε

)]
≤ ε

∆G
.

By using once again the Union bound, we find the final result.
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APPENDIX D

PROOF OF THEOREM 4

The definition of Kn is given at the beginning of Appendix A. In the context of RANDOM-PAIRWISE-

MAX, one has |Kn| ≤ |Kn+1| ≤ |Kn| + 1. Here, our objective is to exhibit a tight evaluation of the

probability that the sequence |Kn| is strictly increasing at time n.

P[|Kn+1| = |Kn|+ 1 | Kn] = P[vn ∈ Kn, wn /∈ Kn|Kn, vn ∼ wn] = P[{vn, wn} ∈ ∂Kn|Kn, vn ∼ wn].

The selection algorithm of an edge is as follows: choose vn uniformly over V , then wn uniformly over

Nvn and independently of the past, or vice-versa. Therefore, for any edge e, we have P[{vn, wn} = e] ≥

2/Ndmax which implies that

P[{vn, wn} ∈ ∂Kn | Kn, vn ∼ wn] ≥ 2
|∂Kn|
Ndmax

.

For any subset S of V , the following inequality, called Cheeger’s inequality, holds

|∂S|
|S|
≥ λ2.

(
1− |S|

N

)
(3)

where ∂S ,
{
{v, w} ∈ E : v ∈ S,w /∈ S

}
is the boundary of S. More details are available in [27].

Using Cheeger’s inequality, we obtain

P[{vn, wn} ∈ ∂Kn | Kn, vn ∼ wn] ≥ 2λ2

N2dmax
(N − |Kn|)|Kn| (4)

As in Appendix B, assuming, for the sake of simplicity, that initially one single node has the maximum

value, consider the stopping times: τi = inf{n ∈ N : |Kn| = i}, so that τ1 = 0 and τ =
∑N−1

i=1 (τi+1−τi)

(if more than one node have the maximum value at time 1, one just has to start at i > 1). Let Ln be

equal to the random variable |Kn+1| − |Kn| given |Kn|. Ln is a Bernoulli distribution of parameter pn.

From Eq. (4), we have pn ≥ (2λ2/N
2dmax).(N − |Kn|)|Kn|. As (τi+1 − τi) is the number of iterations

needed to increment |Kn| when |Kn| = i, or equivalently, the number of trials on Ln for obtaining the

value 1 when |Kn| = i, the random variable (τi+1−τi) is geometrical distributed with parameter pi ≥ πi
with πi = (2λ2/N

2dmax).(N − i)i. As a consequence, E[τi+1 − τi] ≤ 1/πi. We thus have

E[τ ] ≤ N2dmax

2λ2

N−1∑
i=1

1

(N − i)i
=
Ndmax

λ2

N−1∑
i=1

1

i
,

which after some simple algebra leads to the result.
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APPENDIX E

PROOF OF THEOREM 5

We use the same notations as in Appendix D. The random variable τi+1 − τi is geometric-distributed

with parameter pi ≥ πi. As a consequence, τi+1−τi is stochastically dominated by a geometric distribution

with parameter πi denoted by Yi, which means that the cdf of τi+1 − τi is smaller than the cdf of Yi at

any point [28]. By using Chernoff’s bound for geometric random variable, we have, for any δ > 0,

P
[
τi+1 − τi ≥

1 + δ

πi

]
≤ P

[
Yi ≥

1 + δ

πi

]
≤ exp

(
− δ2

2(1 + δ)

)
.

Let ε be any positive value. Selecting δε as the smallest positive term such that exp
(
−δ2

ε/(2(1 + δε))
)
≤

ε/N leads to δε = log(N/ε)(1 +
√

1 + 1/ log(N/ε)). So, we have P[τi+1 − τi ≥ (1 + δε)/πi] ≤ ε/N .

Then, by using the Union bound, we have P[τ ≥ (1 + δε)(
∑

i 1/πi)] ≤ ε which concludes the proof.
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