
Asynchronous Distributed Optimization
using a Randomized Alternating Direction Method of Multipliers

Franck Iutzeler, Pascal Bianchi, Philippe Ciblat and WalidHachem

Abstract— Consider a set of networked agents endowed with
private cost functions and seeking to find a consensus on
the minimizer of the aggregate cost. A new class of random
asynchronous distributed optimization methods is introduced.
The methods generalize the standard Alternating Direction
Method of Multipliers (ADMM) to an asynchronous setting
where isolated components of the network are activated in an
uncoordinated fashion. The algorithms rely on the introduction
of randomized Gauss-Seidel iterations of Douglas-Rachford
splitting leading to an asynchronous algorithm based on the
ADMM. Convergence to the sought minimizers is provided
under mild connectivity conditions.

I. I NTRODUCTION

Consider a network represented by a setV of agents
seeking to solve the following optimization problem on a
Euclidean spaceX:

inf
x∈X

∑

v∈V

fv(x) , (1)

wherefv is a convex real function known by agentv only.
Functionfv can be interpreted as the price payed by an agent
v when the global network state is equal tox.

This problem arises for instance incloud learningappli-
cations where massive data sets are distributed in a network
and processed by distinct virtual machines [1]. We inves-
tigate distributed optimization algorithms: agents iteratively
update a local estimate using their private objectivefv and,
simultaneously, exchange information with their neighbors
in order to eventually reach a consensus on the global
solution. Standard algorithms are generallysynchronous: all
agents are supposed to complete their local computations
synchronously at each tick of an external clock, and then
synchronously merge their local results. However, in many
situations, one faces variable sizes of the local data sets
along with heterogeneous computational abilities of the
virtual machines. Synchronism then becomes a burden, as
the global convergence rate is expected to depend on the
local computation times of the slowest agents. It is crucialto
introduce asynchronous methods which allow the estimates
to be updated in a non-coordinated fashion, rather than all
together or in some frozen order.

The literature contains at least three classes of distributed
optimization methods for solving (1). The first one is based
on the simultaneous use of a localfirst-order optimization
algorithm (subgradient algorithm [2], [3], [4], Nesterov-like
method [5], [6]) and a gossip process which drives the

This work was partially funded by the French Defense Agency (DGA).
The authors are with Telecom ParisTech, CNRS LTCI, 75013 Paris,

France{lastname}@telecom-paristech.fr

network to a consensus. A second class of methods is formed
by distributed Newton-Raphson methods [7]. This paper
focuses on a third class of methods derived from proximal
splitting methods [8], [9], [10]. Perhaps the most emblematic
proximal splitting method is the so-calledAlternating Direc-
tion Method of Multipliers(ADMM) recently popularized to
multiagent systems by the monograph [11]. Schizaset al.
demonstrated the remarkable potential of ADMM to handle
distributed optimization problems and introduce a useful
framework to encompass graph-constrained communications
[13]. We also refer to [14], [15] for recent contributions.
However, all of these works share a common perspective: Al-
gorithms are synchronous. They require a significant amount
of coordination or scheduling between agents. In [13], [14],
agents operate in parallel, whereas [15] proposes a sequential
version of ADMM where agents operate one after the other
in a predetermined order.
Contributions. This paper introduces a novel class of dis-
tributed algorithms to solve (1). The algorithms are asyn-
chronous in the sense that some components of the network
are allowed to wake up at random and perform local updates,
while the rest of the network stands still. No coordinator or
global clock is needed. The frequency of activation of the
various network components is likely to vary.
The mathematical framework of the paper is provided by the
monotone operator theory (seee.g.[18]). The approach relies
on the the introduction ofrandomizedGauss-Seidel iterations
of the so called Douglas-Rachford operator. These iterations
stem from a new powerful method for finding the zeros of a
sum of two monotone operators. Application of our method
to Problem (1) yields a randomized ADMM-like algorithm,
which is proved to converge to the sought minimizers.

The paper is organized as follows. The distributed op-
timization problem is rigorously stated in Section II. The
synchronous ADMM algorithm that solves this problem is
then described in Section III. Section IV forms the core
of the paper. After quickly recalling the monotone operator
formalism, the random Gauss-Seidel form of the proximal
algorithm is described and its convergence is shown there.
These results will eventually lead to an asynchronous version
of the well-known Douglas-Rachford splitting algorithm. In
Section V, the results of Section IV are applied towards de-
veloping an asynchronous version of the ADMM algorithm.
An implementation example is finally provided in Section VI
along with some simulations in Section VII.

Notations. Consider a non-directed graphG = (V,E)
where V is a set of vertices andE a set of edges. We
sometimes notev ∼ w when{v, w} ∈ E. For anyA ⊂ V ,

we denote byG(A) the subgraph ofG induced byA (i.e.,
G(A) has verticesA and for any (v, w) ∈ A2, {v, w}
is an edge ofG(A) if and only if it is an edge ofG).
Let X be a Euclidean space. We denote byX

A the set of
functions onA → X. It is endowed with the inner product
〈x, y〉A =

∑

v∈A〈x(v), y(v)〉X where 〈 . , . 〉X is the inner
product onX. We will omit subscriptsX and A when no
confusion occurs. For any finite collectionA1, · · · , AL ⊂ V ,
we endow the spaceXA1 ×· · ·×XAL with the scalar product
〈x, y〉 =

∑L
ℓ=1〈xℓ, yℓ〉Aℓ

for any x = (x1, · · · , xL) and
y = (y1, · · · , yL).

We denote byΠAx the restriction ofx to A i.e., ΠA :
X
V → X

A is the linear operator defined for anyx ∈ X
V as

ΠAx : (v ∈ A) 7→ x(v). We denote by1A the vector ofXA

whose entries are all equal to one and by sp(1A) the linear
span of1A i.e., the set of vectors ofXA whose entries are
all equal. Notation|A| represents the cardinal of a setA.

For a closed proper convex functionh : X →
(−∞,+∞] we define the proximal operator proxh,ρ(x) =
argminy h(y) +

ρ
2‖y − x‖2.

II. D ISTRIBUTED OPTIMIZATION ON A GRAPH

Consider a network of agents represented by a non-
oriented graphG = (V,E) whereV is a finite set of vertices
(i.e., the agents) andE is a set of edges. Each agentv ∈ V
has a private cost functionfv : X → (−∞,+∞] whereX is
a Euclidean space. We start with the following assumption:

Assumption 1:
i) For all v ∈ V , fv is a proper closed convex function.
ii) The infimum in (1) is finite and is attained at some
point x∗ ∈ X.
In order to solve the optimization problem (1) on the graph
G, we first provide an equivalent formulation of (1) that will
be revealed useful. For some integerL ≥ 1, consider a finite
collectionA1, A2, · · · , AL of subsets ofV which we shall
refer to ascomponents. We assume the following condition.

Assumption 2: i)
⋃L

ℓ=1 Aℓ = V .
ii)

⋃L
ℓ=1 G(Aℓ) is connected.

Assumption 2i) implies that any vertex appears in one of
the componentsA1, · · · , AL at least. We stress the fact that
two distinct componentsAℓ and Aℓ′ are not necessarily
disjoint, though. Assumption 2ii) means that the union of
all subgraphs is connected. As the latter union is also a
subgraph ofG, this implies thatG is connected. As will
be made clear below, our method will assume that all agents
in the same component are able to perform simple operations
in a coordinated fashion (i.e., compute a local average over
a component). Thus, in practice, it is reasonable to require
that each subgraphG(Aℓ) is itself connected.

We introduce some notations. We set for anyx ∈ XV ,

f(x) ,
∑

v∈V

fv(x(v)) .

For anyz = (z1, · · · , zL) ∈ Z , XA1 ×· · ·×XAL , we define
the closed proper convex function

g(z) ,

L
∑

ℓ=1

ιsp(1Aℓ
)(zℓ)

whereιH is the indicator function of a setH (equal to zero
on H and to+∞ outside). Hereg(z) is equal to zero if for
every ℓ, zℓ is constant. Otherwise,g(z) is infinite. For any
x ∈ X

V , we defineMx , (ΠA1
x, · · · ,ΠAL

x). We consider
the following optimization problem:

inf
x∈XV

f(x) + g(Mx) (2)

Lemma 1:Under Assumption 2,x is a minimizer of (2)
if and only if x = x̄1V wherex̄ ∈ X is a minimizer of (1).

Proof: Let x ∈ XV such thatg(Mx) is finite. Then
x is constant on each component. Letv, w be two arbitrary
vertices inV . There exists a path in

⋃L
ℓ=1G(Aℓ) connecting

v andw. Each edge of this path connects two vertices which
belong to a common component. Thus,x is constant on two
consecutive vertices of the path. This proves thatx(v) =
x(w). Thus,x is constant and the result follows.
One possible approach for this problem is to use ADMM.
Although the choice of the setsA1, · · · , AL does not change
the minimizers of the initial problem, it has an impact on the
particular form of ADMM used to find these minimizers, as
we shall see below.

In order to be more explicit, we provide in this section two
important examples of possible choices for the components
A1, · · · , AL.

Example 1:LetL = 1 andA1 = V . Problem (2) becomes

inf
x∈XV

f(x) + ιsp(1V)(x) ,

In this case, the formulation is identical to [11, Chapter 7].
Example 2:Let L = |E| and {A1, · · · , AL} = E. That

is, each setAℓ is a pair of vertices{v, w} such that{v, w}
is an edge. Here, Problem (2) is written as

inf
x∈XV

f(x) +
∑

v∼w

ιsp(12)

(

x(v)
x(w)

)

where12 stands for the vector(1, 1)T .

III. SYNCHRONOUSADMM

A. General facts

We now apply the standard ADMM to Problem (2).
Perhaps the most direct way to describe ADMM is to
reformulate the unconstrained problem (2) into the following
constrained problem: Minimizef(x) + g(z) subject toz =
Mx. For anyx ∈ XV , λ, z ∈ Z, the augmented Lagrangian
is given by

Lρ(x, z;λ) ,f(x)+g(z)+〈λ,Mx−z〉+
ρ

2
‖Mx− z‖2 (3)

whereρ > 0 is a constant. ADMM consists of the iterations

xk+1 = argmin
x∈XV

Lρ(x, z
k;λk) (4a)

zk+1 = argmin
z∈Z

Lρ(x
k+1, z;λk) (4b)

λk+1 = λk + ρ
(

Mxk+1 − zk+1
)

. (4c)

From [11, Chap. 3.2], the following result is immediate.
Theorem 1:Under Assumption 1, the sequence{xk}k∈N

defined in (4a) converges to a minimizer of (2).

B. Decentralized Implementation

One should now make (4) more explicit and convince the
reader that the iterations are indeed amenable to distributed
implementation. Due to the specific form of functiong, it
is clear from (4b) that all componentszk1 , · · · , z

k
L of zk are

constant. Otherwise stated,zk = (z̄k11A1
, · · · , z̄kL1AL

) for
some constants̄zkℓ ∈ X. For anyv ∈ V , we set

σ(v) , {ℓ : v ∈ Aℓ} .

Now consider the first update equation (4a). Getting rid of all
quantities inLρ which do not depend on thevth component
of x, we obtain for anyv ∈ V

xk+1(v) = argmin
y∈X

fv(y) +
∑

ℓ∈σ(v)

〈λk
ℓ (v), y〉+

ρ

2
‖y− z̄kℓ ‖

2 .

After some algebra, the above equation further simplifies to

xk+1(v) = proxfv ,ρ|σ(v)|
(

Zk(v) −Bk(v)
)

(5)

where we introduced the following parameters:

Zk(v) =
1

|σ(v)|

∑

ℓ∈σ(v)

z̄kℓ , Bk(v) =
1

ρ|σ(v)|

∑

ℓ∈σ(v)

λk
ℓ (v) . (6)

It is straightforward to show that the second update equation
(4b) admits as well a simple decomposable form. After some
algebra, we obtain that for anyℓ = 1, · · · , L,

z̄k+1
ℓ =

1

|Aℓ|

∑

v∈Aℓ

xk+1(v) +
λk
ℓ (v)

ρ
. (7)

Finally, for all ℓ = 1, · · · , L andv ∈ Aℓ, equation (4c) reads

λk+1
ℓ (v) = λk

ℓ (v) + ρ(xk+1(v)− z̄k+1
ℓ) . (8)

Averaging (8) w.r.t.v and using (7) yields
∑

v∈Aℓ
λk
ℓ (v) = 0.

Thus, the second term in the RHS of (7) can be deleted.
Finally, averaging (8) w.r.t.ℓ leads to

Bk+1(v) = Bk(v) + xk+1(v) − Zk+1(v) . (9)

Synchronous ADMM:
At each iterationk,
For each agentv, computexk+1(v) using (5).
In each componentsℓ = 1, · · · , L, compute

z̄k+1
ℓ =

1

|Aℓ|

∑

w∈Aℓ

xk+1(w).

For each agentv, computeZk+1(v) andBk+1(v) using (6)
and (9) respectively.

The above algorithm implicitly requires the existence of
a routine for computing an average, in each componentAℓ.
This requirement is mild when the components coincide with
edges of the graph as in Example 2. In this case, one only
needs that the two vertices of an edge share their current
estimate and find an agreement on the average. In the general
case, the objective can be achieved by selecting a leader
in each component whose role is to gather the estimates,

compute the average and send the result to all agents in this
component.

It is worth noting that in the case of Example 1, the
synchronous ADMM described above coincides with the
algorithm of [11] and is very close to the so called PPXA
algorithm introduced in [12].

IV. A R ANDOMIZED PROXIMAL ALGORITHM

A. Monotone operators

An operatorT on a Euclidean spaceY is a set valued
mappingT : Y → 2Y. An operator can be equivalently
identified with a subset ofY × Y, which makes us write
(x, y) ∈ T when y ∈ T(x). Given two operatorsT1 and
T2 on Y and two real numbersα1 and α2, the operator
α1T1 + α2T2 is defined asα1T1 + α2T2 = {(x, α1y1 +
α2y2) : (x, y1) ∈ T1, (x, y2) ∈ T2}. The identity operator
is I = {(x, x) : x ∈ Y} and the inverse of the operator
T is T−1 = {(x, y) : (y, x) ∈ T}. The operatorT is said
monotoneif

∀ (x, y), (x′, y′) ∈ T, 〈x− x′, y − y′〉 ≥ 0.

A monotone operator is saidmaximal if it is not strictly
contained in any monotone operator (as a subset ofY×Y).
Finally, T is saidfirmly non-expansiveif

∀ (x, y), (x′, y′) ∈ T, 〈x− x′, y − y′〉 ≥ ‖y − y′‖2.

The typical example of a monotone operator is the subd-
ifferential ∂f of a convex functionf : Y → R. Finding
a minimum of f amounts to finding a point inzer(∂f),
where zer(T) = {x : 0 ∈ T(x)} is the set of zeroes of
an operatorT. A common technique for finding a zero of
a maximal monotone operatorT is the so-calledproximal
point algorithm[16] that we now describe. Theresolventof
T is the operatorJρT , (I+ρT)−1 for ρ > 0. One key result
(seee.g. [9]) says thatT is maximal monotone if and only
if JρT is firmly non expansive and its domain isY. Observe
that a firmly non expansive operator is single valued and
denote byfix(JρT) the set of fixed points ofJρT. It is clear
that fix(JρT) = zer(T). The firm non expansiveness ofJρT
plays a central role in the proof of the following result:

Lemma 2 (Proximal point algorithm [16]):If T is a
maximal monotone operator andρ > 0, then the iterates
ζk+1 = JρT(ζ

k) starting at any point ofY converge to a
point of fix(JρT) whenever this set is non-empty.

B. Random Gauss-Seidel iterations

Assume now that the Euclidean spaceY is a Cartesian
product of Euclidean spaces of the formY = Y1 × · · · ×YL

whereL is a given integer, and write anyζ ∈ Y as ζ =
(ζ1, . . . , ζL) where ζℓ ∈ Yℓ for ℓ = 1, . . . , L. Let S be a
firmly non expansive operator onY and write

S(ζ) = (S1(ζ), ..., SL(ζ))

whereSℓ(ζ) ∈ Yℓ. Forℓ = 1, . . . , L, define the single valued
operatorŜℓ : Y → Y as

Ŝℓ(ζ) = (ζ1, . . . , ζℓ−1, Sℓ(ζ), ζℓ+1, . . . , ζL) . (10)

Considering an iterative algorithm of the formζk+1 = S(ζk),
its Gauss-Seidelversion would be an algorithm of the form
ζk+1 = ŜL ◦ · · · ◦ Ŝ1(ζ

k). We are interested here in a
randomized versionof these iterates. On a probability space
(Ω,F ,P), let (ξk)k∈N be a random process satisfying the
following assumption:

Assumption 3:The random variablesξk are independent
and identically distributed. They are valued in the set
{1, . . . , L} with P[ξ1 = ℓ] = pℓ > 0 for all ℓ = 1, . . . , L.
We are interested here in the convergence of the random
iteratesζk+1 = Ŝξk+1(ζk) towards a (generally random)
point of fix(S), provided this set is non empty:

Theorem 2 (Main result):LetS be a firmly non-expansive
operator onY with domainY. Let {ξk}k∈N be a sequence
of random variables satisfying Assumption 3. Assume that
fix(S) 6= ∅. Then for any initial valueζ0, the sequence
of iteratesζk+1 = Ŝξk+1(ζk) converges almost surely to a
random variable supported byfix(S).

Proof: Denote by〈ζ, η〉 =
∑L

ℓ=1〈ζℓ, ηℓ〉Yℓ
the inner

product ofY, and by‖ζ‖ = 〈ζ, ζ〉1/2 its associated norm.
Define a new inner productζ • η =

∑K
ℓ=1 p

−1
ℓ 〈ζℓ, ηℓ〉Yℓ

on
Y, and let|||ζ||| = (ζ • ζ)1/2 be its associated norm. Fixζ⋆ in
fix(S). Conditionally to the sigma-fieldFk = σ(ξ1, . . . , ξk)
we have

E[
∣

∣

∣

∣

∣

∣ζk+1 − ζ⋆
∣

∣

∣

∣

∣

∣

2
| Fk] =

L
∑

ℓ=1

pℓ

∣

∣

∣

∣

∣

∣

∣

∣

∣Ŝℓ(ζ
k)− ζ⋆

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=

L
∑

ℓ=1

pℓ

(1

pℓ
‖Sℓ(ζ

k)− ζ⋆ℓ ‖
2
Yℓ

+

L
∑

i=1
i6=ℓ

1

pi
‖ζki − ζ⋆i ‖

2
Yi

)

= ‖S(ζk)− ζ⋆‖2 +
L
∑

ℓ=1

1− pℓ
pℓ

‖ζkℓ − ζ⋆ℓ ‖
2
Yℓ

=
∣

∣

∣

∣

∣

∣ζk − ζ⋆
∣

∣

∣

∣

∣

∣

2
+ ‖S(ζk)− ζ⋆‖2 − ‖ζk − ζ⋆‖2

Since(I− S)(ζ⋆) = 0, we have

‖S(ζk)− ζ⋆‖2 − ‖ζk − ζ⋆‖2

= ‖S(ζk)− ζk + ζk − ζ⋆‖2 − ‖ζk − ζ⋆‖2

= ‖S(ζk)− ζk‖2 + 2〈S(ζk)− ζk, ζk − ζ⋆〉

= ‖S(ζk)− ζk‖2 − 2〈(I− S)(ζk)− (I− S)(ζ⋆), ζk − ζ⋆〉

≤ −‖S(ζk)− ζk‖2

where the inequality comes from the easily verifiable fact
that (I− S) is firmly non-expansive whenS is. This leads to
the inequality

E[
∣

∣

∣

∣

∣

∣ζk+1 − ζ⋆
∣

∣

∣

∣

∣

∣

2
|Fk] ≤

∣

∣

∣

∣

∣

∣ζk − ζ⋆
∣

∣

∣

∣

∣

∣

2
−‖S(ζk)−ζk‖2 (11)

which shows that
∣

∣

∣

∣

∣

∣ζk − ζ⋆
∣

∣

∣

∣

∣

∣

2
is a nonnegative supermartin-

gale with respect to the filtration(Fk). As such, it converges
with probability one towards a random variableXζ⋆ satisfy-
ing 0 ≤ Xζ⋆ < ∞ almost everywhere. Given a countable
dense subsetH of fix(S), there is a probability one set
on which

∣

∣

∣

∣

∣

∣ζk − ζ
∣

∣

∣

∣

∣

∣ → Xζ ∈ [0,∞) for all ζ ∈ H . Let
ζ⋆ ∈ fix(S), let ε > 0, and chooseζ ∈ H such that

|||ζ⋆ − ζ||| ≤ ε. With probability one, we have
∣

∣

∣

∣

∣

∣ζk − ζ⋆
∣

∣

∣

∣

∣

∣ ≤
∣

∣

∣

∣

∣

∣ζk − ζ
∣

∣

∣

∣

∣

∣+ |||ζ − ζ⋆||| ≤ Xζ + 2ε

for k large enough. Similarly,
∣

∣

∣

∣

∣

∣ζk − ζ⋆
∣

∣

∣

∣

∣

∣ ≥ Xζ − 2ε for k
large enough. We therefore obtain:

C1 : There is a probability one set on which
∣

∣

∣

∣

∣

∣ζk − ζ⋆
∣

∣

∣

∣

∣

∣

converges for everyζ⋆ ∈ fix(S).

Getting back to Inequality (11), taking the expectations on
both sides of this inequality and iterating overk, we obtain

∞
∑

k=0

E[‖S(ζk)− ζk‖2] ≤ (ζ0 − ζ⋆)2.

By Markov’s inequality and Borel Cantelli’s lemma, we
therefore obtain:

C2 : S(ζk)− ζk → 0 almost surely.

We now consider an elementary event in the probability one
set whereC1 andC2 hold. On this event, since

∣

∣

∣

∣

∣

∣ζk − ζ⋆
∣

∣

∣

∣

∣

∣

converges forζ⋆ ∈ fix(S), the sequence{ζk}k∈N is bounded.
Since S is firmly non expansive, it is continuous, andC2
shows that all the accumulation points of{ζk}k∈N are in
fix(S). It remains to show that these accumulation points
reduce to one point. Assume thatζ⋆1 is an accumulation point.
By C1,

∣

∣

∣

∣

∣

∣ζk − ζ⋆1
∣

∣

∣

∣

∣

∣ converges. Therefore,lim
∣

∣

∣

∣

∣

∣ζk − ζ⋆1
∣

∣

∣

∣

∣

∣ =
lim inf

∣

∣

∣

∣

∣

∣ζk − ζ⋆1
∣

∣

∣

∣

∣

∣ = 0, which shows thatζ⋆1 is unique.

V. RANDOM ADMM

We now return to the optimization problem (2). It is a
well known fact that the standard ADMM can be seen as a
special case of the so-called Douglas-Rachford algorithm [9].
The Douglas-Rachford algorithm can itself be seen as a
special case of a proximal point algorithm. By the results
of the previous section, this suggests that random Gauss-
Seidel iterations applied to the Douglas-Rachford operator
produce a sequence which eventually converges to the sought
solutions. It turns out that the latter random iterations can be
written under the form of practical asynchronous ADMM-
like algorithm.

A. Douglas-Rachford operator

Consider the following dual problem associated with (2)

min
λ∈Z

f∗(−M∗λ) + g∗(λ) , (12)

where f∗, g∗ are the Fenchel conjugates off and g and
M∗ is the adjoint ofM . By Assumption 1 along with [17,
Th.3.3.5], the minimum in (12) is attained and its opposite
coincides with the minimum of (2). Note thatλ is a mini-
mizer of (12) iff zero belongs to the subdifferential of the
objective function in (12). By [17, Th.3.3.5] again, this reads
0 ∈ −M · ∂f∗(−M∗λ) + ∂g∗(λ). Otherwise stated, finding
minimizers of the dual problem (12) boils down to searching
zeros of the sum of two maximal monotone operatorsT+U

defined byT = −M ·∂f∗◦(−M∗) andU = ∂g∗. For a fixed
ρ > 0, the Douglas-Rachford (or Lions-Mercier) operatorR

is defined as

{(ν + ρb, µ− ν) : (µ, b) ∈ U, (ν, a) ∈ T, ν + ρa = µ− ρb} .

The following Lemma is an immediate consequence of [9].
Lemma 3:Under Assumption 1,R is maximal monotone,

and zer(R) 6= ∅. Moreover,JρU(ζ) ∈ zer(T + U) for any
ζ ∈ zer(R).
Lemma 3 implies that the search for a zero ofT + U boils
down to the search of a zero ofR up to a resolvent step
JρU. To that end, a standard approach is to use a proximal
point algorithm of the formζk+1 = JR(ζ

k). By [9], it can
be shown that this approach is equivalent to the ADMM
derived in Section II. Here, our aim is different. We shall
consider random Gauss-Seidel iterations in order to derive
an asynchronous version of the ADMM.

B. Random Gauss-Seidel Iterations

Define S , JR as the resolvent associated with the
Douglas-Rachford operatorR. On the spaceZ = XA1 ×· · ·×
XAL , define the operator̂Sℓ as in (10) for anyℓ = 1, · · · , L.
Let {ξk}k∈N be a random process satisfying Assumption 3.
The following result is a consequence of Theorem 2 com-
bined with Lemma 3.

Theorem 3:Let Assumptions 1, 2 and 3 hold true. Con-
sider the sequence{ζk}k∈N defined byζk+1 = Ŝξk+1(ζk).
Then for any initial valueζ0, the sequenceλk , JρU(ζ

k)
converges almost surely to a minimizer of (12).
In order to complete the above result, we still must justify
the fact that, as claimed, the above iterations can be seen as
an asynchronous distributed algorithm.

C. Distributed Algorithm

We make the above random Gauss-Seidel iterations more
explicit. In the sequel we shall always denote byζℓ the ℓth
component of a functionζ ∈ Z i.e., ζ = (ζ1, · · · , ζL). For
any ℓ, we introduce the averagēζℓ =

∑

v∈Aℓ
ζℓ(v)/|Aℓ|.

Lemma 4 below states that anyζ ∈ Z is uniquely represented
by a couple (λ, z) ∈ U whose expression is provided.
Moreover, it provides the explicit form of theℓth blockSℓ of
the resolventS. This will be the basis of our asynchronous
distributed algorithm.

Lemma 4:For anyζ ∈ Z, the following holds true:
i) There exists a unique(λ, z) ∈ U such thatλ+ ρz = ζ.
ii) JρU(ζ) = λ.
iii) For anyℓ = 1, · · · , L, λℓ = ζℓ − ζ̄ℓ1Aℓ

andzℓ =
ζ̄ℓ
ρ 1Aℓ

.
iv) For anyℓ = 1, · · · , L, and anyv ∈ Aℓ

Sℓ(ζ) : v 7→ λℓ(v) + ρx(v) (13)

wherex(v) is defined by

x(v) = proxfv ,ρ|σ(v)|

1

|σ(v)|

∑

ℓ∈σ(v)

z̄ℓ −
λℓ(v)

ρ

 . (14)

Proof: i)-ii) SinceJρU is the resolvent of a maximal
monotone operator,JρU(ζ) exists and is unique for every
ζ ∈ Z. Let us defineλ = JρU(ζ) andz = (ζ−λ)/ρ. Trivially,
λ+ ρz = ζ. As ζ ∈ λ+ ρU(λ), we get that(λ, z) ∈ U. This
decomposition is unique since for any(λ, z) ∈ U satisfying
λ+ ρz = ζ, one hasζ ∈ (I + ρU)(λ) and thusλ = JρU(ζ).

iii) We use λ = JρU(ζ) = proxg∗,ρ(ζ) = ζ −
1/ρ proxg,1/ρ(ρζ) (see [18, Th. 14.3]). Asg is the indicator
function of the set sp(1A1

) × · · · × sp(1AL
), proxg,1/ρ

coincides with the projection operator onto that set. Thus,
for any ℓ, λℓ = ζℓ − ζ̄ℓ1Aℓ

. The expression ofz follows
from z = (ζ − λ)/ρ.

iv) OperatorS = JR can be written as

{(µ+ ρb, ν + ρb) : (µ, b) ∈ U, (ν, a) ∈ T, ν + ρa = µ− ρb} .

Moreover, asR is monotone,S(ζ) is a singleton. Repre-
sentingζ = λ + ρz with (λ, z) ∈ U, it follows from the
above expression ofS that S(ζ) = ν + ρz whereν is such
that ν + ρa = λ − ρz for somea ∈ T(ν). Using T =
−M · ∂f∗ ◦ (−M∗), conditiona ∈ T(ν) translates to: there
existsx ∈ ∂f∗(M∗ν) s.t. a = −Mx. The output-resolvent
is obtained byν + ρz = λ + ρMx. For a given component
ℓ, this boils down to equation (13). The remaining task is to
provide the expression ofx. By the Fenchel-Young equality
∂f∗ = ∂f−1 [17, Prop.3.3.4], conditionx ∈ ∂f∗(−M∗ν)
is equivalent to−M∗ν ∈ ∂f(x). Using that ν = λ −
ρ(z −Mx), we obtain0 ∈ ∂f(x) +M∗λ+ ρM∗(Mx− z).
Otherwise stated,x = argminy∈XV Lρ(y, z;λ) whereLρ is
the augmented Lagrangian defined in (3). Using the results
of Section III,x(v) is given by (14) for anyv.
We are now in position to state the main algorithm. It simply
consists in an explicit writing of the random Gauss-Seidel
iterationsζk+1 = Ŝξk+1(ζk) using Lemma 4iv). Note that,
by Lemma 4i), the definition of a sequence(ζk)k on Z is
equivalent to the definition of two sequences{λk}k∈N and
{zk}k∈N such that for allk, ζk = λk + ρzk with (λk, zk) ∈
U. Moreover, by Lemma 4iii) , each componentzkℓ of zk is a
constant. The definition ofzk thus reduces to the definition
of L constants̄zk1 , · · · , z̄

k
L in X.

Asynchronous ADMM:
At each iterationk, draw r.v.ξk+1.
For ℓ = ξk+1, set for anyv ∈ Aℓ:

xk+1(v) = proxfv ,ρ|σ(v)|

1

|σ(v)|

∑

ℓ∈σ(v)

z̄kℓ −
λk
ℓ (v)

ρ

z̄k+1
ℓ =

1

|Aℓ|

∑

w∈Aℓ

xk+1(w)

λk+1
ℓ (v) = λk(v) + ρ

(

xk+1(v) − z̄k+1
ℓ

)

.

For anyℓ 6= ξk+1, setλk+1
ℓ = λk

ℓ .
For anyw /∈ Aξk+1 , setxk+1(w) = xk(w).

VI. I MPLEMENTATION EXAMPLE

In order to illustrate our results, we consider herein an
asynchronous version of the ADMM algorithm in the context
of Section II-Example 2. The scenario is the following: first,
Agent v ∈ {1, . . . , |V |} wakes up at timek + 1 with the
probabilityqv. Denoting byNv the neighborhood of Agentv
in the GraphG, this agent then chooses one of its neighbors,
sayw, with the probability1/|Nv| and sends an activation
message tow. In this setting, the edge{v, w} coincides with

one of theAℓ of Example 2 in Section II. It is easily seen that
the samples of the activation process{ξk}k∈N which is of
course valued in{1, ..., |E|} are governed by the probability
law

P[ξ1 = {v, w}] =
qv
|Nv|

+
qw
|Nw|

> 0.

When the edge{v, w} is activated, the following two prox(·)
operations are performed by the agents:

xk+1(v) = proxfv ,ρ|N (v)|

(1

|N (v)|

∑

ℓ∈N (v)

z̄kℓ −
λk
ℓ (v)

ρ

)

xk+1(w) = proxfw ,ρ|N (w)|

(1

|N (w)|

∑

ℓ∈N (w)

z̄kℓ −
λk
ℓ (w)

ρ

)

.

The two agents exchange then the valuesxk+1(v) and
xk+1(w) and perform the following operations:

z̄k+1
ℓ =

xk+1(v) + xk+1(w)

2

λk+1
ℓ (v) = λk(v) + ρ

xk+1(v) − xk+1(w)

2

λk+1
ℓ (w) = λk(w) + ρ

xk+1(w)− xk+1(v)

2
.

We remark that this communication scheme is reminiscent
of the so-calledRandom Gossipalgorithm introduced in [19]
in the context of distributed averaging.

VII. N UMERICAL RESULTS

We consider a network withV = {1, . . . , 5} and with
E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 3}}. We evaluate the
behavior of: i) the synchronousDistributed Gradientwith
1/k step size [20] using Metropolis exchange matrix; ii) the
Asynchronous Distributed Gradientwith Random Gossipas a
communication algorithm [19] ; iii) theSynchronous ADMM;
and iv) theAsynchronous ADMM. Each agent maintains a
different quadratic convex function and their goal is to reach
consensus over the minimizer of problem (1).

In Figure 1, we plot the squared error versus the number
of iterations for the considered algorithms. We observe that
our algorithm clearly outperforms the distributed gradient
descents.

ACKNOWLEDGEMENT

The authors would like to thank Jean-Christophe Pesquet
from Université Paris-Est for his useful advice.

REFERENCES

[1] P. A. Forero, A. Cano, and G. B. Giannakis, “Distributed Clustering
Using Wireless Sensor Networks,”IEEE Journal of Selected Topics
in Signal Processing, vol. 5, no. 4, pp. 707–724, 2011.

[2] D. P. Bertsekas and J. N. Tsitsiklis,Parallel and distributed compu-
tation, Prentice Hall Inc., Old Tappan, 1989.

[3] S. Ram, A. Nedic, and V. Veeravalli, “Distributed Stochastic Sub-
gradient Projection Algorithms forConvex Optimization,”Journal of
Optimization Theory and Applications, vol. 147, no. 3, pp. 516–545,
2010.

[4] P. Bianchi and J. Jakubowicz, “Convergence of a multi-agent projected
stochastic gradient algorithm for non-convex optimization,” IEEE
Transactions on Automatic Control, vol. 58, no. 2, 2013.

[5] D. Jakovetić, J. M. F. Moura, and X. Joao, “Distributed Nesterov-like
gradient algorithms,” inProc. 51st IEEE Conference on Decision and
Control (CDC), 2012, pp. 5459–5464.

0 200 400 600 800 1,000
10−5

10−4

10−3

10−2

10−1

100

Number of iterations

S
qu

a
re

d
E

rr
or

Distributed Gradient descent

Asynchronous Distributed Gradient

Synchronous ADMM

Asynchronous ADMM

Fig. 1. Squared error of distributed optimization algorithms versus the
number of primal updates

[6] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual Averaging
for Distributed Optimization: Convergence Analysis and Network
Scaling,” IEEE Transactions on Automatic Control, vol. 57, no. 3,
pp. 592–606, 2012.

[7] A. Jadbabaie, A. Ozdaglar, and M. Zargham, “A distributed newton
method for network optimization,” inProc. 48th IEEE Conference on
Decision and Control (CDC), 2009, pp. 2736–2741.

[8] P. L. Lions and B. Mercier, “Splitting algorithms for thesum of two
nonlinear operators,”SIAM Journal on Numerical Analysis, vol. 16,
no. 6, pp. 964–979, 1979.

[9] J. Eckstein and D. P. Bertsekas, “On the Douglas-Rachford splitting
method and the proximal point algorithm for maximal monotone
operators,”Mathematical Programming, vol. 55, pp. 293–318, 1992.

[10] P. L. Combettes and J.-C. Pesquet, “Proximal SplittingMethods in
Signal Processing,” inFixed-Point Algorithms for Inverse Problems
in Science and Engineering, H. H. Bauschke, R. Burachik, P. L.
Combettes, V. Elser, D. R. Luke, and H. Wolkowicz editors. Springer-
Verlag, New York, pp. 185–212, 2011.

[11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternatingdirection
method of multipliers,” vol. 3 ofFoundations and Trends in Machine
Learning, Now Publishers Inc., 2011.

[12] P. L. Combettes and J.-C. Pesquet, “A proximal decomposition method
for solving convex variational inverse problems,”Inverse Problems,
vol. 24, no. 6, Dec. 2008.

[13] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in Ad
Hoc WSNs With Noisy Links – Part I: Distributed Estimation of
Deterministic Signals,”IEEE Transactions on Signal Processing, vol.
56, no. 1, pp. 350 –364, jan. 2008.

[14] J. F. C. Mota, J. M. F. Xavier, P. M. Q. Aguiar, and M. Puschel,
“Distributed ADMM for model predictive control and congestion
control,” in Proc. 51st IEEE Conference on Decision and Control
(CDC), 2012, pp. 5110–5115.

[15] E. Wei and A. Ozdaglar, “Distributed Alternating Direction Method of
Multipliers,” in Proc. 51st IEEE Conference on Decision and Control
(CDC), 2012, pp. 5445–5450.

[16] R. T. Rockafellar, “Monotone operators and the proximal point
algorithm,” SIAM Journal on Control and Optimization, vol. 14, no.
5, pp. 877–898, 1976.

[17] J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear
Optimization : Theory and Examples, Springer Verlag, 2006.

[18] H. H. Bauschke and P. L. Combettes,Convex analysis and monotone
operator theory in Hilbert spaces, Springer, 2011.

[19] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Transactions on Information Theory, vol. 52, no.
6, pp. 2508–2530, 2006.

[20] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distributed
asynchronous deterministic and stochastic gradient optimization al-
gorithms,” IEEE Transactions on Automatic Control, vol. 31, no. 9,
pp. 803–812, 1986.

