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Abstract— Consider a set of networked agents endowed with network to a consensus. A second class of methods is formed
private cost functions and seeking to find a consensus on py distributed Newton-Raphson methods [7]. This paper
the minimizer of the aggregate cost. A new class of random 4,565 on a third class of methods derived from proximal

asynchronous distributed optimization methods is introdwced. - .
The methods generalize the standard Alternating Direction splitting methods [8], [9], [10]. Perhaps the most emblémat

Method of Multipliers (ADMM) to an asynchronous setting  Proximal splitting method is the so-callédternating Direc-
where isolated components of the network are activated in an tion Method of MultiplierSADMM) recently popularized to

uncoordinated fashion. The algorithms rely on the introdudion  multiagent systems by the monograph [11]. Schieasl.
of randomized Gauss-Seidel iterations of Douglas-Rachford  4emonstrated the remarkable potential of ADMM to handle

splitting leading to an asynchronous algorithm based on the . . S .
ADMM. Convergence to the sought minimizers is provided distributed optimization problems and introduce a useful

under mild connectivity conditions. framework to encompass graph-constrained communications
[13]. We also refer to [14], [15] for recent contributions.
. INTRODUCTION However, all of these works share a common perspective: Al-

Consider a network represented by a 3$&tof agents gorithms are synchronous. They require a significant amount
seeking to solve the following optimization problem on aof coordination or scheduling between agents. In [13], [14]

Euclidean spac«: agents operate in parallel, whereas [15] proposes a seguent
i version of ADMM where agents operate one after the other
;Ig( Z fol@) @ ina predetermined order.
veV

Contributions. This paper introduces a novel class of dis-
where f,, is a convex real function known by agenmtonly.  tributed algorithms to solve (1). The algorithms are asyn-
Functionf, can be interpreted as the price payed by an ageshronous in the sense that some components of the network
v when the global network state is equalao are allowed to wake up at random and perform local updates,

This problem arises for instance atoud learningappli-  while the rest of the network stands still. No coordinator or
cations where massive data sets are distributed in a netwayiobal clock is needed. The frequency of activation of the
and processed by distinct virtual machines [1]. We inveszarious network components is likely to vary.
tigate distributed optimization algorithms: agents iteely ~ The mathematical framework of the paper is provided by the
update a local estimate using their private objecffiveand, monotone operator theory (seey.[18]). The approach relies
simultaneously, exchange information with their neiglsboron the the introduction aindomizedsauss-Seidel iterations
in order to eventually reach a consensus on the globaf the so called Douglas-Rachford operator. These iteratio
solution. Standard algorithms are genera§ynchronousall  stem from a new powerful method for finding the zeros of a
agents are supposed to complete their local computatiossm of two monotone operators. Application of our method
synchronously at each tick of an external clock, and the Problem (1) yields a randomized ADMM-like algorithm,
synchronously merge their local results. However, in manyhich is proved to converge to the sought minimizers.
situations, one faces variable sizes of the local data setsThe paper is organized as follows. The distributed op-
along with heterogeneous computational abilities of th@mization problem is rigorously stated in Section Il. The
virtual machines. Synchronism then becomes a burden, ggnchronous ADMM algorithm that solves this problem is
the global convergence rate is expected to depend on theen described in Section Ill. Section IV forms the core
local computation times of the slowest agents. It is crugial of the paper. After quickly recalling the monotone operator
introduce asynchronous methods which allow the estimatésrmalism, the random Gauss-Seidel form of the proximal
to be updated in a non-coordinated fashion, rather than allgorithm is described and its convergence is shown there.
together or in some frozen order. These results will eventually lead to an asynchronous eersi

The literature contains at least three classes of dis&tbut of the well-known Douglas-Rachford splitting algorithrm. |
optimization methods for solving (1). The first one is base&ection V, the results of Section IV are applied towards de-
on the simultaneous use of a lodast-order optimization  veloping an asynchronous version of the ADMM algorithm.
algorithm (subgradient algorithm [2], [3], [4], Nestertike  An implementation example is finally provided in Section VI
method [5], [6]) and a gossip process which drives thalong with some simulations in Section VII.
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we denote byG(A) the subgraph of7 induced byA (i.e, where.y is the indicator function of a st (equal to zero
G(A) has verticesA and for any (v,w) € A2, {v,w} on H and to+oo outside). Hergy(z) is equal to zero if for
is an edge ofG(A) if and only if it is an edge ofG). every/, z, is constant. Otherwisg(z) is infinite. For any

Let X be a Euclidean space. We denote %§ the set of = € X", we defineMa £ (I, z,--- , 114, x). We consider
functions onA — X. It is endowed with the inner product the following optimization problem:

T,0a = Y peal(v),y(v))x where (., .)x is the inner .

é)rod>uct on%(? Wé \EVI|)| oE‘ni)t> subscript<sx a>nd 4 when no mf f(z) +g(Mz) 2)
confusion occurs. For any finite collectioh,---, A, C V, Lemma 1: Under Assumptlon 27 is a minimizer of (2)
we endow the spacé? x - - - x X4 with the scalar product if and only if z = z1,, wherez € X is a minimizer of (1).
(@) = iy (e, ye)a, for any z = (z1,---,2z) and Proof: Let z € XV such thatg(Mz) is finite. Then
Y= (Y1, ,yL)- x is constant on each component. ketv be two arbitrary

We denote byll,x the restriction ofz to A i.e., ILy :  vertices inV. There exists a path i), G(A¢) connecting
XY — X4 is the linear operator defined for anye X" as 4 andw. Each edge of this path connects two vertices which
[az : (v € A) — z(v). We denote byt 4 the vector ofX"?  pelong to a common component. Thusis constant on two
whose entries are all equal to one and bylsp the linear consecutive vertices of the path. This proves that) =

span ofl,4 i.e., the set of vectors 0K4 whose entries are z(w). Thus,z is constant and the result follows. u
all equal. Notatior|A| represents the cardinal of a sét One possible approach for this problem is to use ADMM.
For a closed proper convex functioh : X —  Although the choice of the set4;, - - - , A, does not change
(—00, +00] we define the proximal operator pipx(z) =  the minimizers of the initial problem, it has an impact on the
argminy h(y) + §ly — z?. particular form of ADMM used to find these minimizers, as
Il. DISTRIBUTED OPTIMIZATION ON A GRAPH we shall see below.

Consider a network of agents represented by a non_In order to be more explicit, we provide in this section two

oriented graptG — (V, E) whereV is a finite set of vertices important examples of possible choices for the components
! Ap.

(i.e, the agents) and is a set of edges. Each agent V Lo _ B B
has a private cost functiofi, : X — (—oo, +oo| whereX is Example 1:Let L =1 and4, = V. Problem (2) becomes
a Euclidean space. We start with the following assumption: infv (@) + tsgiyy ()

Assumption 1: zeX
i) Forallv € V, f, is a proper closed convex function. In this case, the formulation is identical to [11, Chapter 7]
i) The infimum in (1) is finite and is attained at some Example 2:Let L = |E| and{4,,--- AL} = E. That
point z* € X. is, each setd, is a pair of verticegv,w} such that{v,w}

In order to solve the optimization problem (1) on the graplif an edge. Here, Problem (2) is written as

G, we first provide an equivalent formulation of (1) that will
be revealed useful. For some intedep> 1, consider a finite ml&fv fla) + Z tsp(12)
collection A1, As,--- , A, of subsets oft” which we shall vew

refer to ascomponentswe assume the following condition. where1, stands for the vectofl, 1)”.

Assumptlon 2: WU, Ae = I1l. SYNCHRONOUSADMM

i) Us_, G(A,) is connected.
Assumption 2) implies that any vertex appears in one ofA' General facts

the componentsl;, - - - , A;, at least. We stress the fact that We now apply the standard ADMM to Problem (2).
two distinct componentsd, and A, are not necessarily Perhaps the most direct way to describe ADMM is to
disjoint, though. Assumptioni means that the union of reformulate the unconstrained problem (2) into the foltogvi
all subgraphs is connected. As the latter union is also @nstrained problem Minimizg(z) + g(z) subject toz =
subgraph ofG, this implies thatG is connected. As will Mz. For anyz € XV, A, z € Z, the augmented Lagrangian
be made clear below, our method will assume that all ageris given by

in the same compone_nt are able to perform simple operatlonzp(a:’ 2A) 21 (@) +g(2)+ (A Ma:—z}—i—B Mz — ZH2 3)

in a coordinated fashiori.é., compute a local average over

a component). Thus, in practice, it is reasonable to requirgherep > 0 is a constant. ADMM consists of the iterations
that each subgrapfi(A,) is itself connected.

. . v
We introduce some notations. We set for ang X", 2 = argmin Ep(:c,zk; AF) (4a)
A \%
=) Jfolz(v) . vex
v;/ 2P = argmin Ep(xk"'l,z; ) (4b)
. zeZ
Foranyz = (z1,--- ,z1) € Z2 XAl x -+ x XAL we define AL — Ak 4 (MIkJrl _ Zk+1) . (4¢)
the closed proper convex function
I From [11, Chap. 3.2], the following result is immediate.
g(z) 2 ZLsp(lA ) (20) Theorem 1:Under Assumption 1, the sequenge’}yew
13

— defined in (4a) converges to a minimizer of (2).



B. Decentralized Implementation compute the average and send the result to all agents in this

One should now make (4) more explicit and convince thEomponent.

reader that the iterations are indeed amenable to digdbut 't 18 worth noting that in the case of Example 1, the
implementation. Due to the specific form of functign it synchronous ADMM described above coincides with the

is clear from (4b) that all component§, - - - , zk of 2* are algor@thm pf [11] and_ is very close to the so called PPXA
constant. Otherwise stated® = (51,4, --,z81,,) for algorithm introduced in [12].
some constantsy € X. For anyv € V, we set IV. A RANDOMIZED PROXIMAL ALGORITHM

o) 2 {l:veA)}. A. Monotone operators

Now consider the first update equation (4a). Getting rid bf al An operatorT on a Euclidean spac¥ is a set valued

. . v .
quantities inL, which do not depend on the&h component mappl_ngT ; Y — 27. An operator can be equwaleptly
of z, we obtain for any € V identified with a subset of x Y, which makes us write

(z,y) € T wheny € T(x). Given two operatorsl; and
$k+1(v) = argmin f,(y) + Z <)\’;(v),y> 4 g”y_ggH?, T, onY and .two r_eal numbers; and as, the operator
yeX tco(v) a1 Ty + agTy is defined asa; T1 + ax Ty = {(w,alyl +
. N ¢ (x, € Ty, (z, € T3}. The identity operator
After some algebra, the above equation further simplifies H%glyg): {E::Z Zl)) T le (\:(C} y;),]d thz}inverse of tr):e gperator
() = PIOX;. oo (2*(v) — B*(v)) (5 Tis T-! = {(z,y) : (y,x) € T}. The operatoiT is said
monotonef

where we introduced the following parameters: . , ,
1 V(x,y),(w,y)eT, <x—x,y—y>20

1
oy _ Sk kooy _ k
Z*(v) = o (v)] ZZE’ B*(v) = oo (0)] Z)‘f (v)- (6) A monotone operator is saithaximalif it is not strictly
tea(v) tea(v) contained in any monotone operator (as a subsat gfY).
It is straightforward to show that the second update equatid-inally, T is saidfirmly non-expansivé

(4b) admits as well a simple decomposable form. After some

’o S A _ 2
algebra, we obtain that for ary=1,--- | L, V(e @ y) €T, (z—aty—y) 2y —yl"
1 () The typical example of a monotone operator is the subd-
it = T Z 2F L (p) 4+ 2= (7) ifferential 9f of a convex functionf : Y — R. Finding
|Ael vEA, P a minimum of f amounts to finding a point iner(df),
Finally, forall¢ = 1,--- , L andv € A, equation (4c) reads wherezer(T) = {x : 0 € T(x)} is the set of zeroes of

an operatofT. A common technique for finding a zero of
M () = Af(v) + p(zF T (v) — 25T (8) a maximal monotone operatdr is the so-calledoroximal
. . . i point algorithm[16] that we now describe. Thesolventof
Averaging (8) w.r.tv and using (7) yield3 5, A (v) = 0. is the operatod,,r 2 (1+pT)~! for p > 0. One key result
Thus, the second term in the RHS of (7) can be deleteéeee'g.[g]) says thatT is maximal monotone if and only

Finally, averaging (8) w.r.t leads to if J,T is firmly non expansive and its domainYs Observe

B¥(v) = B (v) + 2" (v) — 251 (v). 9) that a firmly non expansive operator is single yalued and
denote byfix(J,T) the set of fixed points of,r. It is clear

Synchronous ADMM: that fix(J,1) = zer(T). The firm non expansiveness dfr
At each iterationk, plays a central role in the proof of the following result:
For each agent, computez**!(v) using (5). Lemma 2 (Proximal point algorithm [16])if T is a
In each componenté=1,--- , L, compute maximal monotone operator and > 0, then the iterates

1 . (kfl = J,7(¢*) starting at any point ol converge to a

0 = 14| ; " (w). point of fix(J,1) whenever this set is non-empty.

weAy

) B. Random Gauss-Seidel iterations
For each agent, computeZ*+!(v) and B¥*+!(v) using (6)

and (9) respectively. Assume now that the Euclidean spa¥eis a Cartesian

product of Euclidean spaces of the fohm=Y; x --- x Y,

] - . . where L is a given integer, and write any € Y as( =
The above algorithm implicitly requires the existence of¢, . ¢, ) where¢, € Y, for £ = 1,...,L. LetS be a

a routine for computing an average, in each compon®nt firmly non expansive operator ofi and write
This requirement is mild when the components coincide with

edges of the graph as in Example 2. In this case, one only S(¢) = (51(¢), -, SL(Q))
needs that the two vertices of an edge share their currepf, reS(¢) € Yo Forf = 1,..., L, define the single valued
estimate and find an agreement on the average. In the geng{ fratorsg Y 5 Y as o
case, the objective can be achieved by selecting a leader '

in each component whose role is to gather the estimates, §g(<) =(C1y--+,C0-1,50(0), Cot1,- -, CL) - (20)




Considering an iterative algorithm of the foigfit! = S(¢*),  ||¢* — ¢]| < e. With probability one, we have

its Gauss-Seidelersion would be an algorithm of the form b o & N

¢kl = S, o0 --- 0 §1(¢k). We are interested here in a I =l < Ie” =<l + 16 = ¢l < X +2¢
randomized versioof these iterates. On a probability spaceor & large enough. Similarly|,H§’“ — Q*W > X¢ —2¢ for k
(Q, F,P), let (€*)ren be a random process satisfying thelarge enough. We therefore obtain:

following assumption: . _ Cl: There is a probability one set on whidlt* — ¢*||
Assumption 3:The random variable§® are independent converges for every* € fix(S).

and identically distributed. They are valued in the Se&etting back to Inequality (11), taking the expectations on

{1,...,L} withP[¢! =/ =p,>0forall £=1,..., L. b ; o ! s :
T ’ . P th sid f th lit d iterat bt
We are interested here in the convergence of the randorr? sides of this inequality and iterating overwe obtain

iterates (* ! = S (¢F) towards a (generally random) = .
point of fix(S), proévide(d t?ﬂs set is non empty: Z]E[HS(Q’“) S R (G
Theorem 2 (Main result)LetS be a firmly non-expansive k=0

operator onY with domainY. Let {¢*}cn be a sequence By Markov’s inequality and Borel Cantelli's lemma, we

of random variables satisfying Assumption 3. Assume thaherefore obtain:

fix(S) # 0. Then for any initial value¢®, the sequence C2: S(¢*) — ¢¥ — 0 almost surely.

of iterates¢" ™ = Si+1(¢¥) converges almost surely to aWwe now consider an elementary event in the probability one

random variable supported ki (S). set whereC1 andC2 hold. On this event, sincf¢* — ¢*||
Proof: Denote by(¢,n) = Y7, (Ce,ne)v, the inner  convergesfot* € fix(S), the sequencéC* }re is bounded.

product ofY, and by||¢|| = (¢,¢)'/? its associated norm. SinceS is firmly non expansive, it is continuous, aiZR

Define a new inner producte n = Z£1p21<@,7n>y[ on shows that all the accumulation points ff*}cn are in

Y, and let||¢|| = (¢#¢)'/? be its associated norm. F{x in  fix(S). It remains to show that these accumulation points

fix(S). Conditionally to the sigma-fieldf, = o(¢!,...,&%)  reduce to one point. Assume thigtis an accumulation point.

we have By C1, ||¢¥ — ¢;|| converges. Therefordim ||¢* — ¢t|| =

liminf [|¢*¥ — ¢} || = 0, which shows that} is unique. m

L
Bl - ¢ 170 = e[S - ¢
=1

V. RANDOM ADMM

We now return to the optimization problem (2). It is a
3) well known fact that the standard ADMM can be seen as a
' special case of the so-called Douglas-Rachford algori@jm [
The Douglas-Rachford algorithm can itself be seen as a

L 1 L 1
_ —1IS ky _ %12 + - ik_ Z*
;pe(mﬂ () =GR+ 3 St ¢

=y

& o2 L 1=pey e w2 special case of a proximal point algorithm. By the results

= 11S(¢%) = ¢l +Z De e =Gl of the previous section, this suggests that random Gauss-
5 =1 Seidel iterations applied to the Douglas-Rachford operato

= I¢* =<7+ ISR = ¢ P = 1I¢* = ¢*I1P produce a sequence which eventually converges to the sought

solutions. It turns out that the latter random iterations ba

H _ *\
Since (I —S)(¢*) = 0, we have written under the form of practical asynchronous ADMM-

HS(Ck) _ C*”Q _ Hck _ C*HQ like algorithm.

=|IS(¢*) =P+ cF =P - |Ick - ¢)1? A. Douglas-Rachford operator

= |IS(¢*) — ¢¥|1? + 2(S(¢F) = ¢*, ¢k —¢*) Consider the following dual problem associated with (2)
= [IS(¢*) = ¢*II* = 2((1 = $)(¢*) = (1 = $)(¢™). ¢* = ¢¥) min f*(—M*A) + g*(\), (12)

< —IS(¢h) — ¢*I? <

where f*, g* are the Fenchel conjugates ¢fand ¢ and
where the inequality comes from the easily verifiable fach/* is the adjoint ofA/. By Assumption 1 along with [17,
that (I—5) is firmly non-expansive whefi is. This leads to  Th.3.3.5], the minimum in (12) is attained and its opposite
the inequality coincides with the minimum of (2). Note thatis a mini-
kb1 12 P k o mizer of (12) iff zero belongs to the subdifferential of the
Eflc*t = ¢*[|7 17 < (I = <[P = 1IS(¢") = ¢*I* (A1) objective function in (12). By [17, Th.3.3.5] again, thisds
. b w2 . . 0€—M-9f"(—=M*A) + dg* (). Otherwise stated, finding
which §hows thaﬂ]g N C\H IS a nonnegative §upermart|n minimizers of the dual problem (12) boils down to searching
gale with respect to the filtratiofiF;; ). As such, it converges zeros of the sum of two maximal monotone operafors U

with probability one towards a random variablg. satisfy- g byT — —M-3f*o(—M*) andU = dg*. For a fixed

ing 0 < Xc. < oo almost everywhere. Given a countablep > 0, the Douglas-Rachford (or Lions-Mercier) operafor

dense subsefl of fix(S), there is a probability one set is defined as

on which ||¢* = ¢|| = X¢ € [0,00) for all ¢ € H. Let
¢* € fix(S), let e > 0, and choose{ € H such that {(v+ pb,u—v): (u,b) € U, (v,a) € T,v+ pa = pn — pb}.



The following Lemma is an immediate consequence of [9]. i) We use A = J,u(() = prox,. () = ¢ -
Lemma 3:Under Assumption 1R is maximal monotone, 1/p prox, 1,,(pC) (see [18, Th. 14.3]). Ag is the indicator

and zer(R) # 0. Moreover,J,y(¢) € zer(T + U) for any function of the set sfia,) x -+ x sp(la,), Prox,,,,

¢ € zer(R). coincides with the projection operator onto that set. Thus,

Lemma 3 implies that the search for a zeroTof- U boils  for any ¢, A, = ¢, — (¢14,. The expression of follows

down to the search of a zero & up to a resolvent step from z = ({ — A)/p.

Jpu. To that end, a standard approach is to use a proximaliv) OperatorS = Jr can be written as

point algorithm of the form¢*+1 = Jg(¢*). By [9], it can

be shown that this approach is equ(iva)lent to the ADMI\/{(/H_pb’V+ pb) « (u,0) €U, (va) € Tov + pa. = pu — pb}

derived in Section Il. Here, our aim is different. We shallMoreover, asR is monotone,S(¢) is a singleton. Repre-

consider random Gauss-Seidel iterations in order to deriggnting = \ + pz with (), 2) € U, it follows from the

an asynchronous version of the ADMM. above expression @ thatS(¢) = v + pz wherev is such
_ ) that v + pa = A — pz for somea € T(v). Using T =
B. Random Gauss-Seidel Iterations —M -df* o (~M*), conditiona € T(v) translates to: there
Define S £ Jr as the resolvent associated with theexistsz € df*(M*v) s.t.a = —Mx. The output-resolvent

Douglas-Rachford operat®. On the spac& = XA1x.-.x s obtained byv + pz = A 4+ pMz. For a given component
XAr, define the operatd, as in (10) forany = 1,--- L. ¢, this boils down to equation (13). The remaining task is to
Let {¢*}rew be a random process satisfying Assumption 3provide the expression of. By the Fenchel-Young equality
The following result is a consequence of Theorem 2 conpf* = 9f~* [17, Prop.3.3.4], condition: € 9f*(—M*v)
bined with Lemma 3. is equivalent to—M*v € Jf(z). Using thaty = X\ —
Theorem 3:Let Assumptions 1, 2 and 3 hold true. Con-p(z — Mz), we obtain0 € df(x) + M*\+ pM*(Mxz — z).
sider the sequencf(*},cn defined by ™! = Sgita(¢¥).  Otherwise statedy = arg min,exv £,(y, z; A) whereZ,, is
Then for any initial value(®, the sequence* = J,y(¢*¥) the augmented Lagrangian defined in (3). Using the results
converges almost surely to a minimizer of (12). of Section Ill, z(v) is given by (14) for any. [ ]
In order to complete the above result, we still must justiffWe are now in position to state the main algorithm. It simply
the fact that, as claimed, the above iterations can be seencamsists in an explicit writing of the random Gauss-Seidel

an asynchronous distributed algorithm. iterations¢**1 = Sgrs1(¢*) using Lemma #). Note that,
o ] by Lemma 4), the definition of a sequendgy), on Z is
C. Distributed Algorithm equivalent to the definition of two sequences®},cx and

We make the above random Gauss-Seidel iterations mofe*} rew such that for alle, ¢¥ = \¥ 4 pzF with (\F, 2¥) €
explicit. In the sequel we shall always denote @ythe /th  U. Moreover, by Lemmai#) , each component} of z* is a
component of a functiog € Z i.e, ¢ = ((1,---,(z). For constant. The definition of* thus reduces to the definition
any ¢, we introduce the averagé = 3,4, Ce(v)/|A.  of L constantstf,- -,z in X,

Lemma 4 below states that atye Z is uniquely represented Asynchronous ADMM:
by a couple(),z) € U whose expression is provided.At each iterationk, draw r.v.¢+1.
Moreover, it provides the explicit form of théh blockS, of ~ For ¢ = ¢k*1, set for anyv € A,:
the resolvent. This will be the basis of our asynchronous

distributed algorithm. 2 () prOX, oo Y e A¢(v)

Lemma 4:For any( € Z, the following holds true: lo(v)| teate)
i) There exists a uniqué\, z) € U such that + pz = (. 1
i) Jpu(C) = A = —— ) 2w
o B - & | Ay
i) Foranyl=1,--- L, \p = — (ela, andz, = 71A£. wEA,
iv) Forany/ =1,---,L, and anyv € A, M) = M) +p (a" T (w) — 2 .
Se(¢) s v = Ae(v) + pa(v) (13)  For any/ # ¢F+1, setA\b+! = )k,

k+1 k41 = k .
wherez(v) is defined by For anyw ¢ Agiir, setz™ (w) = z"(w)

£(v) = ProXs, o 1 e Ae(v) | (14) VI. IMPLEMENTATION EXAMPLE - |
o (v)] tea(v) P In order to illustrate our results, we consider herein an
asynchronous version of the ADMM algorithm in the context
Proof: i)-ii) SincelJ,y is the resolvent of a maximal of Section Il-Example 2. The scenario is the following: first
monotone operator),y(¢) exists and is unique for every Agentv € {1,...,|V|} wakes up at timek + 1 with the
¢ € Z. Letus define\ = J,y(¢) andz = ((—\)/p. Trivially,  probabilityg,. Denoting by, the neighborhood of Agent
A+pz = AsC e X+ pU(N), we get that\, z) € U. This  in the GraphG, this agent then chooses one of its neighbors,
decomposition is unique since for afy, z) € U satisfying sayw, with the probabilityl/|A\,| and sends an activation
A+ pz =(, one has{ € (I + pU)(X) and thush = J,y(¢). message ta. In this setting, the edgév, w} coincides with



one of theAd, of Example 2 in Section Il. It is easily seen that
the samples of the activation proce§&} . which is of

—O— Distributed Gradient descent
—[1— Asynchronous Distributed Gradie

m———nniim—e s

10°
course valued i1, ..., |E|} are governed by the probability O— Synchronous ADMM
law ) —x/— Asynchronous ADMM
= 10”
Qv qu S
Pt = {v,w}] = — + —=— > 0. 5
€8 = {owl) = (5 + 5L
When the edggv, w} is activated, the following two prdx) g -
operations are performed by the agents: ? s L
1 Ak (v) g
k+1 _ ( kN ) I
T v) = Pprox —_— z _
(v) PrOXs, pln(v)| IN ()] le;() ¢ P 107
v =
1 M (w s L | | | |
N w) = ProXe, inw) (m Z zy — Zg )) 1070 200 400 600 800 1,000
LEN (w) Number of iterations
The two agents exchange then the valugs!(v) and
x*+1(w) and perform the following operations: ) o o ,
Fig. 1. Squared error of distributed optimization algarith versus the
k1l k1 (v) + k1 (w) number of primal updates
Zy = 5
k+1 k+1
T v) —x w
)\IZ'H(U) = M) +p ) (w) [6] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual Avegimg
2 for Distributed Optimization: Convergence Analysis andtik
ft1 & o (w) — 2P (v) Scaling,” IEEE Transactions on Automatic Controtol. 57, no. 3,
AMTH(w) = A (w) +p 5 pp. 592-606, 2012.

. L . L [7]
We remark that this communication scheme is reminiscent

of the so-calledRandom Gossiplgorithm introduced in [19]
in the context of distributed averaging.

VII. NUMERICAL RESULTS

We consider a network with’ = {1,...,5} and with
E = {{1,2},{2,3},{3,4},{4,5},{5,3}}. We evaluate the (10]
behavior of: i) the synchronouBistributed Gradientwith
1/k step size [20] using Metropolis exchange matrix; ii) the
Asynchronous Distributed Gradiewnith Random Gossips a
communication algorithm [19] ; iii) th&ynchronous ADMM
and iv) the Asynchronous ADMMEach agent maintains a
different quadratic convex function and their goal is toctea
consensus over the minimizer of problem (1). [12]

In Figure 1, we plot the squared error versus the number
of iterations for the considered algorithms. We observe tha, ,
our algorithm clearly outperforms the distributed gradien
descents.

(8]

El

[11]
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