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ABSTRACT

Cooperative detection without fusion center has many appli-
cations such as spectrum sensing in cognitive radio or in-
trusion detection in ad hoc network. In this paper, we pro-
pose a new asynchronous fully-distributed cooperative algo-
rithm which does not require any knowledge on the underly-
ing nodes network. Discussion about the threshold choice and
the respective duration of the sensing step and the gossip step
is conducted.

Index Terms— Cooperative detection, spectrum sensing,
fully-distributed decision

1. INTRODUCTION

There are some applications where agents have to detect
rapidly the presence or absence of a signal of interest. For
instance, one can mention the spectrum sensing in cogni-
tive radio or the intrusion detection in military mobile ad
hoc networks. In order to make an accurate decision, these
agents/nodes may have to cooperate with each other.

The traditional way to fix this problem consists in provid-
ing hard or soft detection decisions to a fusion center. This
centralized approach is clearly sensitive to fusion center fail-
ure. Moreover, in ad hoc networks context, fusion center
election protocol and routing protocol have to be carried out
which is costful in terms of overhead and time. Therefore, de-
signing fully distributed decision algorithms is of great inter-
est. Such algorithms rely on decision test function and deci-
sion threshold computed in a distributed way, i.e., when only
exchanges of local data with neighbor are allowed.

Cooperative detection has recently received a lot of at-
tention (see [1] and references therein). Nevertheless, most
works assume the existence of a fusion center and finally fo-
cus on the design of operations done at each node in order to
help the fusion center to make the right decision. In the liter-
ature, only a few algorithms are fully distributed in the sense
defined above [2, 3, 4]. An important difference is that sens-
ing and gossiping steps are alternated in [2, 3] whereas sens-
ing steps come before gossiping steps in [4].These algorithms
are well adapted to time-varying environments but they suffer
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from difficulties in computing the threshold distributively. In-
deed, in [2, 4], the threshold is chosen in an asymptotic regime
and performances (especially, false alarm probability) are not
ensured in finite time. In [3], the threshold is chosen assum-
ing the absence of diffusion/gossiping step. Hence, threshold
distributed computation remains an open issue.

We thus propose a new fully distributed signal decision
algorithm based on a recently-developed gossiping algorithm
[7] where sensing steps are followed by gossiping steps, and
where the threshold is chosen adequately. In addition, thanks
to the separation of both steps, we are able to optimize their
durations at the expense of less adaptivity compared to [2, 3].

This paper is organized as follows: in Section 2, we in-
troduce the signal model. In Section 3, we remind some re-
sults of centralized cooperative detection. In Section 4, we
propose a new fully-distributed cooperative detection algo-
rithm. Threshold distributed computation is discussed, and
ROC curves are derived. In Section 5, numerical results con-
firm our claims.

2. SYSTEM MODEL

We consider a network of K nodes collaborating to detect
the presence or absence of a signal. The received signal at
time n on node k writes yk(n). We assume that the dura-
tion of sensing is the same for all nodes and equal to Ns.
Let yk = [yk(1) · · · yk(Ns)]

T be the sensing data associ-
ated with node k, and where the superscript (.)T stands for
the transposition operator. The signal to (potentially) detect
is denoted by xk = [xk(1) · · ·xk(Ns)]

T at node k where
xk(n) corresponds to its value at time n. Finally, an addi-
tive noise can disturbed the detection and is denoted by nk =
[nk(1) · · ·nk(Ns)]

T at node k where nk(n) corresponds to
its value at time n. Let N (m,Σ) be a Gaussian vector with
mean m and covariance matrix Σ. nk is a i.i.d. Gaussian
vector of distribution N (0, σ2

kINs) where INs stands for the
identity matrix of size Ns. Throughout the paper, we assume
that the statistics of xk and nk are known at node k.

The hypothesis test dealing with our problem can thus be
written as follows{

H0 : ∀k, yk = nk
H1 : ∀k, yk = xk + nk

(1)



In the context of cognitive radio (which is our main appli-
cation of interest), we prefer to consider hypothesis test tar-
geting a fixed probability of detection and so a variable false
alarm probability that we wish to minimize rather than the
standard Neyman-Pearson approach. Indeed, in this context,
the secondary users (the nodes in our framework) should not
disturb the primary user (the signal to detect in our frame-
work) up to a pre-defined probability. Moreover, a high false
alarm probability only implies that the secondary users do not
use the white spaces while they could. Therefore we would
like to minimize this false alarm probability.

According to the approach developed in [5], one can prove
that our optimal test (minimizing the false alarm probability
given a target probability of detection) still boils down to the
so-called Likelihood Ratio Test (LRT)

Λ(y) := log

(
p(y|H1)

p(y|H0)

)
H1

≷
H0

λ (2)

where p(y|H) is the probability density of y given the tested
hypothesisH and where λ is chosen such that the target prob-
ability of detection, denoted by P target

D , is ensured.

3. REVIEW ON CENTRALIZED COOPERATIVE
SPECTRUM SENSING

Before going further, we remind some important results about
centralized cooperative spectrum sensing. We focus, on the
one hand, on an energy-based detector (when the sought sig-
nal is unknown) and, on the other hand, on a training-based
detector (when the sought signal is known and thus corre-
sponds to a training sequence [3]).

3.1. Energy-based detector

When the sought signal is unknown, it is usual to assume xk
is an zero-mean i.i.d. Gaussian vector with covariance matrix
γ2kINs . Then the Signal-to-Noise Ratio (SNR) at node k is
equal to SNRk := γ2k/σ

2
k and is assumed to be known at

node k. Assuming independence of the received signals at
different nodes (this assumption is reasonable since even if
the same signal is transmitted by the primary user, the ran-
dom wireless channel leads to independent received signals
between nodes), the test given in Eq. (2) and achieved at
the fusion center can be decomposed as follows: Λ(y) =∑K
k=1 Λk(yk) with Λk(yk) = log(p(yk|H1)/p(yk|H0)).

As xk ∼ N (0, γ2kINs) and nk ∼ N (0, σ2
kINs), we obtain

the following test by removing the constant terms

T (y) :=
1

K

K∑
k=1

‖yk‖22
γ2k + σ2

k

SNRk

H1

≷
H0

η (3)

where η must be chosen such as P(T (y) > η|H1) = P target
D .

In order to compute the threshold η, we need to exhibit
the probability density of T . Unfortunately, due to unequal

SNRs, T is not χ2-distributed. In [8], it is advocated that the
density of T can be approximated with a Gamma distribution,
denoted by Γ(κ, θ), whose the probability density function is
equal to gκ,θ defined by

gκ,θ(x) =
1

Γ(κ)θκ
xκ−1e−x/θ, x ≥ 0, (4)

and 0 otherwise. The terms κ and θ are chosen in order to
match the mean and the variance of T . In the following, we
denote its cumulative distributive function by Gκ,θ and its in-
verse by G(−1)

κ,θ . After some algebraic manipulations, we ob-
tain that T ∼ Γ(κT , θT ) with

κT =
KNs

2
·

( 1
K

∑K
k=1 SNRk)2

1
K

∑K
k=1 SNR2

k

(5)

and

θT =
2

K
·

1
K

∑K
k=1 SNR2

k

1
K

∑K
k=1 SNRk

. (6)

One can then deduce that the optimal threshold given the tar-
get probability of detection is

η = G
(−1)
κT ,θT

(1− P target
D ).

3.2. Training-based detector

We now assume that each node k has the knowledge of the
(possible) transmit signal xk. Typically, the signal xk may
decomposed as hkx where hk corresponds to the (known)
channel fading between the node k and the sought transmitter
and x is a training sequence [3]. Here, the signal power is
γ2k = ‖xk‖2/Ns.

Then the test given in Eq. (2) takes the following form

T (y) :=
1

K

K∑
k=1

yT
k xk
σ2
k

H1

≷
H0

η (7)

As xk is deterministic, T is Gaussian-distributed with mean
mT and variance ς2T given by

mT = Ns

(
1

K

K∑
k=1

SNRk

)
and ς2T =

Ns
K

(
1

K

K∑
k=1

SNRk

)
.

As a consequence, the threshold is obtained as follows

η = ςTQ
(−1) (P target

D

)
+mT

where Q(−1) is the inverse of the Gaussian tail function.

4. FULLY DISTRIBUTED ALGORITHM

The purpose of this paper is to perform detection in a dis-
tributed way, i.e., without fusion center. Obviously, tests de-
scribed in Eqs. (3)-(7) are not computable since a node may



not have the contribution of the others. To overcome this
problem, we propose to introduce a gossiping step in order to
compute the involved averages. Prior to this gossiping step,
the nodes perform a sensing step so that each node k can pro-
vide the term

tk(yk) =

{
‖yk‖22SNRk/(γ

2
k + σ2

k) if energy detector
yT
k xk/σ

2
k if training detector.

Let Ng be the duration of the gossiping step and T =
Ns+Ng be the total duration of the processing. Most gossip-
ing algorithms for averaging can take the following form T1(y)

...
TK(y)

 = P

 t1(y1)
...

tK(yK)


where Tk(y) is the final test function at node k, and where
P = (pk`)k,`=1,··· ,K corresponds to the considered gossiping
algorithm matrix afterNg iterations (see [6] for more details).

4.1. Energy-based detector

When an energy-based detection is carried out, the final test
function at node k is

Tk(y) =

K∑
`=1

pk`
‖y`‖22
γ2` + σ2

`

SNR`

H1

≷
H0

ηk,

where ηk is the threshold at node k.
Actually, the main issue in this paper is to find a distribu-

tive way for selecting a good threshold at any time, i.e., en-
suring the target probability of detection P target

D as close as
possible at any step of the algorithm1.

Once again, by assuming that Tk is well approximated by
a Gamma distribution, we obtain that

ηk = G
(−1)
κk,θk

(
1− PD(k)target

)
where PD(k)target is the target probability of detection asso-
ciated with node k, and

κk =
Ns
2
·

(∑K
`=1 pk`SNR`

)2
∑K
`=1 p

2
k`SNR2

`

(8)

and

θk = 2 ·
∑K
`=1 p

2
k`SNR2

`∑K
`=1 pk`SNR`

. (9)

Then, we obtain the Receiver Operating Characteristic
(ROC) curve is equal to

PFA(k) = 1−Gκ′
k,θ

′
k

(
G

(−1)
κk,θk

(1− PD(k))
)

(10)

1Actually, the decision is made before the convergence of the gossip al-
gorithm. Indeed, assuming a primary user is present, Tk could be above the
threshold whereas the gossip has not still converged to the consensus.

with

κ′k =
Ns
2
·

(∑K
`=1 pk`

SNR`

1+SNR`

)2
∑K
`=1 p

2
k`

(
SNR`

1+SNR`

)2
and

θ′k = 2 ·

∑K
`=1 p

2
k`

(
SNR`

1+SNR`

)2
∑K
`=1 pk`

SNR`

1+SNR`

.

Unfortunately, the terms involving p2k` in Eqs. (8)-(9)
prevent to obtain the threshold ηk in a distributed way at
node k for ensuring the probability of detection PD(k)target.
To overcome this issue, we propose hereafter two approaches.

Approach 1: distributed with knowledge of K. Actu-
ally, on the centralized scheme, the threshold depends on the
average of the SNR and the square SNR through Eqs.(5)-(6).
A simple idea is to replace these exact averages with the aver-
ages obtained thanks to the considered gossip algorithm. It is
clear that if Ng is large enough, the obtained thresholds will
be close to those of the centralized case and also to those de-
scribed in Eqs. (8)-(9) since pk,` is close to 1/K and so p2k`
can be well approximated by pk`/K. As a consequence, the
new threshold is

η
(1)
k = G

(−1)
κ
(1)
k ,θ

(1)
k

(
1− PD(k)target

)
with

κ
(1)
k =

KNs
2
·

(∑K
`=1 pk`SNR`

)2
∑K
`=1 pk`SNR2

`

and

θ
(1)
k =

2

K
·
∑K
`=1 pk`SNR2

`∑K
`=1 pk`SNR`

.

This algorithm is still not fully distributed since the knowl-
edge of the number of nodes is required. Furthermore, the
target probability of detection is not ensured since the real
probability of detection, denoted by PD(k)(1), is given by

PD(k)(1) = 1−Gκk,θk(G
(−1)
κ
(1)
k ,θ

(1)
k

(1− PD(k)target)).

In contrast, we prove that the ROC curve is the following one

PFA(k)(1) = 1−Gκ′
k,θ

′
k
(G

(−1)
κk,θk

(1− PD(k)(1)))

which is the same as in Eq. (10). Consequently, the ROC
curve is not degraded due to our approximate threshold, but
depends on the gossip algorithm. In addition, the operating
point in the ROC curve can not fixed a priori.

Approach 2: fully distributed. In this approach, the
knowledge of the number of nodes will not be required any-
more. Recently, new gossip algorithms, based on the sum-
weight principle (see [7] and references therein) have been



introduced in order to perform fast estimation of the average
and the sum. Let v = [v1, · · · vK ]T be the vector whose com-
ponent vk is the value of the node k before gossiping (e.g.,
SNRk or SNR2

k for threshold computation, or tk for test func-
tion computation). For computing simultaneously the average
and the sum of z, these algorithms rely on the three following
variables, given by,

z := Qv, w(1) := Q1, w(e) := Qe

where the matrix Q represents the gossip algorithm after Ng
iterations (see [7] for more details), 1 is the K-sized vector
whose elements are 1, e is the K-sized vector2 whose the
first component is equal to 1 and the others 0. Only the k-th
component of all involved vectors is available at node k.

Then, each node k calculates the k-th component of zp =
z�w(1) and zs = z�w(e) where� is the elementwise divi-
sion. In [7], it is proven that zp and zs converge to the average
and the sum of v respectively for large Ng . In addition, we
remark that zp = Pv and zs = Sv with

P = diag (1�Q1) Q and S = diag (1�Qe) Q. (11)

Consequently, the final test function is computed with the
gossip algorithm related to matrix P given in Eq. (11). The
threshold are then obtained as follows

η
(2)
k = G

(−1)
κ
(2)
k ,θ

(2)
k

(
1− PD(k)target

)
with

κ
(2)
k =

Ns
2
·

(∑K
`=1 sk`SNR`

)2
∑K
`=1 sk`SNR2

`

and

θ
(2)
k = 2 ·

∑K
`=1 pk`SNR2

`∑K
`=1 sk`SNR`

.

The algorithm is fully distributed since even the number of
nodes is not required. Once again, the new threshold does not
ensure the target probability of detection, and the ROC curve
is still described by Eq. (10) but with P given by Eq. (11).

Finally, for both approaches, the ROC curves converge
to the ROC curve related to the centralized case when Ng is
large enough since the parameters κk, κ′k, θk and θ′k converge
to those of the centralized case.

4.2. Training-based detector

When the training-based detector is implemented, the test
function at node k after Ng gossiping iterations is

Tk(y) =

K∑
`=1

pk`
yT
` x`
σ2
`

H1

≷
H0

ηk,

2before gossipping, the second and third variables of each node must be
initialized to match 1 and e respectively. For the second variable, each node
is initialized to 1. For the third variable, only the first node is initialized to
1 whereas the others to 0. In cognitive radio context, the first node is the
secondary user launching the sensing, i.e. wanting to access the medium.

As Tk is Gaussian distributed with mean mk and variance ς2k ,
we have

ηk = ςkQ
(−1) (P target

D

)
+mk

with

mk = Ns

K∑
`=1

pk`SNR` and ς2k = Ns

K∑
`=1

p2k`SNR`.

Once again, this algorithm can not be computed in a dis-
tributed way due to the presence of the terms p2k` in the vari-
ance. To overcome this issue, previous proposed approaches
can be applied straightforwardly.

5. NUMERICAL RESULTS

Except otherwise stated, the energy-based detector is carried
out with T = 128, Ns = Ng and P target

D = 0.99, and perfor-
mance are averaged over random geographical graphs with
K = 10 nodes. The SNRs at each node are exponentially-
distributed with mean SNR. Only performance for the node
exhibiting the smallest SNR realization will be plotted.

Hereafter, we always test the following algorithm config-
urations: i) the centralized one, ii) the pairwise gossip (PG)
[6] with centralized threshold, iii) the pairwise gossip with ap-
proach 1 based threshold, iv) the broadcast sum-weight gossip
(BWG) [7] with approach 2 based threshold.

In Fig. 1, we plot the ROC curve for the above-mentioned
algorithm configurations. We remark that the ROC curves are

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
FA

P
D

 

 

Centralized Detector

PG: centralized threshold

PG: Approach 1 threshold

BWG: Approach 2 threshold

Fig. 1. ROC curve (PD vs. PFA).

very close to each other. In addition, when the same gossip
algorithm is used, the ROC curve is identical regardless of the
threshold technique computation.

In Figs. 2 and 3, we display empirical PFA and PD versus
SNR and Ns respectively So, the loss in false alarm proba-
bility for the fully-distributed approach is reasonable. More-
over its probability of detection is higher than the target one.
We also remark that both steps (spectrum sensing and gossip)
should have similar durations.

In Fig. 5, these algorithms have been evaluated when the
hidden terminal practical configuration described in Fig. 4 has
been simulated.
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Fig. 4. Hidden terminal configuration

Finally, in Fig. 6, we compare our training-based algo-
rithms to the diffusion LMS one described in [3]. Notice that
Ns and Ng is incremented by 1 at each iteration of the dif-
fusion LMS. We remark that our algorithms outperform the
diffusion LMS. Actually, our block processing for the sens-
ing step is much more efficient that the adaptive LMS one
in [3]. Moreover, unlike diffusion LMS, our algorithms are
asynchronous which simplifies the network management.
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