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Analysis of Sum-Weight-like algorithms for
averaging in Wireless Sensor Networks

Franck Iutzeler, Philippe Ciblat and Walid Hachem

Abstract—Distributed estimation of the average value over a
Wireless Sensor Network has recently received a lot of attention.
Most papers consider single variable sensors and communications
with feedback (e.g. peer-to-peer communications). However, in
order to use efficiently the broadcast nature of the wireless
channel, communications without feedback are advocated. To
ensure the convergence in this feedback-free case, the recently-
introduced Sum-Weight-like algorithms which rely on two vari-
ables at each sensor are a promising solution. In this paper,
the convergence towards the consensus over the average of the
initial values is analyzed in depth. Furthermore, it is shown
that the squared error decreases exponentially with the time.
In addition, a powerful algorithm relying on the Sum-Weight
structure and taking into account the broadcast nature of the
channel is proposed.

I. INTRODUCTION

The recent years have seen a surge of signal processing and
estimation technologies operating in stressful environments.
These environments do not make possible the use of a fusion
center so the units/sensors have to behave in a distributed
fashion. In various applications, sensors have to communicate
asynchronously through wireless channels because of the
lack of infrastructure. Hence, the problem of communicating
between the different sensors to estimate a global value is a
key issue. The topic was pioneered by Tsitsiklis [2] and is
receiving a lot of interest from various communities (see [3],
[4], [5] and references therein).

One of the most studied problems in Wireless Sensor
Networks is the average computation of the initial measure-
ments of the sensors. More precisely, each sensor wants to
reach consensus over the mean of the initial values. A basic
technique to address this problem, called Random Gossip, is to
make the sensors randomly exchange their estimates in pairs
and average them. This technique has been widely analyzed
in terms of convergence and convergence speed in [5], [6].

In the context of asynchronous ad-hoc networks without
fusion centers, finding more efficient exchange protocols has
been a hot topic for the past few years. The proposed improve-
ments were essentially twofold: i) exploiting the geometry
of the network to have a more efficient mixing between the
values (e.g. [7], [8], [9]) and ii) taking advantage of the
broadcast nature of the wireless channels (e.g. [10] without
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feedback link, and [11] with feedback link). Whereas the use
of network geometry has received a lot of attention, the use
of the broadcast nature of the wireless channel is less studied
albeit promising. Therefore, in our paper, we will focus on
averaging algorithms taking into account the broadcast nature
of the channel. In order to keep the number of communications
as low as possible, we forbid the use of feedback links.

In the feedback-free context, one can mention [10]. How-
ever, even if the algorithm described in [10] converges quickly
to a consensus, the reached value is incorrect. This can be
explained by the fact that the sum of the sensor estimates is not
constant over time. To overcome this problem, Franceschelli
et al. [12] proposed to use well-chosen updates on two local
variables per sensor while using the broadcast nature of the
channel without feedback link. A more promising alternative
is to use the Sum-Weight scheme proposed by Kempe [13]
and studied more generally by Bénézit [14]. In this setup,
two local variables are also used: one representing the sum
of the received values and the other representing the weight
of the sensor (namely, the proportion of the sensor activity
compared to the others). The two variables are transmitted
at each iteration and both are updated in the same manner.
The wanted estimate is then the quotient of these values. The
convergence of this class of algorithms (without necessarily
sum-conservation) has been proven in [13], [14]. In contrast,
their convergence speed has never been theoretically evaluated
except in [13] for a very specific case.

The goal of this paper is to theoretically analyze the con-
vergence speed for any Sum-Weight-like algorithm. As a by-
product, we obtain necessary and sufficient condition for the
convergence. In addition, we propose a new Sum-Weight-like
algorithm based on broadcasting which outperforms existing
ones.

This paper is organized as follows: the notations and as-
sumptions on the network model and on the Sum-Weight-
like algorithms are provided in Section II. Section III is
dedicated to the theoretical analysis of the squared error of the
algorithms and provides the main contributions of the paper. In
Section IV, we propose new Sum-Weight-like algorithms. In
Section V, we compare our results with previous derivations
done in the literature for the Sum-Weight-like algorithms as
well as the algorithms based on the exchange of a single
variable between the nodes. Section VI is devoted to numerical
illustrations. Concluding remarks are drawn in Section VII.
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II. MODEL AND ASSUMPTIONS

A. General notations

Let x , [x1, ..., xN ]T be the vector of the {xi}i=1,...,N

with ·T the transpose operator. We additionally define 1N ,
[1, ..., 1]T the size-N vector of ones.

Let X be the matrix of the {xij}i,j=1,...,N . We will say
that X is positive (resp. non-negative), noted X > 0 (resp.
X ≥ 0), if it has only positive (resp. non-negative) coefficients.
Furthermore, we will say that X is row (resp. column)
stochastic if it is non-negative and if its row sum (resp. column
sum) is equal to 1, that is if X1N = 1N (resp. if 1T

NX = 1T
N ).

A matrix which is row and column stochastic is said to be
doubly stochastic. Also, a non-negative matrix X is said to
be primitive if Xm > 0 for some m > 1. In addition to the
standard matrix product, we denote the Kronecker product by
‘⊗’.

In terms of matrix norms, we define i) the Frobenius
norm: ‖X‖F ,

√∑
i,j |xij |2 ( alternatively ‖X‖F =√

Trace(XTX) ) and ii) the L∞ vector norm on matrices
as |||X|||∞ , Nmax

i,j
|xij |. The |||·|||∞ norm is a matrix norm

and hence is submultiplicative. Finally, we define ρ(X) as the
spectral radius of matrix X, that is, ρ(X) = maxi |λi(X)|
with {λi(X)} the eigenvalues of matrix X.

B. Network model

The sensor network will be modeled by a graph G = (V,E)
(possibly directed), V being the set of vertices/sensors and E
being the set of edges which models the possible links between
the sensors. We also define the adjacency matrix A of G as the
N×N matrix such that (A)i,j equals 1 if there is an edge from
i to j and 0 otherwise. We define the neighborhood of each
sensor i as follows Ni = {j ∈ V |(i, j) ∈ E}. Let di = |Ni|
denote the degree of the sensor i where |A| represents the
cardinality of the set A. Let dmax = maxi di be the maximum
degree.

Every sensor i has an initial value xi(0) and we define
x(0) = [x1(0), ..., xN (0)]T. The goal of the network is to
communicate through the edges of the underlying graph to
reach consensus over the mean of the initial values of the
sensors. A communication and estimation step will be referred
to as an update.

We will assume that the network follows a discrete time
model such that the time t is the time of the t-th update.
As an example, every sensor could be activated by an in-
dependent Poisson clock. The time would then be counted
as the total number of clock ticks across the network. We
will denote xi(t) the i-th sensor estimate at time t and
x(t) = [x1(t), ..., xN (t)]T.

C. Averaging Algorithms

The goal of averaging algorithms is to make the vector
of estimates x(t) converge to xave1N , also known as the
consensus vector, where xave = (1/N)1T

Nx(0) is the average
of the initial values of the sensors. In the present state-of-the-
art, two classes of algorithms exist and are described below.

1) Class of Random Gossip algorithms: In standard gossip
algorithms (e.g. [5]), sensors update their estimate according
to the equation x(t + 1)T = x(t)TK(t) where the K(t) are
doubly-stochastic matrices. Since two sensors can exchange
information only across the edges of the graph, for any
i 6= j, (K(t))i,j cannot be positive if (A)i,j = 0. From
an algorithmic point of view, the row-stochasticity implies
that the sum of the values is unchanged: x(t + 1)T1N =
x(t)TK(t)1N = x(t)T1N whereas the column-stochasticity
implies that the consensus is stable: if x(t) = c1N , then
x(t + 1)T = x(t)TK(t) = c1T

NK(t) = c1T
N . For these rea-

sons, double-stochasticity is desirable; however using doubly-
stochastic matrices implies a feedback. In addition to the
eventual multiple access techniques to implement, it represents
a surplus in the number of communications, in particular if a
sensor sends information to multiple neighbors. Similarly, if
the message is sent through a long route within the network,
the same route may not exist anymore for feedback in the
context of mobile wireless networks. As these algorithms only
rely on the exchanges of one variable per sensor, they will be
called single-variate algorithms in the rest of the paper.

2) Class of Sum-Weight algorithms: To overcome this
drawback, a possible method is to use two variables : one
representing the sum of the received values and another
representing the relative weight of the sensor. For the sensor i
at time t, they be respectively written si(t) and wi(t). Writing
s(t) = [s1(t), ..., sN (t)]T and w(t) = [w1(t), ..., wN (t)]T,
both variables will be modified by the same update matrix,
s(t+ 1)T = s(t)TK(t) and w(t+ 1)T = w(t)TK(t). Finally,
the estimate of sensor i at time t will be the quotient of the
two variables, xi(t) , si(t)/wi(t). The initialization is done
as follows: {

s(0) = x(0)
w(0) = 1N .

(1)

For the sake of convergence we will need an important
property: Mass Conservation{ ∑N

i=1 si(t) =
∑N
i=1 xi(0) = Nxave∑N

i=1 wi(t) = N.
(2)

This clearly rewrites as ∀t > 0,K(t)1N = 1N which cor-
responds to sum-conservation as in classic gossip algorithms
and leads to row-stochastic updates matrices.

D. Notations for the Sum-Weight scheme

Let us now introduce some useful notations along with
some fundamental assumptions for convergence in the Sum-
Weight scheme. Given two vectors a and b with the same size,
we denote by a/b the vector of the elementwise quotients.
The Sum-Weight algorithm is described by the following
equations:

x(t) ,
s(t)

w(t)
=

[
s1(t)

w1(t)
, ...,

sN (t)

wN (t)

]T
{

sT(t+ 1) = sT(t)K(t) = xT(0)P(t)
wT(t+ 1) = wT(t)K(t) = 1T

NP(t)

with P(t) = K(1)K(2) . . .K(t).
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We can notice that reaching consensus is equivalent for x(t)
to converge to the consensus line c1N where c is consensus
value. For this reason, it is useful to define J = (1/N)1N1T

N

the orthogonal projection matrix to the subspace spanned
by 1N and (I− J) the orthogonal projection matrix to the
complementary subspace which can be seen as the error hy-
perplane. The matrix I is the identity matrix with appropriate
size.

In order to intuitively understand the algorithm behavior, let
us decompose xT(t) as follows

xT(t) =
sT(t)

wT(t)
=

xT(0)P(t)

wT(t)

=
xT(0)JP(t)

wT(t)
+

xT(0)(I− J)P(t)

wT(t)

=
xave1

T
NP(t)

1T
NP(t)

+
xT(0)(I− J)P(t)

wT(t)

= xave1
T
N +

xT(0)(I− J)P(t)

wT(t)
(3)

Obviously, the algorithm will converge to the right consensus
if the second term in the right hand side vanishes. Actually,
under some mild assumptions related to the connectedness of
the network, we expect the numerator which corresponds to a
projection on the error hyperplane will converge to zero at an
exponential rate while all the elements of w(t) are of order
one. Proving these results will be the core of the paper.

E. Assumptions on the update matrices K(t)

First, we will always assume that both following conditions
will be satisfied by any update matrix associated with a Sum-
Weight like algorithm.

(A1) Matrices {K(t)}t>0 are independent and identically
distributed (i.i.d.), and row-stochastic. The matrix
K(t) is valued in a set K = {Ki}i=1..M of size
M <∞. Also, pi , P[K(t) = Ki] > 0.

(A2) Any matrix in K has a strictly positive diagonal.
The first assumption is just a reformulation of the mass con-
servation property introduced in section II-C2 along with the
assumption of a finite number of actions across the network.
At each iteration, a sensor can perform any linear combination
of the network sensors values with non-negative, summing to
1, coefficients. The second assumption forces every sensor to
keep part of the information it had previously. We also define{

mK = mini,j,k

{
(Kk)i,j : (Kk)i,j > 0

}
,

pK = mink {P [K(t) = Kk]} = mink pk > 0.
(4)

In addition to both previous assumptions, we will see
that next assumption plays a central role in the convergence
analysis of any Sum-Weight like algorithm.

(B) E[K] =
∑M
i=1 piKi is a primitive matrix.

In terms of graph theory, matrix E[K] stands for the
adjacency matrix of a weighted directed graph (see [15,
Def. 6.2.11]). Since it is primitive, this graph is strongly
connected (see [15, Cor. 6.2.18]). Observe that this graph
contains a self-loop at every node due to Assumption (A2). In

fact, the matrix A + I coincides with the so-called indicator
matrix ([15, Def. 6.2.10]) of E[K].

III. MATHEMATICAL RESULTS

A. Preliminary results

The assumption (B) can be re-written in different ways
thanks to the next Lemma.

Lemma 1. Under assumptions (A1) and (A2), the following
propositions are equivalent to (B) :

(B1) ∀(i, j) ∈ {1, ..., N}2, ∃Lij < N and a realization of
P(Lij) verifying P(Lij)i,j > 0.

(B2) ∃L < 2N2 and a realization of P(L) which is a positive
matrix.

(B3) E[K⊗K] =
∑M
i=1 piKi ⊗Ki is a primitive matrix.

The proof is reported in Appendix A. This Lemma will be
very useful in the sequel since it enables us to interpret the
Assumption (B) in various manners.

Our approach for analyzing the convergence of Sum-Weight
algorithms is inspired by [13] (with a number of important
differences explained below) and so relies on the analysis of
the Squared Error (SE). Actually, the Squared Error can be
upper-bounded by a product of two terms as follows

‖x(t)− xave1‖22 =

N∑
i=1

|xi(t)− xave|2 (5)

=

N∑
i=1

1

wi(t)2
|si(t)− xavewi(t)|2

=

N∑
i=1

1

wi(t)2

∣∣∣∣∣∣
N∑
j=1

xj(0)Pji(t)−
1

N

N∑
k=1

xk(0)

N∑
l=1

Pli(t)

∣∣∣∣∣∣
2

≤ Ψ1(t)Ψ2(t) (6)

with Ψ1(t) =
‖x(0)‖22

[min
k

wk(t)]2
(7)

Ψ2(t) =

N∑
i=1

N∑
j=1

∣∣∣(PT(t) (I− J)
)
i,j

∣∣∣2 . (8)

Notice that the decomposition done in Eq. (6) mimics Eq. (3)
for the Squared Error.

From now, our main contributions will be to understand the
behavior of both terms Ψ1(t) and Ψ2(t) when t is large. In
Section III-B, we will prove that there is a constant K < ∞
such that the event {Ψ1(t) ≤ K} occurs infinitely often with
probability 1. The term Ψ2(t) represents the projection of the
current sensor values on the orthogonal space to the consensus
line. The analysis of this term is drawn in Section III-C.

B. Analysis of Ψ1(t)

This term depends on the inverse of the minimum of the
sensors weights (see Eq. (7)) and thus can increase quickly.
However, the sensors frequently exchange information and
hence spread their weight so the probability that a node weight



4

keeps decreasing for a long time is very small. We will work
on this probability and show that it can be made as small
as one wants considering a sufficiently long amount of time.
This will enable us to prove that there exists K < ∞ such
that P[ {Ψ1(t) ≤ K} infinitely often] = 1. To obtain these
results, some preliminary lemmas are needed.

First, we will focus on the behavior of the nodes weights
and especially on their minimum. One can remark that at
every time t there is as least one node whose weight is
greater than or equal to 1 (as the weights are non-negative
and ∀t > 0,

∑
i wi(t) = N because of the mass conservation

exhibited in Eq. (2)). As w(t0 + t)T = w(t)TP(t0, t0 + t)
where P(t0, t0 + t) , K(t0)...K(t0 + t), it is interesting to
focus on i) the minimum non-null value of P(t0, t0 + t) and
ii) on the instants where P(t0, t0 + t) is positive.

Lemma 2. For all t, t0 > 0, all the non-null coefficients of
P(t0, t0 + t) are greater than or equal to (mK)t.

Proof: Let us recall that mK is the smallest non-null entry
of all the matrices belonging to the set K as defined in Eq. (4).
Let us consider the random matrix P(t) (as the matrix choice
is i.i.d., we drop the offset t0). We will then prove this result
by induction. It is trivial to see that every non-null coefficient
of P(1) = K(1) is greater than mK and as

(P(t))i,j =

N∑
k=1

(P(t− 1))i,k (K(t))k,j ,

it is obvious that if (P(t))i,j > 0, then there is a term in
the sum that is positive (we remind that all the coefficient
here are non-negative). This term is the product of a positive
coefficient of P(t − 1) and a positive coefficient of K(t).
Hence, if all the non-null coefficients of P(t− 1) are greater
than (mK)t−1, then any non-null coefficient of P(t) is greater
than (mK)t−1.mK = (mK)t. So, by induction, we have that
∀t > 0 every non-null coefficient of P(t) is greater than
(mK)t.

Thanks to Item (B2) of Lemma 1, there is a finite L such that
there exists a realization of P(L) which is a positive matrix.
Considering the time at multiples of L, we know that for any n,
if P(nL+1, (n+1)L) > 0 then for all i, wi((n+1)L) ≥ mL

K.
Let us define the following stopping times:{

τ0 = 0

τn = L×min
{
j :
∑j
k=1 1{P(kL+1,(k+1)L)>0} = n

}
where 1E is the indicator function of event E. And,

∆n = τn − τn−1 n = 1, ...,∞.

The 1{P(kL+1,(k+1)L)>0} are i.i.d. Bernoulli random variables
with strictly positive parameter p. Thus the inter-arrival times
∆n are i.i.d. and geometrically distributed up to a multiplica-
tive factor L i.e. P[∆1 = k] = pk−1(1−p) for k ≥ 1. Observe
that the {τn}n>0 are all finite and converge to infinity with
probability one. We then have proven the following result:

Proposition 1. Under Assumptions (A1), (A2), and (B), there
exists a sequence of positive i.i.d. geometrically distributed
random variables {∆n}n>0 such that for all n > 0

Ψ1(τn) ≤ ‖x(0)‖22(mK)−2L

where τn =
∑n
k=1 ∆k.

C. Analysis of Ψ2(t)

This section deals with new results about Ψ2(t). These
results extend dramatically those given in [13] since we
consider more general models for K(t) and any type of
strongly connected graph. According to Eq. (8), we have

Ψ2(t) = ‖ (I− J) P(t)‖2F . (9)

One technique (used in e.g. [5]) consists in writing
E[Ψ2(t)] = Trace

(
(I− J)E

[
P(t)PT(t)

]
(I− J)

)
thanks to

Eq. (9) and finding a linear recursion between E[Ψ2(t)|Ψ2(t−
1)] and Ψ2(t − 1). However this technique does not work in
the most general case1.

Therefore, as proposed alternatively in [5] (though not
essential in [5]) in the context of Random-Gossip Algorithms
(see Section II-C1), we write Ψ2(t) with respect to a more
complicated matrix for which the recursion property is easier
to analyze. Indeed, recalling that for any matrix M,

‖M‖2F = Trace
(
MMT

)
and Trace (M⊗M) = (Trace (M))

2

one can find that
Ψ2(t) = ‖Ξ(t)‖F

with
Ξ(t) = (I− J) P(t)⊗ (I− J) P(t).

By remarking that (I− J) P(t) (I− J) = (I− J) P(t), and
by using standard properties on the Kronecker product, we
have

Ξ(t) = (I− J) P(t− 1) (I− J) K(t)

⊗ (I− J) P(t− 1) (I− J) K(t)

= Ξ(t− 1) [((I− J)⊗ (I− J)) (K(t)⊗K(t))] .(10)

By considering the mathematical expectation given the natural
filtration of the past events Ft−1 = σ (K(1), · · · ,K(t− 1)),
we obtain

E [Ξ(t)|Ft−1] = Ξ(t− 1) ((I− J)⊗ (I− J))E [K⊗K] .

As Ξ(0) = (I− J) ⊗ (I− J) and ((I− J)⊗ (I− J))
2

=
(I− J)⊗ (I− J), we finally have

E [Ξ(t)] = Rt. (11)

with
R = ((I− J)⊗ (I− J)) .E [K⊗K] . (12)

1We have E[Ψ2(t)|Ψ2(t − 1)] =
Trace

(
(I− J)P(t− 1) (I− J)E

[
KKT

]
(I− J)P(t− 1)(I− J)

)
.

By introducing the matrix M = (I− J)E
[
KKT

]
(I− J),

it is easy to link E[Ψ2(t)|Ψ2(t − 1)] with Ψ2(t − 1) since
E[Ψ2(t)|Ψ2(t − 1)] ≤ ‖M‖spΨ2(t − 1) where ‖ · ‖sp is the spectral
norm (see [15, Chap. 7.7] for details). Unfortunately, in some cases, ‖M‖sp
can be greater than 1; indeed for the BWGossip algorithm (introduced in
Section IV-A), one can have ‖M‖sp > 1 for some underlying graphs.
Nevertheless, this BWGossip algorithm converges as we will see later. As
a consequence, the inequality E[Ψ2(t)|Ψ2(t − 1)] ≤ ‖M‖spΨ2(t) is not
tight enough to prove a general convergence result and another way has to
be found.
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Now one can find a simple relationship between E[Ψ2(t)]
and the entries of the matrix E[Ξ (t)] by considering Q(t) =
(I− J) P(t) and (Q(t))i,j = qij(t). After simple algebraic
manipulations, we show that, ∀(i, j, k, l) ∈ {1, · · · , N}4

(E[Ξ (t)])i+(k−1)N,j+(l−1)N = E[qij(t)qkl(t)].

According to Eq. (9), we have E[Ψ2(t)] = E[‖Q(t)‖2F ] which
implies that

E[Ψ2(t)] =

N∑
i,j=1

E
[
q2ij(t)

]
=

N∑
i,j=1

(E [Ξ(t)])i+(i−1)N,j+(j−1)N .

As a consequence, the behavior of the entries of E[Ξ (t)] drives
the behavior of E[Ψ2(t)].

Using the Jordan normal form of R and the L∞ vector
norm on matrices (see [15, Chap. 3.1 and 3.2]), we get that
there is an invertible matrix S such that∣∣∣∣∣∣Rt

∣∣∣∣∣∣
∞ =

∣∣∣∣∣∣SΛtS−1
∣∣∣∣∣∣
∞ ≤ |||S|||∞

∣∣∣∣∣∣S−1∣∣∣∣∣∣∞ ∣∣∣∣∣∣Λt
∣∣∣∣∣∣
∞ (13)

where Λ is the Jordan matrix associated with R.
After some computations, it is easy to see that the absolute

value of all the entries of Λt are bounded in the following
way:

max
1≤i,j≤N

∣∣(Λt)i,j
∣∣ ≤ max

0≤j≤J−1

(
t

t− j

)
ρ(R)t−j

with J the maximum size of the associated Jordan blocks.
Hence, ∀t > 0

max
1≤i,j≤N

∣∣(Λt)i,j
∣∣ ≤ tJ−1ρ(R)t−J+1 (14)

When R is diagonalizable, J = 1, and we get that

max
1≤i,j≤N

∣∣(Λt)i,j
∣∣ ≤ ρ(R)t (when R is diagonalizable)

(15)
Putting together Eqs. (11), (13), (14), (15), and remarking

that the subspace spanned by 1N2 = 1N ⊗1N is in the kernel
of R, we get that the size of the greatest Jordan block is
≤ N − 1, hence the following lemma:

Lemma 3. We have

E[Ψ2(t)] = O
(
tN−2ρ(R)t

)
where R is defined in Eq. (12) and where ρ(R) is the spectral
radius of the matrix R.

The next step of our analysis is to prove that the spectral
radius ρ(R) is strictly less than 1 when Assumptions (A1),
(A2), and (B) hold. Applying Theorem 5.6.12 of [15] on
Eq. (11) proves that ρ (R) < 1 if and only if E [Ξ(t)]
converges to zero as t goes to infinity. Therefore our next
objective is to prove that E [Ξ(t)] converges to zero by using
another way than the study of the spectral radius of R.

Actually, one can find another linear recursion on Ξ(t)
(different from the one exhibited in Eq. (10)). We get

Ξ(t) = Ξ(t− 1) (K(t)⊗K(t))

and, by taking the mathematical expectation given the past,
we obtain

E [Ξ(t)|Ft−1] = Ξ(t− 1)E [K⊗K] .

Remarking that Ξ(t)1N2 = 0, we have for any vector v,

E [Ξ(t)|Ft−1] = Ξ(t− 1)
(
E [K⊗K]− 1N2vT

)
and then, for any vector v,

E [Ξ(t)] = Ξ(0)Stv (16)

with Sv = E [K⊗K]−1N2vT and Ξ(0) = (I− J)⊗(I− J).
By considering Eq. (16), it is straightforward to see that

E [Ξ(t)] converges to zero as t goes to infinity if there is a
vector v such that ρ(Sv) < 1. However, this condition is
only sufficient whereas the one derived from Eq. (11) is a
necessary and sufficient condition. As ρ(Sv) < 1 implies the
convergence of E [Ξ(t)] and as the convergence of E [Ξ(t)]
implies that ρ(R) < 1, one thus can state the following
Lemma:

Lemma 4. If there is a vector v such that
ρ
(
E [K⊗K]− 1N2vT

)
< 1, then ρ(R) < 1 .

One of the most important result in the paper lies in the
following Lemma in which we ensure that, under Assump-
tions (A1), (A2), and (B) there is a vector v such that
ρ
(
E [K⊗K]− 1N2vT

)
< 1 and thus ρ(R) < 1.

Lemma 5. If Assumptions (A1), (A2), (B) hold, there is a
vector v such that ρ

(
E [K⊗K]− 1N2vT

)
< 1.

Proof: Assumptions (A1), (A2), and (B) imply that
i) E[K ⊗K] is a non-negative matrix with a constant row

sum equal to one (because of the row-stochasticity).
According to Lemma 8.1.21 in [15], we have ρ(E[K ⊗
K]) = 1.

ii) E[K ⊗K] is a primitive matrix (see (B3) in Lemma 1)
which implies that there only is one eigenvalue of max-
imum modulus. This eigenvalue is thus equal to 1 and
associated with the eigenvector 1N2 .

By using the Jordan normal form and the simple multiplicity
of the maximum eigenvalue (equal to 1), we know that i) there
exists a vector v1 equal to the left eigenvector corresponding
to the eigenvalue 1, and ii) that the set of the eigenvalues
of E [K⊗K] − 1N2vT

1 = Sv1 are exactly the set of the
eigenvalues of E [K⊗K] without the maximum one equal
to 1. Indeed the maximum eigenvalue of E [K⊗K] has been
removed by the vector 1N2vT

1 and the associated eigenvector
now belongs to the kernel of Sv1

. As a consequence, the
modulus of the eigenvalues of Sv1 is strictly less than 1, i.e.,
ρ(Sv1) < 1.

Aggregating successively the results provided in Lemmas
5, 4, and 3 leads to the main result of this Section devoted
to the analysis of Ψ2(t). Indeed, Lemma 5 ensures that there
is a vector v such that ρ(Sv) < 1, then Lemma 4 states that
ρ(R) < 1. Then, Lemma 3 concludes the proof for the next
result.

Proposition 2. Under Assumptions (A1), (A2) and (B) holds,
then

E[Ψ2(t)] = O
(
tN−2e−κt

)
with κ = − log (ρ (R)) > 0.
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D. Final results

Thanks to the various intermediate Lemmas and Proposi-
tions provided above, we are now able to state the main The-
orems of the paper. The first one deals with the determination
of the necessary and sufficient conditions for Sum-Weight-like
algorithms to converge. The second one gives us an insight on
the decrease speed of the Squared Error (defined in Eq. (5)).
In the meanwhile, we need the following lemma:

Lemma 6. ‖x(t) − xave1N‖∞ = maxi |xi(t) − xave| is a
non-increasing sequence with respect to t.

Proof: One can remark that, at time t+ 1, we have

∀j, xj(t+ 1) =

∑N
i=1(K)i,jsi(t)∑N
i=1(K)i,jwi(t)

=

N∑
i=1

(
(K)i,jwi(t)∑N
`=1(K)`,jw`(t)

)
xi(t)

where K corresponds to any matrix in K. So xj(t + 1) is a
center of mass of {xi(t)}i=1,...,N . Therefore, ∀j ∈ {1, ..., N},

|xj(t+ 1)− xave| ≤
N∑
i=1

(
(K)i,jwi(t)∑N
`=1(K)`,jw`(t)

)
|xi(t)− xave|

≤max
i
|xi(t)− xave|.

1) Result on the convergence: Let us consider that Assump-
tion (B) does not hold. Thanks to (B1) in Lemma 1, this
is equivalent to ∃(k, l) ∈ N2 such that ∀T, P(T )k,l = 0.
Let us take x(0) equal to the canonical vector composed
by a 1 at the k-th position and 0 elsewhere. Then for any
t > 0, xl(t) = 0 which is different from xave = 1/N .
Consequently, the algorithm does not converge to the true
consensus for any initial measurement. So if the Sum-Weight
algorithm converges almost surely to the true consensus for
any initial vector x(0) then Assumption (B) holds.

Let us now assume that Assumption (B) holds. Using
Markov’s inequality along with Result 2, we have a finite K
such that for any δ > 0,∑

t>0

P [|Ψ2(t)| > δ] ≤ 1

δ

∑
t>0

E[|Ψ2(t)|]

≤ 1

δ
K
∑
t>0

tN−2e−κt <∞.

Consequently, Borel-Cantelli’s Lemma leads to the almost
sure convergence of Ψ2(t) to zero. In addition, the random
variables {τn}n>0 provided in the statement of Proposition 1
converge to infinity with probability one, hence Ψ2(τn) → 0
almost surely. Since Ψ1(τn) is bounded, Ψ1(τn)Ψ2(τn) →

n→∞
0 almost surely. According to Lemma 6, ‖x(t) − xave1N‖∞
is a nonincreasing nonnegative sequence verifying ‖x(t) −
xave1N‖∞ ≤ Ψ1(t)Ψ2(t), as there is converging subsequence
with limit 0, the sequence itself converges to the same limit
which implies the following theorem.

Theorem 1. Under Assumptions (A1) and (A2), x(t) con-
verges almost surely to the average consensus xave1N for
any x(0), if and only if Assumption (B) holds.

We have additional result on another type of convergence
for x(t). As ‖x(t)−xave1N‖∞ is a non-increasing sequence,
we have, for any t, ‖x(t)−xave1N‖∞ ≤ ‖x(0)−xave1N‖∞
which implies that x(t) is bounded for any t > 0. As a
consequence, according to [16], since x(t) also converges
almost surely to xave1N , we know that x(t) converges to
xave1N in Lp for any positive integer p. The convergence of
the mean squared error of x(t) thus corresponds to the case
p = 2.

Corollary 1. If x(t) converges almost surely to the average
consensus xave1N then the mean squared error (MSE) con-
verges to zero.

2) Result on the convergence speed: The next result on
the convergence speed corresponds to the main challenge and
novelty of the paper. Except in [13] for a very specific case
(cf. Section V-A for more details), our paper provides the first
general results about the theoretical convergence speed for the
squared error of the Sum-Weight like algorithms. For the sake
of this theorem we introduce the following notation: given
two sequences of random variables {Xn}n>0 and {Yn}n>0,
we will say that Xn = oa.s.(Yn) if Xn/Yn → 0 almost surely.

Theorem 2. Under Assumptions (A1), (A2), and (B), the
squared error (SE) is non-increasing. Furthermore, it is
bounded by an exponentially decreasing function as follows

SE(τn) = ‖x(τn)− xave1N‖22 = oa.s.
(
τNn e−κτn

)
with κ = − log (ρ (((I− J)⊗ (I− J))E [K⊗K])) > 0 and
τn =

∑n
i=1 ∆i as defined in Proposition 1.

This result tells us that the slope of log(SE(t)) is lower-
bounded by κ infinitely often which provides us a good insight
about the asymptotic behavior of x(t). Indeed, the squared
error will vanish exponentially and we have derived a lower
bound for this speed. We believe this result is new as it may
foretell any algorithm speed. The particular behavior of the
weights variables in this very general setting does not enable
us to provide a clearer result about the mean squared error;
however for some particular algorithms (e.g. single-variate
ones) this derivation is possible (see Section V for more
details). The authors would like to draw the reader’s attention
to the fact that the main contribution of the paper lies in the
exponential decrease constant κ.

Proof: To prove this result we will once more use the
decomposition of the squared error introduced in Eq. (6). We
know from Proposition 2 that E[t−NeκtΨ2(t)] = O(t−2). By
Markov’s inequality and Borel-Cantelli’s lemma,

t−NeκtΨ2(t) −−−→
t→∞

0 almost surely.

Composing with the {τn}n>0, we get

τ−Nn eκτnΨ2(τn) −−−−→
n→∞

0 almost surely.

Since ∃C,∀n > 0,Ψ1(τn) ≤ C, we get the claimed result.

IV. PROPOSED ALGORITHMS

In Subsection IV-A, we propose a new Sum-Weight-like
algorithm using the broadcast nature of the wireless channel
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which converges and offers remarkable performance. This
algorithm is hereafter called Broadcast-Weighted Gossip (BW-
Gossip). In Subsection IV-B, a new distributed management
of the nodes’ clocks which can improve averaging algorithms
is proposed. Finally, Subsection IV-C provides an extension
of this work to the distributed sum computation. For the sake
of clarity, we assume that the underlying graph is undirected
throughout this section.

A. BWGossip algorithm

Remarking i) that the broadcast nature of the wireless
channel was often not taken into account in the distributed
estimation algorithms (apart in [10] but this algorithm does
not converge to the average) and ii) that information propaga-
tion is much faster while broadcasting compared to pairwise
exchanges [17], we propose an algorithm taking into account
the broadcast nature of the wireless channel. At each global
clock tick, it simply consists in uniformly choosing a sensor
that broadcasts its pair of values in an appropriate way; then,
the receiving sensors add their received pair of values to
their current one. A more algorithmic formulation is presented
below.

Algorithm 1 BWGossip

When the sensor i wakes up (at global time t):
I The sensor i broadcasts

(
si(t)
|Ni|+1 ; wi(t)

|Ni|+1

)
I The sensors of the neighborhood Ni update :

∀j ∈ Ni,

{
sj(t+ 1) = sj(t) + si(t)

|Ni|+1

wj(t+ 1) = wj(t) + wi(t)
|Ni|+1

I The sensor i updates :

{
si(t+ 1) = si(t)

|Ni|+1

wi(t+ 1) = wi(t)
|Ni|+1

Let D = diag(d1, · · · , dN ) and L = D−A be the degree
matrix and the Laplacian matrix of the underlying graph [18].
According to this formulation, the update matrix Ki associated
with the action of the i-th sensor takes the following form

Ki = I− eieTi + eie
T
i

[
(I + D)−1 (A + I)

]
= I− eieTi (I + D)−1L (17)

with ei the i-th canonical vector. Clearly, the update matrices
satisfy the Assumptions (A1) and (A2).

Thanks to Eq. (17), we obtain that

E[K] = I− 1

N
(I + D)−1L

=
N − 1

N
I + (I + D)−1 (I + A) .

As all the involved matrices are non-negative, we have (I +
D)−1 (I + A) ≥ (I + A) /((dmax+1)N). As a consequence,
we have

E[K] ≥ 1

(dmax + 1)N
(I + A) ≥ 0.

Since A is the adjacency matrix of a connected graph,
∃m > 0, (I + A)m > 0. Hence, for the same m, E[K]m ≥
1/(dmaxN + N)m(I + A)m > 0, which implies that E[K]

is a primitive matrix. Applying Lemma 1 enables us to prove
that Assumption (B) also holds.

Hence, Theorem 1 states that the BWGossip algorithm con-
verges almost surely to the average consensus and Theorem 2
gives us an insight about the decrease speed of the squared
error.

B. Adaptation to smart clock management

So far, all the Poisson coefficients of the clocks were iden-
tical. This means that all sensors were waking up uniformly
and independently from their past actions. Intuitively, it would
be more logical that a sensor talking a lot became less active
during a long period.

Another advantage of the Sum-Weight algorithms is the
knowledge of how much a sensor talks compared to the others
which is a useful information. Actually, each sensor knows
whether it talks frequently or not (without additional cost)
through its own weight value because when a sensor talks, its
weight decreases and conversely when it receives information,
its weight increases. Therefore, our idea is to control the
Poisson coefficient of each sensor with respect to its weight.

We thus propose to consider the following rule for each
Poisson coefficient

∀i ∈ V, λi(t) = α+ (1− α)wi(t) (18)

where α ∈ (0, 1) is a tuning coefficient.
Notice that the global clock remains unchanged since ∀t >

0,
∑N
i=1 λi(t) = N . Keeping the global message exchange

rate unchanged, the clock rates of each sensor are improved.
The complexity of the algorithm is the same because the sensor
whose weight changes has just to launch a Poisson clock.

Even if the convergence and the convergence speed with
clock improvement have not been formally established, our
simulations with the BWGossip algorithm (see Fig. 2) show
that it seems to also converge exponentially to the average
more quickly if α is well chosen.

C. Distributed estimation of the sum

In some cases, distributively computing the sum of the
initial values is very interesting. For example, in the case of
signal detection, the Log Likelihood Ratio (LLR) of a set of
sensors is separable into the sum of the LLRs of the sensors.
Hence, in order to perform a signal detection test based on the
information of the whole network (using a Generalized LLR
Test for instance), every sensor needs to estimate the sum of
the LLRs computed by the sensors.

An estimate of the sum can be trivially obtained by multi-
plying the average estimate by the number of sensors which
might not be available at any sensor. Another interest of the
Sum-Weight scheme is that the initialization of the weights of
the sensors enables us to compute different functions related to
the average. Intuitively, as the sum of the s(t) and w(t) vectors
are conserved through time and the convergence to a consensus
is guaranteed by the assumptions on the update matrices,
we get that the sensors will converge to

∑
i si(0)/

∑
i wi(0).

This is obviously equal to the average 1/N
∑
i xi(0) with the

initialisation of Eq. (1).
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Now, if a sensor wants to trigger a estimation of the sum
through the network, it simply sets its weight to 1 and sends a
starting signal to the other nodes which set their weights to 0.
Mathematically, we then have the following initialization after
sensor i triggers the algorithm{

s(0) = x(0)
w(0) = ei

where ei is the i-th canonical vector. In this setting, all Sum-
Weight like algorithms converge exponentially to the sum of
the initial value as all the theorems of the paper hold with
only minor modifications in the proofs.

V. COMPARISON WITH EXISTING WORKS

In this section, we will show that our results extend the
works done previously in the literature. In Subsection V-A and
V-B, we compare our results with existing papers dealing with
the design and the analysis of the Sum-Weight like algorithms.
In Subsection V-C, we will observe that our results can even
be applied to the traditional framework of single-variate gossip
algorithms.

A. Comparison with Kempe’s work
In the Kempe’s work [13], the setup is quite different since

the sensors’ updates are synchronous, that is, at each time t, all
the sensors send and update their values. Another important
difference lies in the fact that the communication graph is
assumed to be complete and to offer self-loops, i.e., each
sensor can communicate with any other one, including itself.
The algorithm introduced in [13] is described in Algorithm 2.

Algorithm 2 Push-Sum Algorithm [13]

At each time t, every sensor i activates:
I The sensor i chooses uniformly a node ji(t) belonging

to its neighborhood (including itself)
I The sensor i sends the pair (si(t)/2;wi(t)/2) to ji(t)
I Let R be the set of sensors that sent information to

i. The sensor i updates:{
si(t+ 1) = si(t)/2 +

∑
r∈R sr(t)/2

wi(t+ 1) = wi(t)/2 +
∑
r∈R wr(t)/2

Consequently, at time t, the update matrix takes the follow-
ing form

K(t) =
1

2
I +

1

2

N∑
i=1

eie
T
ji(t)

(19)

where the index ji(t) is defined in Algorithm 2. Notice that the
first term of the right hand side corresponds to the information
kept by the sensor, while the second term corresponds to
the information sent to the chosen sensor. Moreover, as each
sensor selects uniformly its neighbor2 (including itself), we
obtain that

E[K] =
1

2
I +

1

2
J.

2as the graph is complete, this means, choosing one node uniformly in the
graph.

It is then easy to check that
- the (instantaneous) update matrices are non-negative and

row-stochastic. In addition, they are chosen uniformly in
a set of size NN .

- the (instantaneous) update matrices have a strictly posi-
tive diagonal.

- E[K] > 0, thus E[K] is a primitive matrix.
This proves that the Kempe’s algorithm satisfies the assump-
tions (A1), (A2) and (B), and so it converges almost surely to
the average consensus (which was also proven in [13]).

Let us now focus on the convergence speed of the Kempe’s
algorithm. We remind that the convergence speed is driven
by Ψ2(t) (denoted by Φt in [13]). As this algorithm is
synchronous and only applies on a complete communi-
cation graph, it is simple to obtain a recursion between
E[Ψ2(t)|Ψ2(t−1)] and Ψ2(t−1). Indeed, the approach given
in the footnote of Section III-C can be applied. More precisely,
the corresponding matrix M = (I− J)E[KKT] (I− J) is
given in closed-form as (see Appendix B-A for details)

M = (I− J)E[KKT] (I− J) =

(
1

2
− 1

4N

)
(I− J) , (20)

and then one can easily check 3 that

E[Ψ2(t)|Ψ2(t− 1)] =

(
1

2
− 1

4N

)
Ψ2(t− 1). (21)

Moreover, thanks to Eq. (20), we have that ρ(M) =
(1/2− 1/(4N)) < 1 and thus the inequality in the above-
mentioned footnote has been replaced with an equality and
the spectral radius of M is less than 1. Therefore, the true
convergence speed is provided by ρ(M). Comparing this
previous convergence speed (obtained very easily in [13])
with the convergence speed bounds obtained in our paper
is of great interest and will be done below. First of all
we remind (see the footnote in Section III-C) that in the
general case treated in our paper, it is impossible to find a
recursion similar to Eq. (21) which justifies our alternative
approach. Secondly, following the general alternative approach
developed in this paper, we know that the matrix of interest
is R = ((I− J)⊗ (I− J))E [K⊗K] (see Proposition 2).
After some computations (a detailed proof is available in
Appendix B-B), we have that

R =
1

4
(I− J)⊗ (I− J) +

N − 1

4N
vvT (22)

with v = (1/
√
N − 1) (u− (1/N)1N2) and u =

∑N
i=1 ei ⊗

ei.
Consequently, R is a linear combination of two following

orthogonal projections:
• the first projection, generated by (I− J)⊗ (I− J), is of

rank N2 − 2N + 1,
• the second projection, generated by vvT, is of rank 1.
As (I− J) ⊗ (I− J) and vvT are orthogonal projections,

the vector space RN
2

(on which the matrix R is operating)
can be decomposed into a direct sum of four subspaces:

3Note that there is a typo in Lemma 2.3 of [13]. Indeed, the coefficient is
(1/2− 1/(2N)) in [13] instead of (1/2− 1/(4N)).
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• S0 = Im(vvT) ∩ Ker ((I− J)⊗ (I− J))
• S1 = Im(vvT) ∩ Im ((I− J)⊗ (I− J))
• S2 = Ker(vvT) ∩ Im ((I− J)⊗ (I− J))
• S3 = Ker(vvT) ∩ Ker ((I− J)⊗ (I− J))

As ((I− J)⊗ (I− J)) v = v (see Appendix B-B), we have
S0 = {0}.

Moreover, according to Eq. (22), we obtain that

Rx =


(
1
2 −

1
4N

)
x ∀x ∈ S1

1
4x ∀x ∈ S2
0 ∀x ∈ S3

As a consequence, the non-null eigenvalues of R are 1/4 and
(1/2 − 1/(4N)) which implies that ρ (R) = 1/2 − 1/(4N).
Hence, the convergence speed bound obtained by our general
alternative approach developed in this paper provides the true
convergence speed for the Kempe’s algorithm [13].

B. Comparison with Bénézit’s algorithm

In [8], it has been shown that doing a multi-hop communi-
cation between sensors provides significant performance gain.
However, the proposed algorithm relied on a single-variate
algorithm. In order to ensure the convergence of this algorithm,
the double-stochasticity of the matrix update is necessary
which implies a feedback along the route. The feedback can
suffer from link failure (due to high mobility in wireless
networks). To counter-act this issue, Bénézit proposes to get
rid of the feedback by using the Sum-Weight approach [14].
In this paper, the authors established a general convergence
theorem close to ours. In contrast, they did not provide any
result about convergence speed. It is worth noting that our
convergence speed results can apply to the Bénézit’s algorithm.

C. Comparison with the single-variate algorithms

If the following additional assumption holds,
(A3) The matrices of K are column-stochastic,

one can easily show that all the weights w(t) remain constant
and equal to 1N , i.e.,

∀t > 0, w(t)T = w(0)TP(t) = 1T
NP(t) = 1T

N

and x(t) = s(t) = K(t)Tx(t− 1).

Therefore, the single-variate algorithms ([19]) with double-
stochastic update matrices such as the Random Gossip [6],
[5], the Geographic Gossip [7] can surprisingly be cast into
the Sum-Weight framework. Moreover as Ψ1(t) = ‖x(0)‖22
because all the weights stay equal to 1, the proposed results
about Ψ2(t) (that is Section III-C) can be applied directly to
the squared error for these algorithms.

Let us re-interpret the work of Boyd et al. [5] (espe-
cially their section 2) in the light of our results. In [5],
it is stated that under doubly-stochastic update matrices
K(t), the mean squared error at time t is dominated by
ρ
(
E[KKT]− (1/N)1N1T

N

)t
and converges to 0 when t goes

to infinity if

ρ

(
E[K]− 1

N
1N1T

N

)
< 1. (23)

Since K(t) is doubly-stochastic, one can remark that
(I− J)E

[
KKT

]
(I− J) = E

[
KKT

]
− (1/N)1N1T

N . By
following the approach developed in the footnote of Sec-
tion III-C, we obtained directly the domination proven in [5].
Moreover, the condition corresponding to Eq. (23) actually im-
plies Assumption (B). Indeed, due to Eq. (23) and the double-
stochasticity of K(t), one can remark that the maximum
eigenvalue of E[K] is unique and equal to 1. Consequently,
E[K] is primitive, and thus Assumption (B) holds (see Lemma
1). Furthermore, in [5] (see section II-B) , it is stated that
the condition corresponding to Eq. (23) is only a sufficient
condition and that the necessary and sufficient condition is
the following one

ρ

(
E[K⊗K]− 1

N
1N21T

N2

)
< 1 (24)

which is exactly the same expression as that in Lem-
mas 4 and 54. Along with the reasoning detailed in Sec-
tion III-D1, these two lemmas prove that under assumptions
(A1) and (A2), the condition corresponding to Eq. (24) is
eventually necessary and sufficient when assumption (A3) is
also satisfied.

Moreover, according to Eq. (19) (in [5]) and Eq. (16)
(in our paper), we know that the mean squared er-
ror at time t is upper bounded by −κ′t with κ′ =
− log(ρ

(
E[K⊗K]− (1/N)1N21T

N2

)
) > 0. However, as

stated in Proposition 2, the logarithm of the squared error
scales with −κt. Though these two spectral radii are less 1 and
so ensure the convergence, ρ ((I− J)⊗ (I− J)E [K⊗K])
(i.e. e−κ) exhibited in our paper is in general smaller than
ρ
(
E[K⊗K]− (1/N)1N21T

N2

)
(i.e. e−κ

′
) introduced in [5].

This accounts for our approach when analyzing convergence
speed of gossip algorithms. Numerical illustrations related to
this statement are displayed on Fig. 4.

VI. NUMERICAL RESULTS

In order to investigate the performance of distributed aver-
aging algorithms over Wireless Sensor Networks, the use of
Random Geometric Graphs (RGG) is commonly advocated.
These graphs consist in uniformly placing N points in the
unit square (representing the vertices of the future graph)
then connecting those which are closer than a predefined
distance r. A choice of r of the form

√
r0 log(N)/N with

r0 ∈ [1, .., 10] ensures connectedness with high probability
when N becomes large and avoids complete graphs (see [20]
for more details). In the following, we consider the mean
squared error MSE(t) , E[‖x(t) − xave1‖22] as an indicator
of the performance of an algorithm.

In Fig. 1, we plot the empirical mean squared error versus
time for different gossip algorithms: i) the Random Gossip
[6] which is the reference algorithm in the literature; ii) the
Broadcast Gossip introduced in [10] which uses the broad-
casting abilities of the wireless channel but does not converge
to the average; iii) the algorithm introduced by Franceschelli

4Indeed, as the vector v used in our formulation can be replaced with
the left eigenvector corresponding to the eigenvalue 1 (see the proof of
Lemma 5 for more details) which is proportional to 1N here due to the
double-stochasticity of the update matrices
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in [12] which uses a bivariate scheme and seems to converge
(no convergence proof is provided in the paper); and iv) the
proposed BWGossip algorithm. A Random Geometric Graphs
with N = 100 sensors and r0 = 4 has been considered.
We remark that the BWGossip algorithm outperforms the
existing algorithms without adding routing or any other kind
of complexity.

In Fig. 2, we plot the empirical mean squared error for the
BWGossip algorithm versus time with different clock tuning
coefficients (see IV-B and Eq. (18) for more details). Com-
pared to the algorithm without clock management (α = 1), the
convergence is much faster at the beginning with α = 0 but
the asymptotic rate is lower; with α = 0.5, the performance
is better than the BWGossip for any time.

In Fig. 3, we display the empirical convergence slope5

and the associated lower-bound κ derived in Theorem 2 for
the BWGossip algorithm versus the number of sensors N .
Different Random Geometric Graphs with r0 = 4 have been
considered. We observe a very good agreement between the
empirical slope and the proposed lower bound. Consequently,
our bound is very tight.

In Fig. 4, we display the empirical convergence slope, the
associated lower-bound κ, and the bound given in [5] for the
Random Gossip algorithm versus the number of sensors N .
The proposed bound κ seems to fit much better than the one
proposed in [5]. Actually, the proposed bound matches very
well the empirical slope (see Section V-C for more details).

Thanks to Fig. 5, we inspect the influence of link failures
in the underlying communication graph on the BWGossip
algorithm. We consider a Random Geographic Graph with
10 sensors and r0 = 1 onto which i.i.d. link failure events
appear with probability pe. In Fig. 5a, we plot the empirical
mean squared error of the BWGossip versus time for different
values of the edge failure probability pe. As expected, we
observe that the higher pe the slower the convergence but the
MSE still exponentially decreases. Then, in Fig. 5b, we plot
the empirical convergence slope and the associated bound κ
for different link failure probabilities. Here, κ is computed
according to a modified matrix set taking into account the
link failures through different update matrices. We remark a
very good fitting between our lower bound and the simulated
results. Consequently, computing κ on the matrix set including
the link failures enables us to predict very well the convergence
speed in this context.

VII. CONCLUSION

In this paper, we have analyzed the convergence of the Sum-
Weight-like algorithms (relying on two variables rather than
one) for distributed averaging in a Wireless Sensor Network.
We especially give a very precise insight on the convergence
speed of the squared error for such algorithms. In addition,
we proposed a particular Sum-Weight-like algorithm taking
full advantage of the broadcast nature of the wireless channel.

5this slope has been obtained by linear regression on the logarithm of the
empirical mean squared error. This regression makes sense since, for inspected
algorithms, the mean squared error in log scale is almost linear for t large
enough as seen in Fig. 1.

We observed that this algorithm significantly outperforms the
existing ones.

APPENDIX A
PROOF OF LEMMA 1

(B) ⇒ (B1) Let denote by K(u,v) a matrix of K whose
(u, v)-th coefficient is positive. As the graph associated with
E [K] is strongly connected, then for all couples of nodes
(i, j), there is a path of finite length Lij < N from i to j:
(i = u1, ..., uLij = j). Consequently, the matrix Ki→j =

K(u1,u2)K(u2,u3)...K(uLij−1,uLij
) verifies: (Ki→j)i,j > 0

which gives us a realization of P(Lij) verifying (P(Lij))i,j >
0.
(B1) ⇒ (B2) Let us take L =

∑N
i,j=1 Lij < 2N2. Since each

matrix has a positive diagonal according to Assumption (A2)
then

∏N
i,j=1 Ki→j is a possible realization of P(L) of strictly

positive probability which is a positive matrix.
(B2) ⇒ (B3) If there is a L < 2N2 and a realization p of
P(L) so that P[P(L) = p] > 0 and p > 0, then p⊗p is also
positive. Since (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) for any
matrices A,B,C,D with the appropriate dimensions,

(E [K⊗K])
L

=

(
M∑
i=1

piKi ⊗Ki

)L
≥ P[P(L) = p]p⊗p > 0.

Hence, E[K⊗K] is a primitive matrix.
(B3)⇒ (B) First, we will calculate E [K]⊗E [K] with respect
to E [K⊗K]. So,

E [K]⊗ E [K] =

M∑
i=1

M∑
j=1

pipjKi ⊗Kj

≥
M∑
i=1

p2iKi ⊗Ki ≥ (min
j

pj)

M∑
i=1

piKi ⊗Ki

= (min
j

pj)E [K⊗K]

Hence as it exists k such that (E [K⊗K])
k
> 0, then

(E [K])
k
> 0 so the primitivity of E [K] is proven.

APPENDIX B
DERIVATIONS RELATED TO SECTION V

A. Derivations for Eq. (20)

According to Eq. (19), we have easily that

K(t)K(t)T =
1

4
I +

1

4

N∑
i=1

eie
T
ji(t)

+
1

4

N∑
i=1

eji(t)e
T
i

+
1

4

N∑
i=1

N∑
i′=1

eie
T
ji(t)

eji′ (t)e
T
i′

By remarking that eTj ej = 1, we have

K(t)K(t)T =
1

2
I +

1

4

N∑
i=1

eie
T
ji(t)

+
1

4

N∑
i=1

eji(t)e
T
i

+
1

4

N∑
i=1

N∑
i′=1
i′ 6=i

eie
T
ji(t)

eji′ (t)e
T
i′
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The randomness in K(t)K(t)T is only due to the choice of
the nodes ji(t) for i = {1, · · · , N}. Therefore, each ji(t) will
be modeled by a random variable `(i) (independent of t). The
random variables {`(i)}i=1,··· ,N are i.i.d. and are uniformly
distributed over {1, · · · , N}. As a consequence, we obtain

E[KKT] =
1

2
I+

1

4

N∑
i=1

ei

(
1

N

N∑
k=1

eTk

)
+

1

4

N∑
i=1

(
1

N

N∑
k=1

ek

)
eTi

+
1

4

N∑
i=1

N∑
i′=1
i′ 6=i

ei

 1

N2

N∑
k,k′=1

eTk ek′

 eTi′

By remarking that eTk ek′ = 0 as soon as k 6= k′, we have∑N
k,k′=1 e

T
k ek′ = N . Furthermore,

as
N∑
k=1

ek = 1N and
N∑
i=1

N∑
i′=1
i′ 6=i

eie
T
i′ = 1N1T

N − I

we obtain E[KKT] =

(
1

2
− 1

4N

)
I +

3

4
J

It is then straightforward to obtain Eq. (20).

B. Derivations for Eq. (22)

Once again, according to Eq. (19), we have directly that

K(t)⊗K(t) =
1

4
I⊗ I +

1

4

(
N∑
i=1

eie
T
ji(t)

)
⊗ I (25)

+
1

4
I⊗

(
N∑
i=1

eie
T
ji(t)

)
+

1

4

(
N∑
i=1

eie
T
ji(t)

)
⊗

(
N∑
i′=1

ei′e
T
ji′ (t)

)
︸ ︷︷ ︸

, ξ

Using the same technique as in Appendix B-A , we obtain
that

E

[
N∑
i=1

eie
T
ji(t)

]
=

N∑
i=1

ei

(
1

N

N∑
k=1

ek

)
= J (26)

Thus, it just remains to evaluate E[ξ]. Let us first remark that

ξ =

N∑
i=1

N∑
i′=1
i′ 6=i

eie
T
ji(t)
⊗ ei′eTji′ (t) +

N∑
i=1

eie
T
ji(t)
⊗ eieTji(t)

As a consequence, we have

E[ξ] =
1

N2

N∑
i=1

N∑
i′=1
i′ 6=i

N∑
k=1

N∑
k′=1

eie
T
k ⊗ ei′eTk′

+
1

N

N∑
i=1

N∑
k=1

eie
T
k ⊗ eieTk

=
1

N2

N∑
i=1

N∑
i′=1

N∑
k=1

N∑
k′=1

eie
T
k ⊗ ei′eTk′

+
1

N

N∑
i=1

N∑
k=1

eie
T
k ⊗ eieTk −

1

N2

N∑
i=1

N∑
k=1

N∑
k′=1

eie
T
k ⊗ eieTk′

Using the well-known result on Kronecker product ( (AB)⊗
(CD) = (A ⊗ C)(B ⊗D) for four matrices A, B, C, and
D with appropriate sizes), we have

E[ξ] = J⊗ J +
1

N
uuT − 1

N2
u1T

N2 . (27)

Putting Eqs. (26)-(27) into Eq. (25), we get

4E [K⊗K] = I⊗I+J⊗I+I⊗J+J⊗J+
1

N
uuT− 1

N2
u1T

N2 .

Before going further, let us remark that

((I− J)⊗ (I− J)) u

=

N∑
i=1

(ei −
1

N
1N1T

Nei)⊗ (ei −
1

N
1N1T

Nei) (28)

=

N∑
i=1

ei ⊗ ei −
N∑
i=1

(ei ⊗
1

N
1N )

−
N∑
i=1

(
1

N
1N ⊗ ei) +

1

N2

N∑
i=1

1N ⊗ 1N (29)

= u− 1

N
1N2 . (30)

As a consequence, we have

R = ((I− J)⊗ (I− J))E [K⊗K]

=
1

4
(I− J)⊗ (I− J) +

1

4N

(
u− 1

N
1N2

)
uT

− 1

4N2

(
u− 1

N
1N2

)
1T
N2

=
1

4
(I− J)⊗ (I− J) +

1

4N
uuT − 1

4N2
1N2uT

− 1

4N2
u1T

N2 +
1

4N
J⊗ J

Let us remind v = 1√
N−1

(
u− 1

N 1N2

)
. Thanks to Eq. (30),

we have

vvT =
1

N − 1

(
uuT − 1

N
1N2uT − 1

N
u1T

N2 + J⊗ J

)
which straightforwardly leads to Eq. (22).

In addition, note that using Eq. (30), we have
((I− J)⊗ (I− J)) v = v.
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Fig. 1: Mean squared error of the BWGossip and other famous
algorithms versus time.
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Fig. 2: Mean squared error of the BWGossip versus time for
different clock management schemes.
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Fig. 3: Empirical convergence slope of the BWGossip and the
associated lower bound κ.
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Fig. 4: Empirical convergence slope of the Random Gossip,
the associated lower bound κ, and the bound given in [5].
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Fig. 5: BWGossip analysis in the presence of link failures.
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