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Abstract— Consider the problem of distributed optimization
where a network of N agents cooperate to solve a minimization
problem of the form infx

∑N
n=1 fn(x) where function fn is

convex and known only by agent n. The Alternating Direction
Method of Multipliers (ADMM) has shown to be particularly
efficient to solve this kind of problem. In this paper, we assume
that there exists a unique minimum x? and that the functions fn
are twice differentiable at x? and verify

∑N
n=1 ∇

2fn(x?) > 0
where the inequality is taken in the positive definite ordering.
Under these assumptions, we prove the linear convergence of
the distributed ADMM to the consensus over x? and derive
a tight convergence rate. Finally, we give examples where one
can derive the ADMM hyper-parameter ρ corresponding to the
optimal rate.

Index Terms— Distributed optimization, Consensus algo-
rithms, Alternating Direction Method of Multipliers.

I. INTRODUCTION

The problem of distributed optimization arises in a large
variety of applications ranging from learning in massive
datasets distributed over distant machines [1], [2], to resource
allocation in communicating networks [3], [4], or statistical
estimation by sensor networks [5], [6].

Consider a group of N agents seeking to solve a dis-
tributed optimization problem. Each agent n has a private
convex function fn : RK → R , R∪{+∞} where K ∈ N∗
is the dimension of the sensors’ variables space. The goal of
these agents is to solve

inf
x∈RK

N∑
n=1

fn(x) (1)

in a distributed fashion. This means that the agents update
a local estimate belonging to the parameter space RK ac-
cording to their own private function and the information
it received from some other agents. The global objective is
then that every sensor converges to a common value (we say
that they reach consensus) which is a solution of the above
problem if any.

The above mentioned computation is thus composed of
two different parts: the local updates performed by the
sensors using their functions and the communications be-
tween the agents to reach an agreement. It is thus usual
in distributed optimization to minimize the sum of two
functions, one depending on the agents cost functions and
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the other encompassing the communications between them,
by using splitting methods [7]. Recently, the Alternating
Direction Method of Multipliers (ADMM), popularized by
the monograph [8], was shown to be particularly suited for
distributed implementation of Problem (1) [9].

In this paper, we assume that the infimum of our problem
is attained at a point x? ∈ RK and that each agent
function are twice differentiable at this point, and finally
that

∑N
n=1∇2fn(x?) > 0 where the inequality is taken in

the positive definite ordering. Under these assumptions, we
show the linear (exponential) convergence of a distributed
optimization algorithm based on the ADMM and, most
importantly, we explicitly provide the rate of convergence.
This result enables us to evaluate the impact of the ADMM
hyper-parameter as well as the effects of the communication
network.

In the literature, the convergence speed of the ADMM
was recently shown to be O(1/k) when the objective func-
tions are not necessarily smooth [10]–[14]. In the case
where the function are strongly convex and have a Lip-
schitz continuous gradient, the linear convergence of the
ADMM and some ADMM-based distributed optimization
algorithms were proven in [15]–[19] and upper bounds on
the convergence rate were given. [20] proved the linear
convergence of ADMM-based distributed optimization under
lighter assumptions but only when the step-size is small
enough and no explicit rate was provided. The aim of this
paper is thus i) to prove the linear convergence of an ADMM-
based distributed optimization algorithm for any positive
step-size, and ii) to obtain a tight asymptotic convergence
rate.

First, we will state our assumptions and derive a dis-
tributed optimization algorithm based on the ADMM in
Section II. Then, in Section III, we will state our main result
about the linear convergence rate of the previously derived
algorithm. Finally, in Section V, we will give examples of
instances of the considered algorithm over some particular
communication graphs. When possible, we will provide sim-
ple closed form expression of our theoretical rate with respect
to the ADMM step size ρ and the second-order derivatives of
the agents functions. We will also give numerical simulations
of the convergence rate along with our bound.

II. ALGORITHM AND ASSUMPTIONS

A. Assumptions about the agents functions

We note Γ0(RK) the set of proper lower semi-continuous
convex RK −→ R functions [21, Chapter 9]. We will assume
that the agents functions verify the following properties.



Assumption 1 For any n = 1, ..., N , fn ∈ Γ0(RK).

Assumption 2 The infimum of the problem (1) is attained at
a point x?. Furthermore, at x?, the functions {fn}n=1,...,N

are twice differentiable and satisfy
N∑
n=1

∇2fn(x?) > 0.

We remark that these assumptions imply that the problem
minimizer x? is unique. Please note that, contrary to most
papers of the literature, the agents functions are not required
to be strictly nor strongly convex. Moreover, no assumption
is made towards the gradients of these functions. We only
require two-fold differentiability for the agents functions and
strong convexity for

∑N
n=1 fn at a local level.

B. Problem Reformulation

Now, we reformulate Problem (1) using the idea of [9]
in order to take into account the network. We start by
introducing some simple mathematical objects along with
some notations.

First, we give each agent n = 1, ..., N a variable x(n) ∈
RK (which increases the dimensionality of our problem) and
note x = (x(1), . . . , x(N)). We define

f : RNK −→ R
x 7−→ f(x) =

∑N
n=1 fn(x(n))

Given any positive integer L, let A1, . . . , AL be a col-
lection of subsets of {1, ..., N} so that for all ` = 1, ..., L
the cardinality of A` verifies |A`| > 1 and we note A` =
(a`,n)n=1,..,|A`|. The idea of [9] is to ensure consensus
over each of these subsets. Let us define for every ` =
1, ..., L, z(`) = (z(`)(a`,n))n=1,..,|A`| ∈ R|A`|K and z =

(z(1), ..., z(L)) ∈ RTK with T =
∑L
`=1 |A`|. For every

subset A`, we define C|A`| as the linear subspace of R|A`|K
whose elements z(`) verify z(`)(a`,1) = z(`)(a`,2) = · · · =
z(`)(a`,|A`|). We define

g : RTK −→ R
z = (z(1), . . . , z(L)) 7−→ g(z) =

∑L
1 ıC|A`|(z

(`))

where ıC is the indicator function of set C, defined to be
equal to zero on C and to ∞ outside this set.

Now, for any subset A`, we define SA` as the |A`| ×
N selection matrix (its entries are zeros except for one 1
per row), the i-th row non-null coefficient being in column
j = a`,i. This way, for all x ∈ RNK , we have (SA` ⊗
IK)x = (x(n))n∈A` where ‘⊗’ stands for the Kronecker
product. Finally, we define M as the TK×NK matrix such
that

M =

SA1

...
SAL


︸ ︷︷ ︸

,S

⊗IK .

We will now consider the following problem

inf
x∈RNK

f(x) + g(Mx). (2)

Let us define the graph G of the relations between the
subsets as G = ({1, . . . , L}, E) where {1, . . . , L} are the
vertices/subsets and E is the set of the bidirectional links
between the subsets. More precisely, {`,m} ∈ E if A` ∩
Am 6= ∅. Then, with the natural assumption

Assumption 3 The following facts hold true:
i)
⋃L
`=1A` = {1, ..., N};

ii) The graph G is connected.

we immediately get the next result with the notation 1N
standing for the size-N vector of ones.

Lemma 1 Under Assumption 3, x? is a minimizer of Prob-
lem (1) if and only if (x?, . . . , x?) = 1N ⊗ x? , x? is a
minimizer of Problem (2).

C. The distributed ADMM algorithm

We now recall the ADMM and derive a distributed opti-
mization algorithm by applying it to Problem (2).

The ADMM is well suited for solving convex optimization
problems of the form

inf
Mx=z

f(x) + g(z),

by alternately minimizing the augmented Lagrangian of the
problem which is the function Lρ : RNK×RTK×RTK → R
defined as

Lρ(x, z, λ) = f(x) + g(z) + 〈λ,Mx− z〉+
ρ

2
‖Mx− z‖2

where ρ > 0 is a free parameter. The ADMM then simply
consists in a alternated minimization of the Lagrangian
followed by a dual gradient ascent:

xk+1 = argmin
x∈RNK

Lρ(x, zk;λk) (3a)

zk+1 = argmin
z∈RTK

Lρ(xk+1, z;λk) (3b)

λk+1 = λk + ρ(Mxk+1 − zk+1). (3c)

The convergence of this algorithm under suitable assump-
tion is stated in the following theorem. Proofs of this result
can be found in [8, Chap. 3.2 and App. A], or in [22] with
the use of monotone operators theory.

Theorem 1 Under Assumptions 1 to 3, the sequence
{xk}k>0 generated by (3) converges to (x?, . . . , x?) = x?
where x? is the solution of Problem (1).

Now, we apply the iterations of Equation (3) to Problem
(2). One can see from the definition of f and Lρ that
the updates in the variable x can be done agent by agent
depending only on its own functions and on variables related
to the subsets (also called blocks) in which it takes part; for
agent n we denote by σ(n) = {m : n ∈ Am} the set of the
blocks it takes part in. We can also remark that the second
step can be decomposed subset by subset and in each subset
`, this step enforces a consensus around a value z̄(`)

k+1. The
last step can be done independently by each sensor and each
subset, we will use the same notation for λ as for z. Finally,
after some manipulations (a more detailed treatment can be



found in [8], [23], or [9]), we get the algorithm in the box
below.

Distributed Optimization using the ADMM
At iteration k + 1:
I Every agent n = 1, ..., N compute

xk+1(n)=argmin
w∈RK

{
fn(w)+

∑
m∈σ(n)〈λ

(m)
k (n),w〉+ ρ

2 ‖w−z̄
(m)
k ‖2

}
(4)

I For each ` = 1, ..., L, the agents of A` compute the
average of the newly computed variables

z̄
(`)
k+1 =

1

|A`|
∑
n∈A`

xk+1(n) (5)

I Every agent n = 1, ..., N computes for each block m ∈
σ(n)

λ
(`)
k+1(n) = λ

(`)
k (n) + ρ(xk+1(n)− z̄(`)

k+1) (6)

As we can see in the iterations of the box, this algorithm
requires that the subsets compute averages. So, the agents
of a same subset must be connected by some underlying
communication network. This algorithm is thus distributed
in the sense that only local communications with the agents
of the same subset(s) are required at each iteration. In
Section V, we will see examples of subsets design and
associated algorithms.

We will now investigate the speed of this instance of the
ADMM. Indeed, as in [16], [19], we investigate a particular
algorithm which makes our results and proof techniques
different from the literature.

III. MAIN RESULT

We now state the main result of this paper after some
other definitions. For any positive integer d, we note Jd =
1/d1d1

∗
d and then, the orthogonal projection matrix to con-

sensus in subset A`, C|A`|, is Π|A`| = J|A`|⊗IK . We define
P as the TK × TK orthogonal projection matrix such that

P =

J|A1|
. . .

J|AL|

⊗ IK .
We also define the TK × TK matrix

Q = ρM


∇

2f1(x?)
. . .

∇2fN (x?)

+ ρM∗M


−1

M∗

= ρM
(
∇2f(1N ⊗ x?) + ρM∗M

)−1
M∗ (7)

Finally, we denote by span(·) and by r(·) the column
space and the spectral radius of a matrix respectively.

Theorem 2 Let Assumptions 1 to 3 hold true. Then the
following facts hold true:

i) α = r((Πspan(P+Q) − P −Q)(I − 2P )) < 1 where
Πspan(P+Q) is the orthogonal projection matrix on
span(P +Q);

ii) For any initial value (z0, λ0) of the Distributed Opti-
mization using the ADMM, one has

lim sup
k→∞

1

k
log ‖xk − x?‖ ≤ logα;

This theorem states that when running Distributed Op-
timization using the ADMM under assumptions 1 to 3,
the error between the iterates {xk}k>0 and the searched
optimum x? decreases exponentially. It also provides an
upper-bound α on the convergence rate which will be showed
to be tight in the numerical illustrations.

IV. PROOF OF THEOREM 2
As advocated in [22] (or more recently in [23]), monotone

operators are particularly suited for the analysis of convex
optimization algorithms including the ADMM. In our con-
text, this advocates to see our minimization problem as a
fixed-point problem on ζ = λ+ρz. Note that there is a one-
to-one correspondence between ζ and the couple (λ, z) as
z = 1/ρPζ and λ = (I − P )ζ.

We will thus consider the recursion between ζk+1 and ζk.
More precisely, we will show that this relation is linear in
the quadratic case, which will enable us to derive a tight
asymptotic decrease speed by spectral analysis. Then, as
we focus on asymptotic speed, we will deal with the non-
quadratic case by a Taylor expansion around the sought
minimum.

A. Recursion in the quadratic case

Using Fermat’s rule [21, Chap. 26-27], one can derive
that the first update of the k-th iteration of Distributed
Optimization using the ADMM is obtained by solving

0 ∈ ρM∗(Mxk+1 − zk) + ∂f(xk+1) +M∗λk.

In the quadratic case, ∂f(x) = ∇f(x) = ∇2f(x?)x + c
with c = ∇2f(x?)x? thus

0 = ρM∗Mxk+1 +∇2f(x?)xk+1 + c+M∗(λk − ρzk)

xk+1 = −H−1M∗(λk − ρzk)−H−1c

= −H−1M∗(I − 2P )ζk −H−1c (8)

where H = ρM∗M + ∇2f(x?) is a symmetric positive
definite (thus invertible) matrix. Indeed, M∗M = (S∗S) ⊗
IK > 0 as it is diagonal from the fact that S is a selection
matrix and (S∗S)i,i > 0 from Assumption 3ii. Furthermore,
∇2f(x?) ≥ 0 as f is convex from Assumption 1.

Now, as we can see in Eq. (6), ζk+1 = λk+1 + ρzk+1 =
λk + ρMxk+1 so we have

ζk+1 = λk + ρMxk+1

= (I − P )ζk − ρMH−1M∗(I − 2P )ζk − ρMH−1c

= (I − P − ρMH−1M∗)(I − 2P )ζk − ρMH−1c

= (I − P −Q)(I − 2P )ζk − ρMH−1c

as (I−P )(I−2P ) = I−P . Taking R = (I−(P +Q))(I−
2P ) and d = −ρMH−1c, we have to study the fixed points
of the transformation

ζk+1 = Rζk + d. (9)



We know from [24] that under Assumptions 1 to 3 such a
fixed point exists and that the sequence {ζk}k>0 converges
to this fixed point ζ̄ = λ̄+ρz̄. Finally, x̄ obtained by Eq. (8)
is necessarily equal to x?.

Hence, for any fixed point ζ̄ of (9), we get

ζk − ζ̄ = R(ζk−1 − ζ̄) = ... = Rk(ζ0 − ζ̄) (10)

and thus

xk+1 − x? = −H−1M∗(I − 2P )(ζk − ζ̄)

= −H−1M∗(I − 2P )Rk(ζ0 − ζ̄). (11)

Let us now analyze the properties of recursion matrix R.

B. Analysis of the recursion matrix R

In this part, we will i) prove that the spectral radius of R
is less or equal to 1, with 1 the only possible eigenvalue of
modulus 1; ii) characterize this stable space; and iii) show
that H−1M∗(I − 2P )Rk vanishes exponentially.

B i) We have r(R) ≤ ‖R‖ = ‖I − P − Q‖ as I − 2P
is a reflexion. For any w ∈ RTK , we have |w∗(I − P )w −
w∗Qw| ≤ ‖w‖2 thus all the eigenvalues of (I −P −Q) are
lower than 1 in absolute value, hence its singular values are
lower than 1 and so r(R) ≤ ‖I − P −Q‖ ≤ 1.
Let eiθ θ ∈ [0, 2π[ be an eigenvalue of R and w be an
associated eigenvector. We have ‖Rw‖ = 1 so w∗(I −
2P )(I −P −Q)2(I − 2P )w = 1 so w′ = (I − 2P )w verify
w′∗(I−P−Q)2w′ = 1. w′ can thus be decomposed as u+v
where u (resp. v) is an eigenvector of (I−P−Q) associated
to eigenvalue 1 (resp. −1) as it is a real symmetric matrix.
We obviously have u∗Pu+u∗Qu = 0 hence, as P and U are
positive semi-definite, Pu = Qu = 0. By the same argument,
one can have that Pv = Qv = v . Then, Rw = eiθw
corresponds to (I − P − Q)(u + v) = eiθ(I − 2P )(u + v)
so u− v = eiθ(u− v) which means that eiθ = 1.
So, the spectral radius of R is at most 1 and the only possible
eigenvalue with this modulus is 1.

B ii) Let us denote by N the eigenspace of R correspond-
ing to eigenvalue 1. Let w ∈ N , we have from above that
w = (I− 2P )w′ = u− v. Let us now remark that according
to the first point, Pv = Qv = v so v belong to the span of
P and the span of Q so v = a1TK for some a ∈ R. Then,
as Pv = Qv = v, v = 0.
This mean that w = u, which verifies Pu = Qu = 0,
thus N ⊂ ker(P ) ∩ ker(Q) = ker(P + Q). The converse
is obviously true so we have N = ker(P +Q).
Finally, defining ΠN as the orthogonal projection to N , we
have R − ΠN = (Πspan(Q+P ) − (P + Q))(I − 2P ) with
Πspan(Q+P ) the orthogonal projection to the span of P +Q

and α , r[(Πspan(Q+P ) − (P +Q))(I − 2P )] < 1 .

B iii) We just have to remind that as N = ker(P + Q)

and span(Q) = span(M), M∗(I − 2P )ΠN = 0, thus

xk+1 − x? = −H−1M∗(I − 2P )R(ζk−1 − ζ̄)

= −H−1M∗(I − 2P )(ΠN + (R−ΠN ))(ζk−1 − ζ̄)

= −H−1M∗(I − 2P )(R−ΠN )k(ζ0 − ζ̄)

hence ‖xk+1 −x?‖ will vanish exponentially at rate α < 1.

C. General case

Due to the lack of space only the main steps of the proof
are given here; a detailed treatment can be found in [25].
It relies on the fact that for any x close enough to x? (the
convergence of x to x? is a well-known result, see e.g. [8]),

∇f(x) = ∇f(x?) +∇2f(x?)(x− x?) + E(x− x?)

where ‖E(x)‖/‖x‖ → 0 as x→ 0. Eq. (8) then becomes

xk+1 = −H−1M∗(I−2P )ζk−H−1c−H−1E(xk+1−x?)

with c = ∇f(x?)−∇2f(x?)x?. Thus, similar to Eq. (9),

ζk+1 = Rζk + d− ρMH−1E(xk+1 − x?).

By applying the same reasoning, and with some more
analysis, we are able to prove that same result holds for
non-quadratic functions.

V. EXAMPLES AND NUMERICAL ILLUSTRATIONS

The aim of this section is threefold: i) giving examples
of instances of Distributed Optimization with ADMM on
particular communication network topologies; ii) providing
simple forms of the convergence rate over these topologies;
and iii) showing that this rate is tight in our examples. For
simplicity, we will assume that the sensors variable space size
K is equal to one, so that M = S ⊗ IK = S and P = Π.
Moreover, we will generally assume that ∇2f(x?) = σ2

?IN
in order to obtain more simple and insightful expressions.

A. The centralized network

We consider here the case where L = 1, so that A1 =
{1, ..., N}. With this setup, every agent computes its new
variable x with Eq. (4) then a dedicated fusion center
computes and broadcast the average of these values which
gives the parallel optimization algorithm with a centralized
communication step described in [8, Chap. 7].

In this case, we have M = IN , P = N−11N1∗N and
Q = ρ

σ2
?+ρIN ; obviously, Πspan(P+Q) = IN . Thus, our rate

of convergence α is the spectral radius of

R ,
(
IN − P −Q

)(
IN − 2P

)
=

σ2
?

σ2
? + ρ

(IN − P ) +
ρ

σ2
? + ρ

P .

It is easy to see that R has two distinct eigenvalues: one
equal to σ2

?

σ2
?+ρ and one equal to ρ

σ2
?+ρ . We thus have the

following corollary.

Corollary 1 (Centralized network) Under the stated as-
sumptions, the rate is given by:

α =
max(ρ, σ2

?)

ρ+ σ2
?

. (12)



In particular, α ≥ 1
2 with equality iff ρ = σ2

?.

This result means that the optimal rate is 1/2 and is
obtained when the parameter ρ = σ2

?. We also remark that α
goes to 1 when ρ goes to 0 or to ∞. Thus, there is a trade-
off in the choice of ρ that enables to obtain significantly
better convergence rate, as discussed in [19] for quadratic
problems. And even if σ2

? is generally unknown, this result
provides us a guideline in the choosing of step-size.

In Figure 1, we plot the rate α as a function of the step-
size ρ of the algorithm in the case of a 5-agent centralized
communication network when ∇2f(x?) = σ2

?IN and σ2
? =

16. We observe the above-mentioned trade-off in the step
size ρ.
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Fig. 1. Rate α as a function of ρ - Centralized network - σ2
? = 16.

We now address in Figure 2 the case where the second or-
der derivatives are not equal. Still with a 5-agent centralized
communication network, we take the values of f ′′n (x?) for
all agents n equal to 4, 9, 16, 25 and 39. We still observe
a trade-off in the step-size but now the optimal parameter is
not as clear as before.
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Fig. 2. Rate α as a function of ρ - Centralized network - N = 5 - Distinct
second order derivatives.

B. The ring network
We now consider the case where the agents communicate

through a ring communication network. In this framework,
the N ≥ 3 agents are connected with two agents such that
E = {{1, 2}, {2, 3}, . . . , {N − 1, N}, {N, 1}} is the set of
edges of the underlying communication network. We thus
have L = N , A` = {`, ` + 1} for all ` = 1, ..., L − 1, and
AL = {N, 1}.

We define for simplicity sN = sin(2π/N), cN =
cos(2π/N) and tN = tan(2π/N). After some omitted

computations based on the fact that R is a block-circulant
matrix, we get the following result.

Corollary 2 (Ring network) Under the stated assump-
tions, the rate α = α(ρ) is given by the following expression.

• If ρ ≤ σ2
?

2sN
, α =

σ2?+2ρ(1+cN )+
√
σ4?−4ρ2s2

N
2(σ2?+2ρ)

,

• If ρ ∈
[ σ2

?

2sN
,
σ2
?

2t2N

]
, then α =

√
ρ(1+cN )
σ2
?+2ρ ,

• If ρ ≥ σ2
?

2t2N
then α = 2ρ

σ2
?+2ρ .

Finally,

α ≥ 1√
2

√
1 + cN
1 + sN

with equality iff ρ =
σ2
?

2sN
.

The optimal step-size ρopt =
σ2
?

2sN
is equal to σ2

?N
4π +o(N)

which suggests that the step-size should increase at the same
rate as N , contrary to the centralized case above where the
optimal step-size was equal to σ2

? for any number of agents.
In Figure 3, we plot the rate α as a function of the step-

size ρ and the number of a agents N in the case of a ring
communication network when ∇2f(x?) = σ2

?IN and σ2
? =

16. We observe the above-mentioned trade-off in the step
size ρ and the fact that the optimal step-size varies with the
number of agents.

Fig. 3. Rate α as a function of ρ and N - Ring network - σ2
? = 16.

C. Arbitrary Network

Finally, let us compare our theoretical result with the
performance of Distributed Optimization with the ADMM
by simulation. We set N = 5 and consider edges E =
{{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 3}}. For each edge, we
consider the block formed by the two linked vertices. We
now illustrate our theoretical rate α with numerical simula-
tions.

In Figure 4, we plot k−1 log ‖xk−x?‖ as a function of the
number of iterations k along with our bound α for ρ = 1.
The agents functions are taken quadratic. In that case, we
compare ourselves with the bound of Shi et al. [18]. The
functions fn are defined as fn(x) = an(x − bn)2 where
a1, . . . , an and b1, . . . , bn are respectively equal to 0.1, 0.5, 1,
2, 10 and -2, -1, 0, 1, 2. We observe that our convergence rate
is tight as it fits the empirical performance of the considered



algorithm, whereas a gap exists between the latter and the
bound of [18]. We also observe that the asymptotic regime is
attained after a very moderate number of iterations (∼ 40).
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Fig. 4. k−1 log ‖xk − x?‖ as a function of the number of iterations k -
N = 5 - Quadratic functions

In Figure 5, we plot k−1 log ‖xk − x?‖ as a function of
k along with α for ρ = 1. The agents functions are now
taken exponential as fn(x) = exp(βnx) where β1, . . . , β5

are respectively equal to -2, -0.5, 0.5, 0.5 and 1.5 (in that case∑
n fn admits x? = 0 as unique minimizer). Remark that,

even though the functions do not have Lipschitz continuous
gradients as often assumed in the literature, the convergence
is linear and our rate α is tight.
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VI. CONCLUSION

In this paper, we focused on the convergence rate of a
distributed optimization algorithm based on the ADMM to
find a minimizer x? of the problem infx

∑N
n=1 fn(x) where

fn is agent n convex private function. Assuming that the
functions are twice differentiable at x?, we gave an explicit
characterization of the linear convergence rate through the
spectral radius of a matrix depending on the Hessian of the
functions at x? and on the communication network.
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