
A Stochastic Primal-Dual algorithm
for Distributed Asynchronous Composite Optimization

Pascal Bianchi, Walid Hachem
Telecom ParisTech; CNRS LTCI

Paris, France
{bianchi,hachem}@telecom-paristech.fr

Franck Iutzeler
LANEAS group; Supélec
Gif-sur-Yvette, France

franck.iutzeler@supelec.fr

Abstract—Consider a network where each agent has a private com-
posite function (e.g. the sum of a smooth and a non-smooth function).
The problem we address here is to find a minimizer of the aggregate cost
(the sum of the agents functions) in a distributed manner. In this paper,
we combine recent results on primal-dual optimization and coordinate
descent to propose an asynchronous distributed algorithm for composite
optimization.

Index Terms—Distributed optimization, Consensus algorithms, Primal-
Dual algorithm, Coordinate Descent.

I. INTRODUCTION

Consider a network of N agents seeking to solve the optimization
problem

inf
x∈X

N∑
n=1

fn(x) + gn(x) (1)

where X is a Euclidean space (typically R or RK for some K > 1)
and where fn, gn are two private cost functions available at agent
n. This formulation based on composite functions enables us to split
agent n’s cost function into a smooth (e.g. quadratic distance, logit)
and a non-smooth (e.g. `1 regularization, projection) part.

More precisely, denoting by Γ0(X) the set of proper lower semi-
continuous convex functions on X → R , R∪{+∞}, we make the
following assumptions.

Assumption 1. For any n = 1 . . . N ,
i) fn, gn ∈ Γ0(X);

ii) fn is differentiable on X ;
iii) the gradient ∇fn of fn is L-lipschitz continuous on X i.e.,
‖∇fn(x)−∇fn(y)‖ ≤ L‖x− y‖ for any x, y ∈ X .

If there was only one agent, a typical algorithm for finding the
minimum of f1 + g1 is the Proximal gradient algorithm [1]. This
algorithm is based on the iteration

xk+1 = proxγg1(xk − γ∇f1(xk)) (2)

where γ > 0 is a fixed stepsize and where prox denotes the proximity
operator defined as proxh(x) = arg miny h(y) + 1

2
‖y − x‖2 for

h ∈ Γ0(X).
In a networked context, finding a minimizer of the aggregate cost

function often imply to use distributed optimization algorithms. These
algorithms are based on i) local computations based on the agents’
private functions; and ii) local exchanges over some underlying
communication network. Their goal is to reach a consensus, that
is a state where each agent in the network share the same value,

This work was partially granted by the French Defense Agency (DGA)
grant ODISSEE, by the Telecom/Eurecom Carnot Institute, and by European
Research Council (ERC) Starting Grant sponsored project MORE (Advanced
Mathematical Tools for Complex Network Engineering) .

over the sought minimizer of the aggregate cost. In addition, in order
to add robustness and flexibility, distributed optimization algorithms
can be rendered asynchronous/randomized by making only a random
set of agents perform computations and/or communications at each
iteration.

In the case where the agents functions are smooth (i.e. if ∀n, gn ≡
0 in Problem (1)), distributed gradient algorithms are often advocated
(see e.g. [4], [5], [7], [25]). They consist in two steps: first, a local
gradient descent during which some/all agents update their local
estimate by performing a gradient descent on their own function
weighted by a stepsize γk; then, the agents perform a (possibly
random) average gossiping step [9], [10]. One of the drawbacks of
these algorithms is that, in general, vanishing stepsizes (γk)k have
to be used which affects greatly the convergence rates.

In the case where the agents functions are not necessarily smooth
(i.e. if ∀n, fn ≡ 0 in Problem (1)), one of the most popular
approaches is to use the distributed Alternating Direction Method
of Multipliers (ADMM) [11], [12] in which each agent evaluates the
proximity operator of its own function and then combines the output
with neighboring agents. Asynchronous distributed optimization with
the ADMM have also been recently proposed [13]. Even though
it is more computationally requiring, the distributed ADMM offers
exponential convergence rates for a large class of functions [12], [14].

While the distributed gradient and ADMM are respectively pri-
mal and dual methods, in this paper, we investigate a primal-dual
algorithm for distributed composite optimization. This algorithm is
such that each iteration can be decomposed in two steps: i) a local
computation step where each agent n computes its new estimate by
evaluating the gradient of fn and the proximity operator of gn in
an operation close to Eq. (2), and ii) a communication step where
the agents exchange their estimates through some underlying com-
munication network. On top of this algorithm, we perform coordinate
descent [16], [17], [13], [18] on well chosen variables to obtain
a new asynchronous algorithm we name Distributed Asynchronous
Primal Dual algorithm (DAPD) and detail the communication and
computation scheme of this new algorithm. Related works include
[13], [15], [6], [2], [3].

We believe these ADMM+ based algorithms provide a useful alter-
native to popular gradient and ADMM-based distributed algorithms
as they combine the good convergence and computational1 properties
of the proximity operators of the ADMM with the computational
simplicity of the gradient.

First, in Section II, we introduce our distributed composite opti-
mization problem. Then, we present in Section III-A the ADMM+
algorithm, and in Section III-B, we introduce our distributed com-
posite optimization algorithm based on the ADMM+. After that, we

1e.g. the proximity operator of `1 norm is a simple soft-thresholding

introduce the notion of coordinate descent in Section IV and derive
our Distributed Asynchronous Primal Dual algorithm in Section V.
Finally, Section VI is dedicated to numerical illustrations.

II. DISTRIBUTED OPTIMIZATION PROBLEM

Let us consider a network of N agents modeled by a graph G =
(V,E) where V = {1, . . . , N} is the set of nodes/agents and E ⊂
{1, . . . , N}2 is the set of undirected edges. We will write m ∼ n
when {n,m} ∈ E. In practice, n ∼ m means that n and m can
communicate with each other. Obviously, to be able to minimize the
total aggregate cost, the network has to be connected.

Assumption 2. G is connected and has no self loop.

Now, give each agent n two private functions fn and gn verifying
Assumption 1. The goal of this network is to solve Problem (1),
however, this problem does not take into account i) the fact that the
function are private and local to one particular agent; and ii) the
network (and thus the communication) structure.

To address the first point, let us define new functions f and g on
XN as

f : XN −→ R and g : XN −→ R

x 7−→
N∑
n=1

fn(xn) x 7−→
N∑
n=1

gn(xn)
(3)

where for x ∈ XN , we note x = (x1, ..., xN) the splitting of x on the
product space. Obviously, Problem (1) is equivalent the minimization
of f(x) + g(x) under the constraint that all components x are the
same.

inf
x∈XN

f(x) + g(x)

s.t. x1 = ... = xN
(4)

To address the second point, we use the idea of [19] to reformulate
this constraint into an indicator function taking the graph structure
into account. The idea is to ensure consensus separately over all the
edges of the graph; that way, the constraints are localized but thanks
to the network connectivity assumption, this is obviously equivalent
to have global consensus over the network. Mathematically, for any
e = {n,m} ∈ E, let Me be the linear operator from XN to X 2 such
that Mex = (xn, xm) for any x ∈ XN . Then, define M as the linear
operator generated by stacking vertically the (Me)e∈E , M thus goes
from XN to Y , (X 2)|E|. For x ∈ XN , y = Mx ∈ Y can be split
into its |E| components in X 2 such that ye = Mex = (xn, xm). We
will often use this splitting in the following and we will split any
variable y ∈ Y into |E| chunks2 such that e = {n,m}-th element
writes ye = (ye(n), ye(m)). Finally, define a new function h on Y
such that for y ∈ Y , h(y) = 0 if for every e ∈ E, ye has the form
[a, a] for some a ∈ X and +∞ elsewhere.

h : Y −→ R
y 7−→

∑
e∈E

ιC2(ye) (5)

where ιC is the indicator function of set C equal to 0 if its argument
is in C and +∞ elsewhere; C2 = {[a, a] : a ∈ X} is the wanted
consensus space.

We are finally able to formulate our distributed composite opti-
mization problem as

inf
x∈XN

f(x) + g(x) + h(Mx) . (6)

2we suppose some implicit ordering of the links of E and identify an
element e in E with its index.

Lemma 1. Let Assumption 2 hold true. The minimizers of (6) are
of the form (x?, ..., x?) where x? is a minimizer of (1).

Proof: If (1) has a minimizer, then a minimizer x̄ of (6) verify
h(Mx̄) = 0. As the network is connected by Assumption 2, we have
x̄ = [a, ..., a] and plugging this into (6) imply that a is a minimizer
of (1).

III. DISTRIBUTED OPTIMIZATION WITH ADMM+

A. ADMM+

The ADMM+ algorithm was introduced in [15] to deal with
problems of the form of (6) when f is smooth but not necessarily g
nor h (see Assumption 1).

Let us denote by 〈 ·, · 〉 the inner product on XN and by ‖ · ‖ the
norm on XN or Y . For some free hyper-parameters ρ, τ > 0, the
ADMM+ consists in the following iterations for solving minx f(x)+
g(x) + h(Mx).

ADMM+

zk+1 = argmin
w∈Y

{
h(w) +

‖w − (Mxk + ρλk)‖2

2ρ

}
(7a)

λk+1 = λk + ρ−1(Mxk − zk+1) (7b)

uk+1 = (1− τρ−1)Mxk + τρ−1zk+1 (7c)

xk+1 = argmin
w∈XN

{
g(w) + 〈∇f(xk), w〉

+
‖Mw − uk+1 + τλk+1‖2

2τ

}
(7d)

Assumption 3. The infimum of (1) is attained. Moreover,
∩Nn=1 ri dom gn 6= ∅ where dom g is the domain of the function g
and where riC is the relative interior of the set C.

Theorem 1 ([15]). Let Assumptions 1–3 hold true. Assume that
τ−1 − ρ−1 > L/2. For any initial value (x0, λ0) ∈ XN × Y , the
sequence (xk)k defined by ADMM+ converges to a minimizer of (6)
as k →∞.

The proof, provided in [15], is based on recent results on primal-
dual algorithms by Vũ [20] and Condat [21].

B. Distributed ADMM+

Now, let us apply ADMM+ to solve Problem (6) with the functions
defined in Eqs. (3) and (5) in order to derive a distributed optimization
algorithm.

First, let us explicit the proximal operation related to h stressing
the fact that h is separable in |E| chunks in X 2.

proxρh(y) = argmin
w∈Y

{
h(w) +

1

2ρ
‖w − y‖2

}
= argmin

w∈Y

{∑
e∈E

ιC2(we) +
1

2ρ
‖we − ye‖2

}

We remark that the operation can be split: for e = {n,m} ∈ E,
the e-th chunk of proxρh(y) only depends on ye and writes

(
proxρh(ye)

)
e

= argmin
we∈X2

{
ιC2(we) +

1

2ρ
‖we − ye‖2

}
=

(
ye(n) + ye(m)

2
,
ye(n) + ye(m)

2

)

thus for any e = {n,m} ∈ E, we have

zk+1
e (n) = zk+1

e (m) =
xkn + xkm

2
+ ρ

λke(n) + λke(m)

2

by definition of operator M .
Plugging this equality into Eq. (7b) and, for any e = {n,m} ∈ E,

looking at λk+1
e , we get that

λk+1
e (n) + λk+1

e (m) = λke(n) + λke(m)− 2
λke(n) + λke(m)

2

+ ρ−1

(
xkn + xkm − 2

xkn + xkm
2

)
= 0

and so zk+1
e (n) = zk+1

e (m) =
xkn + xkm

2

thus we have λk+1
e (n) = −λk+1

e (m) = λke(n) + ρ−1 x
k
n − xkm

2

and with Eq. (7c), uk+1
e (n) = xkn − τρ−1 x

k
n − xkm

2

Finally, let us concentrate on Eq. (7d) to put it in a proximal
gradient form (see Eq. (2)) for each component n = 1, ..., N .

xk+1= argmin
w∈XN

{
N∑
n=1

gn(wn) + 〈∇fn(xkn), wn〉

+
1

2τ

∑
m:n∼m

∥∥∥wn− uk+1
{n,m}(n) + τλk+1

{n,m}(n)
∥∥∥2}

= argmin
w∈XN

{
N∑
n=1

gn(wn) + 〈∇fn(xkn), wn〉

+
dn
2τ

∥∥∥∥∥wn−∑
m:n∼m

uk+1
{n,m}(n)− τλk+1

{n,m}(n)

dn

∥∥∥∥∥
2


= argmin
w∈XN

{
N∑
n=1

gn(wn)

+
dn
2τ

∥∥∥∥∥wn+ τ∇fn(xkn)

dn
−
∑

m:n∼m

uk+1
{n,m}(n)− τλk+1

{n,m}(n)

dn

∥∥∥∥∥
2


where dn is the degree of node n defined as the cardinal of the set
of neighbors {m : n ∼ m}. Now, remarking that the above argmin
can be done component-wise and reduces to a proximity operator,
we obtain for all n = 1, ..., N

xk+1
n = proxτgn/dn

(
− τ

dn
∇fn(xkn) +

∑
m:n∼m

uk+1
{n,m}(n)− τλk+1

{n,m}(n)

dn

)

= proxτgn/dn

((
1− τρ−1)xkn − τ

dn
∇fn(xkn)

+
τ

dn

∑
m:n∼m

(
ρ−1xkm − λk{n,m}(n)

))
where the second equality used the previously derived updates for
uk+1 and λk+1.

We are now able to explicit our Distributed ADMM+. Remark
that in order to perform the previously derived updates at time k+1,
every agent n must have knowledge of xkn, {λk{n,m}(n)}m∼n, and
{xkm}m∼n. While the first two are previously computed variables, the
knowledge of the neighbors’ estimates is also required which means
that after each iteration, the sensors must send their estimates to all
their neighbors.

Distributed ADMM+
Initialization: (x0, λ0) s.t. for all e = {n,m} ∈ E, λ0

e(n) +
λ0
e(m) = 0

Do
• For any n = 1, ..., N , agent n performs the following

operations:

λk+1
{n,m}(n) = λk{n,m}(n) +

xkn − xkm
2ρ

for all m ∼ n (8a)

xk+1
n = proxτgn/dn

((
1− τρ−1)xkn − τ

dn
∇fn(xkn)

+
τ

dn

∑
m:n∼m

(
ρ−1xkm − λk{n,m}(n)

))
(8b)

• Agent n sends its estimate xk+1
n to its neighbors

• Increment k

The following result is a direct consequence of Theorem 1.

Corollary 1. Let Assumptions 1–3 hold true. Assume that τ−1 −
ρ−1 > L/2. For any initial value (x0, λ0), let (xk)k∈N be the
sequence produced by the Distributed ADMM+. Then, there exists a
minimizer x? of Problem (1) such that for all n ∈ V , (xkn)k converges
to x?.

IV. RANDOMIZED COORDINATE DESCENT

Let us get back to the ADMM+ algorithm. Looking at the itera-
tions, one can see that only xk and λk are needed to generate all the
variables at time k+1. Actually, it was shown in [15] that the hyper-
variable ζk , (λk,Mxk) enabled to generate subsequent values; in
addition, it was proven that there was some operator T from Y ×Y
to Y × Y such that

ζk+1 = Tζk. (9)

Then, T was shown to have some contraction property called av-
eraging3 that ensured that the above iteration converged to a fixed
point ζ? = (λ?,Mx?) of T as it boils down to a Krasnoselskiı̆-Mann
algorithm [22, Prop 5.15]. This is the core of the proof of Theorem 1
along with the fact that the reached couple (λ?, x?) is a primal-dual
optimal point for the considered problem (see [15]).

Now, it was recently proven in [13] that if, instead of performing
the whole update in Eq. (9), one only updates randomly chosen
coordinates, the iterations still converged to a fixed point of operator
T. More precisely, let us split the space Y × Y into a product of J
subspacesH1×...×HJ and introduce a random i.i.d. subset selection
sequence (ξk)k valued in {0, 1}J . Obviously, we must assume that
each subset of coordinates is chosen with some positive probability.

Assumption 4. The subset selection sequence (ξk)k is i.i.d. and for
all j = 1, ..., J , P[ξ1j = 1] > 0.

Finally, for κ in {0, 1}J define the operator T̂(κ) as (T̂(κ)ζ)j =

(Tζ)j if κj = 1 and (T̂(κ)ζ)j = ζj elsewhere. Obviously, (T̂(ξk))k
is the wanted sequence of randomly updated operators. The following
convergence theorem is a simple extension of [13, Th. 2].

Theorem 2. Let T : H → H be an averaged operator and fix(T) 6=
∅. Let (ξk)k verify Assumption 4. Then the iterated sequence

ζk+1 = T̂(ξk+1)ζk (10)

converges almost surely to some point in fix(T).

3T : H → H is averaged if there is α ∈]0, 1[such that for x, y ∈ H,
‖Tx− Ty‖2 ≤ ‖x− y‖2 − 1−α

α
‖x− Tx− (y − Ty)‖2

V. A DISTRIBUTED ASYNCHRONOUS PRIMAL DUAL ALGORITHM

Starting from ADMM+ and functions defined in Section II, our
goal now is to design an asynchronous distributed algorithm i.e. an
algorithm where the computations and communications are done by
some agents chosen at random. Theorem 2 tells us that when applying
ADMM+, one can keep only the updates related to some agents as
long as the selection is i.i.d. and that every agent can be selected.

First, let us remark that xkn, λk{n,m} are owned by agent n before
time k + 1 in Distributed ADMM+. Thus, let us define a group
Vk+1 of active agents for time k + 1 and compute their update in
the same manner as for Distributed ADMM+ in Section III-B but
now only the components related to the agents of Vk+1 (i.e. xk+1

n

and λk+1
{n,m}(n) for n ∈ Vk+1 and m ∼ n) are updated, the others

remain still. This means that some simplifications as the fact that
λk+1
e (n)+λk+1

e (m) = 0 for e = {n,m} ∈ E are not valid anymore.
By looking at the derivations of Section III-B in the same order, we
still have for n ∈ Vk+1 and m ∼ n

zk+1
{n,m}(n) =

xkn + xkm
2

+ ρ
λk{n,m}(n) + λk{n,m}(m)

2

but not λk+1
{n,m}(n) + λk+1

{n,m}(m) = 0 as this rely on the update of
λk+1
{n,m}(m) which does not happen as m is not necessarily in Vk+1.

Instead, we have

λk+1
{n,m}(n) = λk+1

{n,m}(n) + ρ−1(xkn − zk+1
{n,m}(n))

=
xkn − xkm

2ρ
+
λk{n,m}(n)− λk{n,m}(m)

2
.

Finally, concerning the update of x, the same steps are still valid
except the last one where uk+1 and λk+1 are replaced, as their sim-
plifications do not hold anymore. We now have ∀n ∈ Vk+1,m ∼ n

xk+1
n = proxτgn/dn

(
− τ

dn
∇fn(xkn) +

∑
m:n∼m

uk+1
{n,m}(n)− τλk+1

{n,m}(n)

dn

)

= proxτgn/dn

(
(1− τρ−1)xkn −

τ

dn
∇fn(xkn)

+
τ

dn

∑
m:n∼m

(
ρ−1xkm − λk{n,m}(m)

))
which completes the derivation of the algorithm. One can remark a
major difference due to the asynchronism is that now in addition to
xk+1
n , an agent n ∈ Vk+1 also has to transmit λk+1

{n,m}(m) to its
neighbors m ∼ n at the end of its update.

We are now able to state our Distributed Asynchronous Primal
Dual algorithm (DAPD), which convergence is a straightforward
consequence of Theorem 1 and 2.

DAPD Algorithm:
Initialization: (x0, λ0).
Do
• Select a random set of agents Vk+1, each agent n ∈ Vk+1

performs the following operations:
– for all m ∼ n,

λk+1
{n,m}(n) =

xkn − xkm
2ρ

+
λk{n,m}(n)− λk{n,m}(m)

2

xk+1
n = proxτgn/dn

(
(1− τρ−1)xkn −

τ

dn
∇fn(xkn)

+
τ

dn

∑
m:n∼m

(
ρ−1xkm − λk{n,m}(m)

))

– for all m ∼ n, send {xk+1
n , λk+1

{n,m}(n)} to neighbor m.

• for any agent n 6∈ Vk+1, xk+1
n = xkn, and λk+1

{n,m}(n) =

λk{n,m}(n) for all m ∼ n.
• Increment k.

Theorem 3. Suppose that the nodes selection sequence (Vk)k is i.i.d.
and verifies for all n ∈ V , P[n ∈ V1] > 0. Let Assumptions 1–3
hold true. Assume that τ−1 − ρ−1 > L/2. Let (xk+1

n)n∈V be the
output of the DAPD algorithm. For any initial value (x0, λ0) there
exists a minimizer x? of Problem (1) such that for all n ∈ V , (xkn)k
converges almost surely to x?.

VI. NUMERICAL ILLUSTRATIONS

We now illustrate the performances of the DAPD and compare
it to other asynchronous distributed algorithms. As our focus is on
composite optimization, we will consider the following distributed
group lasso problem:

min
x∈RK

‖Ax− b‖22 + µ‖x‖1 =

N∑
n=1

(
‖Anx− bn‖22 +

µ

N
‖x‖1

)
where the dimension of the problem is K = 50, A is a 250 × 50
real random matrix and b a size 250 vector equal to Ax0 +n where
x0 is a random sparse vector and n is an additional Gaussian noise.
Matrix A and vector b are split equally line-wise between the N = 5
sensors thus (An)n and (bn)n are collections of 50 × 50 matrices
and size-50 vectors. Parameter µ is set so that the solution and x0
have similar sparsity. Finally, the underlying communication network
is a connected Random Geometric Graph.

0 50 100 150 200
0

2

4

6

Number of iterations

A
gg

re
ga

te
d

co
st

Asynchronous Distributed subgradient

Asynchronous ADMM

DAPD

Fig. 1. Functional error of asynchronous distributed optimization algorithms

In Figure 1, we plot the total functional error with respect to the
number of iterations for one run of the algorithms. We consider three
algorithms: i) the Asynchronous Distributed subgradient algorithm
[23], [24] with Random Gossip as an exchange protocol [9]; ii)
the Asynchronous Distributed ADMM [13] with the subset taken
as the edges pf the graph; and iii) our DAPD algorithm. Out of
fairness for the other algorithms, we took the following random
activation scheme: at each iteration, one agent activates, wakes up
a neighbor, and both agents perform computations and exchanges.
We remark that our algorithm offers good performances despite its
use of a gradient step to reduce complexity. As mentioned above, this
algorithm, contrary to others can be carried out with only one sensor
active at each iteration and using asymmetric communications.

VII. CONCLUSION

We proposed and proved the convergence of an asynchronous
distributed primal-dual algorithm that enables a network to efficiently
perform minimization of an aggregate cost composed of composite
functions.

REFERENCES

[1] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal
processing,” in Fixed-Point Algorithms for Inverse Problems in Science
and Engineering, pp. 185–212. Springer, 2011.

[2] P. L. Combettes and J.-C. Pesquet, “ Stochastic Quasi-Fejér Block-
Coordinate Fixed Point Iterations with Random Sweeping,” arXiv
preprint arXiv:1404.7536

[3] Pesquet, J. C., and Repetti, “A class of randomized primal-dual
algorithms for distributed optimization,” arXiv preprint arXiv:1406.6404.

[4] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, Jan 2009.

[5] G. Morral, P. Bianchi, G. Fort, and J. Jakubowicz, “Distributed stochastic
approximation: The price of non-double stochasticity,” in Asilomar
Conference on Signals, Systems and Computers, 2012.

[6] Bianchi, P., Hachem, W., and Iutzeler, F. “A Stochastic Coordinate De-
scent Primal-Dual Algorithm and Applications to Large-Scale Composite
Optimization,” arXiv preprint arXiv:1407.0898.

[7] J. Chen and A.H. Sayed, “Diffusion adaptation strategies for distributed
optimization and learning over networks,” IEEE Transactions on Signal
Processing , vol. 60, no. 8, pp. 4289–4305, Aug 2012.

[8] G. Morral, P. Bianchi, and G. Fort, “Success and failure of adaptation-
diffusion algorithms for consensus in multiagent networks,” in IEEE
Conference on Decision and Control (CDC), 2014.

[9] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Transactions on Information Theory , vol. 52, no. 6,
pp. 2508–2530, 2006.

[10] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione, “Broad-
cast gossip algorithms for consensus,” IEEE Transactions on Signal
Processing , vol. 57, no. 7, pp. 2748–2761, 2009.

[11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed op-
timization and statistical learning via the Alternating Direction Method
of Multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[12] F. Iutzeler, P. Bianchi, Ph. Ciblat, and W. Hachem, “Explicit convergence
rate of a distributed alternating direction method of multipliers,” arXiv
preprint arXiv:1312.1085, 2013.

[13] F. Iutzeler, P. Bianchi, Ph. Ciblat, and W. Hachem, “Asynchronous dis-
tributed optimization using a randomized Alternating Direction Method
of Multipliers,” in Proc. IEEE Conf. Decision and Control (CDC), 2013.

[14] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “Optimal
parameter selection for the alternating direction method of multipliers
(admm): Quadratic problems,” arXiv preprint arXiv:1306.2454, 2013.

[15] P. Bianchi and W. Hachem, “A primal-dual algorithm for distributed
optimization,” in IEEE Conference on Decision and Control (CDC),
2014.

[16] Yu. Nesterov, “Efficiency of coordinate descent methods on huge-scale
optimization problems,” SIAM Journal on Optimization, vol. 22, no. 2,
pp. 341–362, 2012.

[17] O. Fercoq and P. Richtárik, “Accelerated, parallel and proximal coordi-
nate descent,” arXiv preprint arXiv:1312.5799, 2013.

[18] P. L. Combettes and J.-C. Pesquet, “Stochastic quasi-fejér block-
coordinate fixed point iterations with random sweeping,” arXiv preprint
arXiv:1404.7536, 2014.

[19] I.D. Schizas, A. Ribeiro, and G.B. Giannakis, “Consensus in ad hoc
WSNs with noisy links - Part I: Distributed estimation of deterministic
signals,” IEEE Trans. on Signal Processing, vol. 56, no. 1, pp. 350–364,
2008.

[20] B. C. Vũ, “A splitting algorithm for dual monotone inclusions involving
cocoercive operators,” Advances in Computational Mathematics, vol.
38, no. 3, pp. 667–681, 2013.

[21] L. Condat, “A primal-dual splitting method for convex optimization
involving Lipschitzian, proximable and linear composite terms,” Journal
of Optimization Theory and Applications, vol. 158, no. 2, pp. 460–479,
2013.

[22] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone
operator theory in Hilbert spaces, CMS Books in Mathematics/Ouvrages
de Mathématiques de la SMC. Springer, New York, 2011.

[23] S. Ram, A. Nedić, and V. Veeravalli, “Distributed stochastic subgradient
projection algorithms for convex optimization,” Journal of optimization
theory and applications, vol. 147, no. 3, pp. 516–545, 2010.

[24] P. Bianchi, G. Fort, and W. Hachem, “Performance of a distributed
stochastic approximation algorithm,” IEEE Transactions on Information
Theory, vol. 59, no. 11, pp. 7405–7418, Nov 2013.

[25] G. Morral, P. Bianchi, and G. Fort, “Success and Failure of Diffusion-
Adaptation Algorithms for Consensus in Multi-Agent Networks,” IEEE
Transactions on Signal Processing (submitted) arXiv:1410.6956

