
1

A Stochastic Coordinate Descent
Primal-Dual Algorithm and Applications

P. Bianchi, W. Hachem and F. Iutzeler

Abstract— First, we introduce a splitting algorithm to minimize a sum
of three convex functions. The algorithm is of primal dual kind and
is inspired by recent results of Vũ and Condat. Second, we provide a
randomized version of the algorithm based on the idea of coordinate
descent. Finally, we address two applications of our method: (i) In the
case of stochastic minibatch optimization, our method can be used to split
an objective function into blocks, each of these blocks being processed
sequentially by the computer. (ii) In the case of distributed optimization,
we consider a set of N agents having private objective functions and
seeking to find a consensus on the minimum of the aggregate objective.
Our method yields a distributed iterative algorithm where agent use both
local computations and message passing in an asynchronous manner.

Index Terms— Distributed Optimization, Large-scale Learning, Coor-
dinate Descent, Consensus algorithms, Primal-Dual Algorithm.

I. INTRODUCTION

Let X and Y be two Euclidean spaces and let M : X → Y be a
linear operator. Given two real convex functions f and g on X and a
real convex function h on Y , we consider the minimization problem

inf
x∈X

f(x) + g(x) + h(Mx). (1)

Our contributions are threefold.
1) Assuming that f is differentiable and that its gradient is

Lipschitz-continuous, we provide an iterative algorithm for solv-
ing (2). We refer to our algorithm as ADMM+ (Alternating Direction
Method of Multipliers plus) because it includes the well known
ADMM [1], [2] as a special case. The algorithm belongs to the
class of primal-dual optimization algorithms with its roots in recents
algorithms by Vũ [3] and Condat [4].

2) Based on our previous work [5], we introduce the idea of
stochastic coordinate descent on Krasnosel’skii-Mann iterations. In-
terestingly, ADMM+ as well as many other algorithms (gradient
descent, proximal gradient algorithm, ADMM, etc.) are special
instances of Krasnosel’skii-Mann iterations [6]. The idea beyond
stochastic coordinate descent is to update only a random subset
of coordinates at each iteration. This leads to a perturbed version
of the initial Krasnosel’skii-Mann iterations which can nevertheless
be shown to preserve the sought convergence properties. Stochastic
coordinate descent has been recently investigated in the case of
proximal gradient in [7]–[9].

3) We apply our findings to large-scale optimization problems
arising in signal processing and machine learning contexts. We
show that the general idea of stochastic coordinate descent provides
a unified framework allowing to derive stochastic algorithms of
different kinds. More precisely, we derive two application examples:
i) we introduce a new stochastic approximation algorithm by applying
stochastic coordinate descent on the top of ADMM+; ii) we propose
a new asynchronous distributed optimization algorithm.

The first two authors are with the CNRS LTCI; Telecom ParisTech, Paris,
France. The third author is with Supelec, Gif-sur-Yvette, France. E-mails:
pascal.bianchi, walid.hachem@telecom-paristech.fr,
franck.iutzeler@supelec.fr. This work was partially granted by
the French Defense Agency (DGA) grant ODISSEE, by the Telecom/Eurecom
Carnot Institute, and by European Research Council (ERC) Starting Grant
sponsored project MORE (Advanced Mathematical Tools for Complex
Network Engineering) .

The paper is organized as follows. Section II introduces the
ADMM+ algorithm and its relation with Vũ [3] and Condat [4].
In Section III, we provide background on monotone operators and
our main result on the convergence of Krasnosel’skii-Mann iterations
with randomized coordinate descent. This enables us to derive, in
Section IV, a stochastic approximation algorithm from the ADMM+.
Section V addresses the problem of asynchronous distributed opti-
mization. Finally, Section VI provides numerical results in the context
of large-scale `1-regularized logistic regression.

II. A FORWARD BACKWARD PRIMAL DUAL ALGORITHM

A. Problem statement

Let X and Y be two Euclidean spaces and let M : X → Y be a
linear operator. Given two real convex functions f and g on X and
a real convex function h on Y , consider the minimization problem

inf
x∈X

(f(x) + g(x) + h(Mx)) . (2)

Denoting by Γ0(X) the set of proper lower semicontinuous convex
functions on X → (−∞,∞] and by ‖ · ‖ the norm on X , we make
the following assumptions:

Assumption 1 The following facts hold true:

(i) g ∈ Γ0(X) and h ∈ Γ0(Y),
(ii) f is a convex differentiable function on X , and its gradient
∇f is L-Lipschitz continuous on X , i.e., ‖∇f(x)−∇f(y)‖ ≤
L‖x− y‖ for any x, y ∈ X .

We denote by dom q the domain of a function q and by riS the
relative interior of a set S in a Euclidean space.

Assumption 2 The infimum of Problem (2) is attained. Moreover,
the following qualification condition holds:

ri domh ∩ L(ri dom g) 6= ∅.

The dual problem corresponding to the primal problem (2) is written

inf
λ∈Y

(
(f + g)∗(−M∗λ) + h∗(λ)

)
where q∗ denotes the Legendre-Fenchel transform of a function q.
With the assumptions 1 and 2, the classical Fenchel-Rockafellar
duality theory [10], [11] shows that

min
x∈X

(f(x) + g(x) + h(Mx))

= − inf
λ∈Y

(
(f + g)∗(−M∗λ) + h∗(λ)

)
,

and the infimum at the right hand member is attained. Furthermore,
denoting by ∂q the subdifferential of a function q ∈ Γ0(X), any
point (x̄, λ̄) ∈ X × Y at which the above equality holds satisfies{

0 ∈ ∇f(x̄) + ∂g(x̄) +M∗λ̄
0 ∈ −Mx̄+ ∂h∗(λ̄)

(3)

and conversely. Such a point is called a primal-dual point.

2

B. The Algorithm

We introduce some scalar parameters ρ, τ > 0 satisfying the
following assumption.

Assumption 3 (i) τρ−1‖M‖2 < 4

(ii) 1
τ
− ‖M‖

2

4ρ
≥ L/2 .

For any function g ∈ Γ0(X) we denote by proxg its associated
proximity operator defined by

proxg(x) = arg min
y
g(y) +

1

2
‖y − x‖2.

Our ADMM+ algorithm is described for any initial value
(x0, z0, λ0) by the following iterations:

ADMM+
xk+1 = proxτg

[
xk − τ(∇f(xk) +M∗λk)

]
(4a)

zk+1 = proxρh

[
Mxk+1 + ρλk

]
(4b)

λk+1 = λk + ρ−1(Mxk+1 − zk+1) . (4c)

Theorem 1 Let Assumptions 1–3 hold true. For any initial value
(x0, z0, λ0) ∈ X × Y × Y , apply the above ADMM+ iterations.
Then (xk, λk) converges to a primal-dual point (x̄, λ̄) as k →∞.

Proof: The proof is a consequence of Theorem 2 and Lemma 2
given in the next section.

III. MONOTONE OPERATORS

A. Theoretical Background

An operator T on an Euclidean1 space Y is a set valued mapping
T : Y → 2Y . Its domain is the set of x ∈ Y such that Tx is
non-empty. An operator can be equivalently identified as a subset of
Y ×Y , and we write (x, y) ∈ T when y ∈ Tx. Given two operators
T1 and T2 on Y and two real numbers α1 and α2, the operator
α1T1 + α2T2 is defined as α1T1 + α2T2 = {(x, α1y1 + α2y2) :
(x, y1) ∈ T1, (x, y2) ∈ T2}. The identity operator is denoted by
IY = {(x, x) : x ∈ Y} or simply by I. The inverse of the operator
T is T−1 = {(x, y) : (y, x) ∈ T}. The following notation will be
convenient in this paper. If Y1 and Y2 are two Euclidean spaces and,
for any i, j ∈ {1, 2}2, Tij : Yj → 2Yi is a set-valued mapping, we
shall refer to (

T11 T12

T21 T22

)
as the operator on Y1×Y2 such that for any x = (x1, x2) ∈ Y1×Y2,
Tx is the set of vectors (y11 + y12, y21 + y22) where yij ∈ Tijxj .

An operator T is said monotone if

∀ (x, y), (x′, y′) ∈ T, 〈x− x′, y − y′〉 ≥ 0.

A monotone operator is said maximal if it is not strictly contained in
any monotone operator (as a subset of Y×Y). The typical example of
a maximal monotone operator is the subdifferential ∂f of a function
f ∈ Γ0(X).

An operator T is said single-valued if Tx is a singleton for any x
in its domain. In that case, we identify T with a function T : D → Y
where D is the domain of T. For 0 < α ≤ 1, a single-valued operator
T α-averaged if the following inequality holds for any x, y in D:

‖Tx− Ty‖2 ≤ ‖x− y‖2 − 1− α
α
‖(I− T)x− (I− T)y‖2 .

1We refer to [11] for an extension to Hilbert spaces.

A 1-averaged operator is said non-expansive. A 1
2

-averaged operator
is said firmly non-expansive.

Lemma 1 (Krasnosel’skii-Mann iterations) 2 Assume that T :
Y → Y is α-averaged and that the set fix(T) of fixed points of T is
non-empty. Consider a sequence (ηk)k∈N such that 0 ≤ ηk ≤ 1/α
and

∑k ηk(1/α−ηk) =∞. For any x0 ∈ Y , the sequence (xk)k∈N
recursively defined on Y by xk+1 = xk + ηk(Txk − xk) converges
to some point in fix(T).

B. Randomized Krasnosel’skii Mann Iterations

Consider the space Y = Y1×· · ·×YJ for some J ∈ N∗ where for
any j, Yj is a Euclidean space. Assume that Y is equipped with the
scalar product 〈x, y〉 =

∑J
j=1〈xj , yj〉Yj where 〈 . , . 〉Yj is the scalar

product in Yj . For j ∈ {1, . . . , J}, we denote by Tj : Y → Yj the
components of the output of operator T : Y → Y corresponding to
Yj , we thus have T(x) = (T1(x), . . . ,TJ(x)). We denote by 2J

the set of subsets of J = {1, . . . , J}. For any κ ∈ 2J , we define
the operator T̂(κ) : Y → Y by T̂

(κ)
j (x) = Tj(x) if j ∈ κ and

T̂
(κ)
j (x) = xj otherwise. On some probability space (Ω,F ,P), we

introduce a random i.i.d. sequence (ξk)k>0 such that ξk : Ω → 2J

i.e., ξk(ω) is a subset of J . We assume that the following holds:

∀j ∈ J , ∃κ ∈ 2J , j ∈ κ and P(ξ1 = κ) > 0 . (5)

Theorem 2 Let T : Y → Y be α-averaged and fix(T) 6= ∅. Assume
that for all k, sequence (ηk)k∈N satisfies

0 < lim inf
k

ηk ≤ lim sup
k

ηk <
1

α
.

Let (ξk)k∈N be a random i.i.d. sequence on 2J such that (5) holds.
Then, almost surely, the iterated sequence

xk+1 = xk + ηk(T̂(ξk+1)(xk)− xk) (6)

converges to some point in fix(T).

Proof: Define the operator U = (1− ηk)I + ηkT (we omit the
index k to simplify notations); similarly, define U(κ) = (1− ηk)I +
ηkT̂(κ). Remark that the operator U is (αηk)-averaged.

The iteration (6) reads xk+1 = U(ξk+1)(xk). Set pκ = P(ξ1 = κ)
for any κ ∈ 2J . Denote by ‖x‖2 = 〈x, x〉 the squared norm in Y .
Define a new inner product x • y =

∑J
j=1 qj〈xj , yj〉j on Y where

q−1
j =

∑
κ∈2J pκ1{j∈κ} and let |||x|||2 = x • x be its associated

squared norm. Consider any x? ∈ fix(T). Conditionally to the sigma-
field Fk = σ(ξ1, . . . , ξ

k) we have

E[
∣∣∣∣∣∣∣∣∣xk+1 − x?

∣∣∣∣∣∣∣∣∣2 | Fk] =
∑
κ∈2J

pκ

∣∣∣∣∣∣∣∣∣Û(κ)(xk)− x?
∣∣∣∣∣∣∣∣∣2

=
∑
κ∈2J

pκ
∑
j∈κ

qj‖Uj(xk)− x?j‖2 +
∑
κ∈2J

pκ
∑
j /∈κ

qj‖xkj − x?j‖2

=
∣∣∣∣∣∣∣∣∣xk − x?∣∣∣∣∣∣∣∣∣2+

∑
κ∈2J

pκ
∑
j∈κ

qj
(
‖Uj(xk)− x?j‖2−‖xkj − x?j‖2

)

=
∣∣∣∣∣∣∣∣∣xk − x?∣∣∣∣∣∣∣∣∣2 +

J∑
j=1

(
‖Uj(xk)− x?j‖2 − ‖xkj − x?j‖2

)
=
∣∣∣∣∣∣∣∣∣xk − x?∣∣∣∣∣∣∣∣∣2 +

(
‖U(xk)− x?‖2 − ‖xk − x?‖2

)
.

Using that U is (αηk)-averaged and that x? is a fixed point of U,
the term enclosed in the parentheses is no larger than − 1−αηk

αηk
‖(I−

2 [11, Proposition 5.15, pp.80]

3

U)(xk)‖2 . As I− U = ηk(I− T), we obtain:

E[
∣∣∣∣∣∣∣∣∣xk+1 − x?

∣∣∣∣∣∣∣∣∣2 | Fk] ≤
∣∣∣∣∣∣∣∣∣xk − x?∣∣∣∣∣∣∣∣∣2
− ηk(1− αηk)‖(I− T)(xk)‖2 (7)

which shows that
∣∣∣∣∣∣xk − x?∣∣∣∣∣∣2 is a nonnegative supermartingale with

respect to the filtration (Fk). As such, it converges with probability
one towards a random variable that is finite almost everywhere. Since
x? was chosen arbitrarily, the latter statement can be generalized.
Using the same arguments as in [5], one can easily prove that the
following holds:

C1 : There is a probability one set on which
∣∣∣∣∣∣xk − x?∣∣∣∣∣∣ con-

verges for every x? ∈ fix(T).
Getting back to the inequality (7) and integrating both sides w.r.t. P,
we obtain on the otherhand that

∑
k η

k(1
α
−ηk)E(‖(I−T)(xk)‖2) <

∞. This implies that, almost surely,
√
ηk(1

α
− ηk)(Txk − xk)→ 0

which reduces to
C2 : T(xk)− xk → 0 almost surely

using the stated hypotheses on sequence ηk. The end of the proof
directly follows from C1 and C2 by the same arguments as in [5].

C. The ADMM+ algorithm as Krasnosel’skii-Mann iterations

In this paragraph, we consider the ADMM+ algorithm of Sec-
tion II-B. We show that it can be interpreted as a fixed point
algorithm associated with an α-averaged operator T. This result has
two consequences. First, it proves Theorem 1. Second, by Theorem 2,
it gives the possibility to devise an randomized coordinate descent
version of this algorithm.

Assume that the product space X×Y is endowed with a new inner
product 〈 . , . 〉V defined as 〈ζ, ϕ〉V = 〈ζ,Vϕ〉 where 〈 . , . 〉 stands
for the natural inner product on X × Y and where

V =

(
1
τ
IX − 1

2
M∗

− 1
2
M ρIY

)
.

We denote by HV the corresponding Euclidean space.

Lemma 2 Let Assumptions 1–3 hold true. For some α ∈ [0, 1), there
exists an α-averaged operator T on HV such that the iterations of
the ADMM+ algorithm verify (xk, λk+1) = T(xk−1, λk) for any
k ≥ 1.

Proof: The proof is provided in [12] and relies itself on a recent
result of Vũ [3] and Condat [4].

IV. STOCHASTIC MINIBATCH ALGORITHM

A. Problem Setting

Given an integer N > 1, consider the problem of minimizing a
sum of functions

inf
x∈X

N∑
n=1

(fn(x) + gn(x)) (8)

where we make the following assumption:

Assumption 4 For each n,
(i) fn is a convex differentiable function on X , and its gradient
∇fn is L-Lipschitz continuous on X ,

(ii) gn ∈ Γ0(X).
(iii) The infimum of Problem (8) is attained.
(iv) ∩Nn=1ridomgn 6= ∅

This problem arises for instance in large-scale learning applications
where the learning set is too large to be handled as a single block.

Stochastic minibatches approaches consist in splitting the data set into
N chunks and to process each chunk sequentially, one at a time. The
quantity fn(x) + gn(x) measures the inadequacy between the model
(represented by parameter x) and the nth chunk of data. Typically,
fn stands for a data fitting term whereas gn is a regularization term
which penalizes the occurrence of erratic solutions. As an example,
the case where fn is quadratic and gn is the `1-norm reduces to the
popular lasso problem [13].

B. Instanciating the ADMM+ Algorithm

We derive our stochastic minibatch algorithm as an instance of the
ADMM+ algorithm coupled with randomized coordinate descent. To
that end let us first rephrase Problem (8) as

inf
x∈XN

N∑
n=1

(fn(xn) + gn(xn)) + ιC(x) (9)

where the notation xn represents the nth component of any x ∈
XN , ιA is the characteristic function of a set A (equal to one on
A and to zero outside this set), and C is the space of vectors x ∈
XN such that x1 = · · · = xN . On the product space XN , we set
f(x) =

∑
n fn(xn), g(x) =

∑
n gn(xn), h(x) = ιC and M =

IN the identity matrix. Straightforward application of the ADMM+
algorithm to (9) leads to the following iterations:

xk+1
n = proxτg

[
xkn − τ(∇fn(xkn) + λkn)

]
(10a)

zk+1 = projC
[
xk+1 + ρλk

]
(10b)

λk+1
n = λkn + ρ−1(xk+1

n − zk+1
n) (10c)

where projC is the Euclidean projection onto C. Note that for any
x ∈ XN , projC(x) is equal to (x̄, · · · , x̄) where x̄ is the average
of vector x i.e. x̄ = N−1∑

n xn. As a consequence, components
of zk+1 are equal and coincide with x̄k+1 + ρλ̄k where x̄k+1 and
λ̄k are the average of xk+1 and λk respectively. Using (10c), the
latter equality simplifies even further by noting that λ̄k+1 = 0 or,
equivalently, λ̄k = 0 for all k ≥ 1. Finally, for any n and k ≥ 1, the
above iterations reduce to

xk+1
n = proxτg

[
xkn − τ(∇fn(xkn) + λkn)

]
(11a)

x̄k+1 =
1

N

N∑
n=1

xk+1
n (11b)

λk+1
n = λkn + ρ−1(xk+1

n − x̄k+1) . (11c)

At each step k, the iterations given above involve the whole set
of functions fn, gn (n = 1, . . . , N). Our aim is now to propose an
algorithm which involves a single couple of function (fn, gn) per
iteration. This can be achieved by applying the idea of randomized
coordinate descent on top of the ADMM+ algorithm.

C. A Stochastic Minibatch Primal Dual algorithm

We are now in position to state the main algorithm of this section.
The proposed Stochastic Minibatch Primal Dual algorithm (SMPD)
is obtained by applying randomized coordinate descent on the above
iterations (11a)-(11b)-(11c).
SMPD Algorithm:
Initialization: (x0, λ0) s.t.

∑
n λ

0
n = 0

Do
Select a random batch nk in {1, . . . , N}
For n = nk, set xk+1

n , x̄k+1, λk+1
n by (11a)-(11b)-(11c)

For all m 6= nk, set xk+1
m = xkm and λk+1

m = λkm
k ← k + 1

4

until happy
Output: x̄k+1

Assumption 5 The random sequence nk is iid and satisfies P[n1 =
m] > 0 for all m = 1, ..., N .

Theorem 3 Let Assumptions 4 and 5 hold true. Let x̄k be the output
of the SMPD algorithm at iteration k. For any initial values (x0, λ0),
there exists almost surely a minimizer x∗ of (8) such that x̄k converges
to x∗.

Proof: As the SMPD algorithm is an instance of the ADMM+
algorithm coupled with randomized coordinate descent, it can obvi-
ously be seen as randomized Krasnosel’skii-Mann iterations applied
to the operator T of Lemma 2. It is easy to check that batch selection
sequence (nk)k>0 leads to randomized iterations of T verifying the
condition in Eq. (5). Thus, Theorem 2 gives us the claimed result.

V. DISTRIBUTED OPTIMIZATION

Consider a set of N > 1 computing agents that cooperate to
solve the minimization problem (8). Here, fn, gn are two private cost
functions available at Agent n. Our purpose is to design a random
distributed (or decentralized) iterative algorithm where, at a each
iteration, each active agent updates a local estimate in the parameter
space X based on the sole knowledge of this agent’s private cost
functions and on information it received from its neighbors through
some communication network. Eventually, the local estimates will
converge to a common consensus value which is a minimizer of the
aggregate cost function of problem (8) if any.

Instances of this problem appear in learning applications where
massive training data sets are distributed over a network and pro-
cessed by distinct machines [14], [15], in resource allocation prob-
lems for communication networks [16], or in statistical estimation
problems by sensor networks [17], [18].

A. Network Model

We represent the network as a graph G = (V,E) where V =
{1, . . . , N} is the set of agents/nodes and E ⊂ {1, . . . , N}2 is the
set of undirected edges. We write m ∼ n whenever {n,m} ∈ E.
Practically, n ∼ m means that agents n and m can communicate
with each other.

Assumption 6 G is connected and has no self loop.

B. Problem Reformulation

In order to formulate a distributed optimization problem leading to
fully decentralized algorithm, we a introduce a set V ′ of |E| virtual
nodes, each of them corresponding to an edge in E. As opposed
to virtual nodes, the elements of V will be referred to as physical
nodes and we will note V = V

⋃
V ′. We refer to Figure 1 for an

illustration. We endow V with a set of edges E which are represented
by the green segments in Figure 1 that is, for each edge {n,m} ∈ E
in the initial graph, we generate two edges {n, v} and {v,m} where
v stands for the virtual node between n and m. In particular, E has
cardinality 2|E|. To be more formal, let ϕ : E → V ′ is the bijection
associating each edge of the initial graph to the virtual node on that
edge. Then E is the set of couples {n, ϕ({n,m})} for all n ∼ m.

Let us introduce some notations. For any x ∈ XV , we denote
by xv the components of x i.e., x = (xv)v∈V . We introduce the
function f and g on XV → (−∞,+∞] as f(x) =

∑
n∈V fn(xn)

and g(x) =
∑
n∈V gn(xn) . Note that the sum is done over the set

of physical nodes V and not over the extended set V . Otherwise
stated, f(x) and g(x) depend on x only through the components

Fig. 1. Extended graph: the round nodes correspond to V and the square
ones correspond to the additional set V ′.

of x corresponding to the physical nodes. Clearly, Problem (8) is
equivalent to the minimization of f(x) + g(x) under the constraint
that all components of x are equal.

The next step is to rewrite the latter constraint in a way that
involves the extended graph (V, E). We replace the global consensus
constraint by a modified version of the function ιC (introduced in
Eq. 9). Our goal will be to ensure global consensus through local
consensus over every edge of the graph.

For any ε ∈ E , say ε = {n, n′} ∈ V × V ′, we define the linear
operator Mε : X |V| → X 2 as Mε(x) = (xn, xn′). We contruct the
linear operator M : X |V| → Y , (X 2)|E| as Mx = (Mε(x))ε∈E .
We define C2 = {(x, x) : x ∈ X}. Finally, we define h : Y →
(−∞,+∞] for any y = (yε)ε∈E as

h(y) =
∑
ε∈E

ιC2(yε) .

We consider the following problem:

inf
x∈XV

f(x) + g(x) + h(Mx) . (12)

Lemma 3 Let Assumptions 4 and 6 hold true. The minimizers of (12)
are the tuples (x∗, . . . , x∗) where x∗ is any minimizer of (8).

C. Instantiating the ADMM+ Algorithm

We now instantiate the ADMM+ algorithm to the problem (12) –
only replacing X by XV in (2). For a given ε = {n, n′} ∈ E , the
component λε of any vector λ ∈ Y will be represented by λε =
(λε(n), λε(n

′)).
As the newly defined function h is separable between the (yε)ε∈E ,

the computation of its proxρh can also be split this way. In particular,
each component zk+1

ε has the form (z̄k+1
ε , z̄k+1

ε) where z̄k+1
ε is equal

to (xk+1
n +xk+1

n′)/2+ρ(λkε (n)+λkε (n′))/2 for any ε = {n, n′} ∈ E .
Plugging this equality in (4b), we obtain λkε (n) + λkε (n′) = 0.
Therefore, for any k ≥ 1, z̄k+1

ε = (xk+1
n + xk+1

n′)/2. Moreover,
λk+1
n,m(n) = λkn,m(n) + (xk+1

n − xk+1
n′)/(2ρ). In order to explicit

(4a), remark that for any n ∈ V and for any λ ∈ Y , the nth
component of M∗λ is equal to (M∗λ)n =

∑
n′:{n,n′}∈E λ{n,n′}(n).

As a consequence, (4a) implies that for any physical node n ∈ V ,

xk+1
n = proxτgn

xkn − τ
∇fn(xkn) +

∑
n′:{n,n′}∈E

λkn,n′(n)

 .
On the otherhand, for any virtual node n′ ∈ V ′, (M∗λk)n′ =∑
n:{n,n′}∈E λ

k
{n,n′}(n

′). Because any virtual node n′ =
ϕ({n,m}) is connected to two nodes n and m, the latter
sum simplifies to (M∗λk)n′ = λk{n,n′}(n

′) + λk{m,n′}(n
′) =

−λk{n,n′}(n) − λk{m,n′}(m). As a consequence, xk+1
n′ = xkn′ +

5

τ
(
λk{n,n′}(n) + λk{m,n′}(m)

)
. We are now in position to state the

algorithm. To lighten notations, we introduce the notation Λkn(m) =
λk{n,ϕ({n,m})}(n) for any {n,m} ∈ E. We also introduce the
notation xk{n,m} instead of xkϕ({n,m}). We obtain the following update
equations.

xk+1
n = proxτgn

[
xkn − τ

(
∇fn(xkn) +

∑
m∼n

Λkn(m)

)]
(13a)

xk+1
{n,m} = xk{n,m} + τ

(
Λkn(m) + Λkm(n)

)
(13b)

Λk+1
n (m) = λkn(m) + (xk+1

n − xk+1
{n,m})/(2ρ) . (13c)

D. A Decentralized Stochastic Primal Dual algorithm

The proposed Decentralized Stochastic Primal Dual algorithm
(DSPD) is obtained by applying randomized coordinate descent on
the above iterations (13a)-(13b)-(13c).
DSPD Algorithm:
Initialization: (x0,Λ0)
Do

Select a random set of nodes Ak ⊆ V
For each node n ∈ Ak, do

Update xk+1
n by (13a)

Update xk+1
{n,m},Λ

k+1
n (m) by (13b)-(13c), ∀m ∼ n

Send xk+1
{n,m} and Λk+1

n (m) to nodes m ∼ n
Leave all other variables unmodified.
k ← k + 1

until happy
Output: (xk+1

n)n∈V

Assumption 7 The set of active agents Ak forms an iid sequence
on 2V such that for any n, P[n ∈ V 1] > 0.

Theorem 4 Let Assumptions 4 6 and 7 hold true. Let (xk+1
n)n∈V be

the output of the DSPD algorithm. For any initial values (x0,Λ0),
there exists almost surely a minimizer x∗ of (8) such that for all
n ∈ V , xkn converges to x∗.

Proof: The proof follows the same reasoning as the one of
Theorem 3.

VI. NUMERICAL ILLUSTRATIONS

Problem. We address the problem of `1-regularized logistic re-
gression. Denoting by m the number of observations and by p the
number of features, the optimization problem writes

min
x∈Rp

1

m

m∑
t=1

log
(

1 + e−yta
T
t x
)

+ µ‖x‖1 (14)

where the (yt)
m
t=1 are in {−1,+1}, the (at)

m
t=1 are in Rp, and µ >

0 is a scalar. Let (Bn)Nn=1 denote a partition of {1, . . . ,m}. The
optimization problem then writes

min
x∈Rp

N∑
n=1

∑
t∈Bn

1

m
log
(

1 + e−yta
T
t x
)

+ µ‖x‖1 (15)

or, splitting the problem between the batches

min
x∈RNp

N∑
n=1

(∑
t∈Bn

1

m
log
(

1 + e−yta
T
t xn

)
+
µ

N
‖xn‖1

)
+ ιC(x) (16)

where x = (x1, ...,xN) is now in RNp. Obviously Problems (14),
(15) and (16) are equivalent and Problem (16) is in the form of (9).

Dataset. In the whole section, we will perform our simulations on
the classical covtype dataset available from the LIBSVM website3.
This dense dataset has m = 581012 observations and p = 54
features; we preprocessed it so that the features have zero mean and
unit variance.

We will consider two different setups:
A. Minibatch. At each iteration, a random batch of data is

processed. In this setup, we apply the SMPD algorithm described
in Section IV.

B. Distributed Optimization. At each iteration, one (or multiples)
random agents process their own batch of data and communicates
with its neighbors. In this setup, we apply the DSPD algorithm
described in Section V.

A. Minibatch

Setup. Consider Problem (15), the goal of minibatch processing is
to find a minimum of this problem by using one randomly selected
batch per iteration. We processed the covtype dataset through 581
batches of 1000 observations and setted the regularization parameter
µ to 10−3.

Compared Algorithms. As our goal is to show the performance
of randomized optimization algorithms derived from ADMM+, we
compare ourselves with algorithms using a gradient step for the data
fitting function and we do not consider here acceleration techniques
nor stepsize selection procedures. The considered algorithms are:

- SGD: the stochastic (sub-)gradient descent (see [19] and refer-
ences therein) applied to Problem (15) with 1/k stepsize.

- MISO: the MISO algorithm for composite optimization [20],
[21] applied to Problem (15) with 1/L stepsize, where L is set
to the maximum of the upper bounds of the Lipschitz constants
per batch L = 0.25 maxn=1,...,N ‖an‖22.

- SMPD: our SMPD algorithm described above with parameters
ρ and τ set manually for good performance while satisfying the
condition of Theorem 3.

In Figure 2, we plot the `1-regularized logistic loss versus the
number of passes over the data (estimated as the number of iterations
divided by the number of batches). We observe that the SMPD
performs significantly better than the stochastic subgradient. It also
performs well4 compared to MISO. It is worth noticing that, unlike
for MISO (for which a null initialization often leads to a stalling
algorithm), we did not observe bad starting points for SMPD leading
to a bad stationary point of the algorithm.

B. Distributed Optimization

Setup. Now, we consider the case where the dataset is scattered
over the network depicted in Fig. 1. More precisely, each agent
has 500 observations taken in the covertype dataset, it randomly
activates, processes its data, and sends information to its neighbors.
Here, no coordinator/fusion center is present to collect or manage
data.

min
x∈RNp

N∑
n=1

(∑
t∈Bn

1

m
log
(

1 + e−yta
T
t xn

)
+
µ

N
‖xn‖1

)
+
∑
ε∈E

ιC2(yε). (17)

3http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
4the performance of stochastic optimizations methods for learning depends

vastly on the choice of the stepsizes. In this paper, we do not provide
illustrations and methods for different stepsize selections as our focus is on
the optimization algorithm itself.

6

 0.65

 0.66

 0.67

 0.68

 0.69

 0.7

 0 5 10 15 20 25 30

l1
-r

e
g
u
la

ri
z
e
d
 l
o
g
is

ti
c
 l
o
s
s

number of effective passes

SGD
MISO

SMPD

Fig. 2. Comparison of minibatch algorithms.

Compared Algorithms. As before, we focus on the optimiza-
tion algorithm itself and now compare ourselves with distributed
algorithms using a gradient step for the data fitting function. The
considered algorithms are:

- DSGD: the distributed stochastic (sub-)gradient descent (see
[18], [22] and references therein) applied to Problem (15)
with 1/n stepsize. For fairness in the comparison in terms of
communications, we used the Broadcast Gossip Algorithm [23]
as an exchange algorithm.

- DSPD: our DSPD algorithm described above with parameters ρ
and τ set manually for good performance while satisfying the
condition of Theorem 4.

In Figure 3, we plot the `1-regularized logistic loss at the agent
at the left versus the number of iterations (i.e. the number of agent
activations). We observe that the DSPD is significantly quicker than
the distributed stochastic subgradient. In particular, this is due to
the fact that the DSPD can be seen as a Primal-Dual algorithm
distributed on a graph, which performs significantly better than a
stochastic gradient especially on regularized regression problem for
a comparable computational cost.

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0 50 100 150 200 250 300

l1
-r

e
g
u
la

ri
z
e
d
 l
o
g
is

ti
c
 l
o
s
s

number of iterations

DSGD
DSPD

Fig. 3. Comparison of distributed optimization algorithms.

We remark that the quantity of information exchanged per iteration
is roughly a vector of length shorter than 2Np (8p with our graph)
which means that the number of transmissions is in general quite
small compared to the size of the whole dataset (roughly Tp).

VII. CONCLUSION AND PERSPECTIVES

In this paper, starting from the general ADMM+ algorithm, we
derived randomized optimization algorithms suited for the minimiza-
tion of the sum of three functions, one of them being smooth. These

algorithms are perfectly suited for learning of big datasets, possibly
scattered over a network.

Future works include a precise study of the convergence rate of
these algorithms along with efficient stepsizes strategies.

REFERENCES

[1] D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear
variational problems via finite element approximation,” Computers &
Mathematics with Applications, vol. 2, no. 1, pp. 17–40, 1976.

[2] D. Gabay, “Application of the Method of Multipliers to Variational
Inequalities,” in M. Fortin and R. Glowinski, editors, Augmented
Lagrangian Methods: Applications to the solution of Boundary-Value
Problems. North-Holland, Amsterdam, 1983.

[3] B. C. Vũ, “A splitting algorithm for dual monotone inclusions involving
cocoercive operators,” Advances in Computational Mathematics, vol.
38, no. 3, pp. 667–681, 2013.

[4] L. Condat, “A primal-dual splitting method for convex optimization
involving Lipschitzian, proximable and linear composite terms,” Journal
of Optimization Theory and Applications, vol. 158, no. 2, pp. 460–479,
2013.

[5] F. Iutzeler, P. Bianchi, Ph. Ciblat, and W. Hachem, “Asynchronous dis-
tributed optimization using a randomized Alternating Direction Method
of Multipliers,” in Proc. IEEE Conf. Decision and Control (CDC),
Florence, Italy, Dec. 2013.

[6] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal
processing,” in Fixed-Point Algorithms for Inverse Problems in Science
and Engineering, pp. 185–212. Springer, 2011.

[7] Yu. Nesterov, “Efficiency of coordinate descent methods on huge-scale
optimization problems,” SIAM Journal on Optimization, vol. 22, no. 2,
pp. 341–362, 2012.

[8] O. Fercoq and P. Richtárik, “Accelerated, parallel and proximal coordi-
nate descent,” arXiv preprint arXiv:1312.5799, 2013.

[9] M. Bačák, “The proximal point algorithm in metric spaces,” Israel
Journal of Mathematics, vol. 194, no. 2, pp. 689–701, 2013.

[10] R. T. Rockafellar, Convex analysis, Princeton Mathematical Series, No.
28. Princeton University Press, Princeton, N.J., 1970.

[11] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone
operator theory in Hilbert spaces, CMS Books in Mathematics/Ouvrages
de Mathématiques de la SMC. Springer, New York, 2011.

[12] P. Bianchi and W. Hachem, “A Primal-Dual algorithm for Distributed
Optimization,” submitted, 2014.

[13] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society. Series B (Methodological), pp.
267–288, 1996.

[14] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based
distributed support vector machines,” The Journal of Machine Learning
Research, vol. 99, pp. 1663–1707, 2010.

[15] A. Agarwal, O. Chapelle, M. Dudı́k, and J. Langford, “A reliable effec-
tive terascale linear learning system,” arXiv preprint arXiv:1110.4198,
2011.

[16] P. Bianchi and J. Jakubowicz, “Convergence of a multi-agent projected
stochastic gradient algorithm for non-convex optimization,” IEEE
Transactions on Automatic Control, vol. 58, no. 2, pp. 391 – 405,
February 2013.

[17] S.S. Ram, V.V. Veeravalli, and A. Nedic, “Distributed and recursive
parameter estimation in parametrized linear state-space models,” IEEE
Trans. on Automatic Control, vol. 55, no. 2, pp. 488–492, 2010.

[18] P. Bianchi, G. Fort, and W. Hachem, “Performance of a distributed
stochastic approximation algorithm,” IEEE Transactions on Information
Theory, vol. 59, no. 11, pp. 7405 – 7418, November 2013.

[19] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in International Conference on Computational Statistics
(COMPSTAT). 2010, pp. 177–186, Springer.

[20] J. Mairal, “Optimization with first-order surrogate functions,” in
International Conference on Machine Learning (ICML), 2013, pp. 783–
791.

[21] J. Mairal, “Incremental majorization-minimization optimization
with application to large-scale machine learning,” arXiv preprint
arXiv:1402.4419, 2014.

[22] A. Nedic, “Asynchronous broadcast-based convex optimization over a
network,” IEEE Transactions on Automatic Control, vol. 56, no. 6, pp.
1337–1351, 2011.

[23] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione, “Broad-
cast gossip algorithms for consensus,” IEEE Transactions on Signal
Processing, vol. 57, no. 7, pp. 2748–2761, 2009.

