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Distributed Computation of Quantiles via ADMM
Franck Iutzeler

Abstract—In this paper, we derive distributed synchronous and
asynchronous algorithms for computing quantiles of the agents
local values. These algorithms are based on the formulation of a
suitable problem, explicitly solvable by the Alternating Direction
Method of Multipliers (ADMM), and recent randomized opti-
mization methods.

Index Terms—Quantile, Median, Gossiping, ADMM, Dis-
tributed Algorithms.

I. INTRODUCTION

Consider a connected network of N agents, each with a
scalar value (ai)i=1,..,N . The problem of distributively com-
puting a function of these values by exchanging information
locally over the network has received a lot of interest [1],
[2], [3]. Particularly, solving this problem in an asynchronous
way attracted the attention of the community, notably with
applications to Wireless Sensor Networks [4].

The most famous gossiping problems include average com-
putation [4], [5], [6], [7], [8], greatest value spreading [9], [10],
[11], or some more involved means (see [12] and references
therein). However, to the best of our knowledge, no algorithm
for quantiles or median computation are available when they
can have great potential applications notably in the field of
distributed statistical signal processing. Indeed, the median for
instance is a more robust estimator of the central tendency
than the average, and quantiles are generally more robust than
variance when looking at dispersion.

Recently, distributed optimization algorithms were devel-
oped [13], [14], along with randomized, asynchronous versions
[15], [16]. These methods are based on formulating proper
distributed optimization problems, and solving them using
splitting-based optimization methods such as the popular Al-
ternating Direction Method of Multipliers (ADMM) [17], [18],
[19], or Primal-Dual algorithms [20], [21]; then, randomized
versions are derived using suited coordinate descent [15], [22].

In this note, we first design a convex optimization problem
whose solution meets the sought quantile to compute. Then,
in Section III, we use a distributed formulation of ADMM
to derive a distributed algorithm for quantile computation. In
Section IV, an asynchronous version which communication
scheme mimics Random Gossip [4] is proposed. Finally, we
illustrate the relevance of our algorithms in Section V.

II. QUANTILE FINDING AS AN OPTIMIZATION PROBLEM

Let a = (ai)i=1,..,N be a size-N real vector and s be a
permutation that sorts a in increasing order. For a given q ∈
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[0, 1], our goal is to find a q% quantile estimator of vector a
in the sense that we wish to find a real value a? such that

a? ∈
[
as(bqNc); as(dqNe)

]
if q ∈ [1/N, 1[

and a? ≤ mini ai if q < 1/N
a? ≥ maxi ai if q = 1

. (1)

Note that the degenerate cases where qN < 1 and qN = N
can also boil down to finding the minimum and the maximum
of the agents values respectively (see e.g. [11]).

In this section, we formulate an optimization problem, based
on proposed quantile objective functions, which solutions
verify the sought conditions of Eq. (1).

A. Objective functions

Let us define quantile objective functions (fβa )a,β as

fβa : R → R

x 7→ fβa (x) =

{
β(a− x) if x < a
x− a if x ≥ a

(2)

which rely on two parameters:
• a ∈ R; a point of the set;
• β > 0; a scale parameter.
It is easy to see that for any a ∈ R, β > 0, fβa is convex and

continuous. In addition, its proximity operator can be explicitly
computed for any γ > 0 and any z ∈ R as (See Appendix A)

proxγfβa (z) , arg min
w∈R

{
fβa (w) +

1

2γ
‖w − z‖22

}

=

 z + γβ if z < a− γβ
z − γ if z > a+ γ
a if z ∈ [a− γβ; a+ γ]

. (3)

The fact that fβa is not differentiable but has an explicit
proximal operator naturally leads us to consider proximal min-
imization algorithms like ADMM or primal-dual algorithms
for problems involving such functions (see [23, Chap. 27]).

B. Equivalent Problem

Consider the optimization problem:

min
x∈R

f(x) ,
N∑
i=1

fβai(x). (4)

Lemma 1: Let β = q
1−q . Then, the minimizers of Pb. (4)

verify Eq. (1).
The proof is reported in Appendix B. Notice that, although

other choices for β are possible, we emphasize the fact that
the present one do not necessitates any knowledge of the total
number of agents N which is a very attractive property in
practical networked systems.
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III. DISTRIBUTED QUANTILE COMPUTATION

Consider a network of N agents linked through an undi-
rected connected graph G = ({1, .., N}, E) where E is the set
of edges: E = {e = {i, j} : i and j are connected}. Ni is the
neighborhood of i, that is the agents j such that {i, j} ∈ E
(i /∈ Ni), and di = |Ni| is the degree of i.

Let each agent i have a (local) point ai ∈ R; the objective
of this section is to design an algorithm that distributively
computes a q% quantile estimator of the vector (ai)i=1,..,N .

To do so, we proceed as such: i) we reformulate Problem (4)
so that it is distributed-ready; and ii) apply ADMM on it.
Distributed formulation. Each agent i has a local point ai
and thus can maintain local function fβai . To lead to distributed
algorithms, the new problem must feature a local variable
x(i) ∈ R at each agent/function i; thus, in order to recover
the solutions of Prob. 4, one must add a consensus constraint
x(1) = x(2) = .. = x(N).

There are several ways to formulate consensus constraints
over graphs [13], [24], [16]; for brevity and in line with our
target algorithms, we proceed as in [24]: for all edges e =
{i, j} ∈ E, we create a size-2 additional variable y(e) =
[y1(e), y2(e)]T ∈ R2 such that y1(e) = x(i) and y2(e) = x(j).
Then, imposing y1(e) = y2(e) for all e ∈ E, by adding in
the cost function a convex indicator function ι(y(e)) = 0 if
y1(e) = y2(e) and +∞ elsewhere, is the same as imposing
the consensus as soon as the graph is connected. For clarity,
at edge e = {i, j} we note y1(e) = y(i, e) if i < j and
y2(e) = y(i, e) elsewhere.

We note x = [x(1), .., x(N)]T ∈ RN and y =
[y(1), .., y(|E|)]T ∈ R2|E|; similarly, we will adopt the same
notation for any variable with the same size. Then, our
distributed-ready problem reads:

min
x∈RN ,y∈R2|E|

N∑
i=1

fβai(x(i))︸ ︷︷ ︸
F (x)

+
∑
e∈E

ι(y(e))︸ ︷︷ ︸
G(y)

(5)

s.t. Mx = y where M=


M1

...
M|E|


with Me the 2×N matrix such that M(1, i) = M(2, j) = 1 if
e = {i, j} and zeros elsewhere, so that Mex = [x(i), x(j)]T =
y(e). This makes M size 2|E| ×N and full column-rank.
Algorithm. As F and G have explicit proximal operators, it is
natural to use ADMM on Pb. (5), which leads to the following
algorithm after simplification of some variables.

Distributed quantile computation
Init.: x0, x̄0, z0, λ0 ∈ RN , ρ > 0, β = q

1−q .
At each iteration k:
• Each agent i compute

zk(i) =
xk(i) + x̄k(i)

2
− λk(i)

xk+1(i) = proxfβai/(ρdi)
(zk(i))

=


zk(i) + β

ρdi
if zk(i) < ai − β

ρdi

zk(i)− 1
ρdi

if zk(i) > ai + 1
ρdi

ai elsewhere

• All agents send their version of xk+1 to their neighbors

x̄k+1(i) =
1

di

∑
j∈Ni

xk+1(j)

• Each agent i update

λk+1(i) = λk(i) +
xk+1(i)− x̄k+1(i)

2

Theorem 1: Let q ∈]0, 1[, β = q
1−q , and ρ > 0. The

Distributed quantile computation algorithm converges to a
consensus over a value verifying Eq. (1).

xk → (x?, x?, .., x?) with x? verifying Eq. (1).

Proof: This theorem comes from the succession of three
results: i) the Distributed quantile computation algorithm is
an instantiation of the ADMM on Prob. (5) of the form
minx,y F (x) + G(y) s.t. Mx = y with F and G convex;
so it converges the algorithm converges to a solution of (5)
[17], [18]; ii) by construction of Prob. (5), its solutions have
the form [x?, x?, .., x?]T where x? is a solution of Prob. (4);
and iii) by Lemma 1, the solutions of (4) verify Eq. (1).

Remark 1: An efficient initialization of the algorithm is to
set x0(i) = x̄0(i) = ai. λ0 can be taken as the null vector, and
ρ ≈ 1. This kind of initialization is performed in the numerical
experiments, along with discussions over the choice of ρ.

IV. ASYNCHRONOUS GOSSIPING FOR QUANTILE
ESTIMATION

Randomized versions of the ADMM have been introduced
in [15] in order to produce asynchronous gossip-like dis-
tributed algorithms; this kind of result was later extended to
more general algorithms in [22], [25]. In this section, we build
upon the distributed problem Eq. (5) and a careful application
of the Asynchronous Distributed ADMM of [15] to produce
a gossip-based algorithm for quantile estimation.

As our formulation is edge-based, at each iteration k, we
select an edge ek = (i, j) ∈ E following an i.i.d. random
process; then, only agents i and j update and exchange during
this iteration (see [15] for derivation details). This kind of
gossiping (drawing two nodes who average their values) is
similar to the Random Gossip averaging algorithm [4].

Asynchronous Gossip for quantile computation
Init.: x0, z0 ∈ RN , x̄0 ∈ R|E|, λ0 ∈ R2|E|, ρ > 0, β = q

1−q .
At each iteration k, draw an edge ek = {i, j} ∈ E:
• Agents v ∈ {i, j} compute

zk(v) =
1

dv

∑
n∈Nv

(x̄k({v, n})− λk(v, {v, n})

xk+1(v) = proxfβav/(ρdv)
(zk(v))

=


zk(v) + β

ρdv
if zk(v) < av − β

ρdv

zk(v)− 1
ρdv

if zk(v) > av + 1
ρdv

av elsewhere

• Agents i and j exchange their copy of xk+1

x̄k+1(ek) =
xk+1(i) + xk+1(j)

2
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• Agents v ∈ {i, j} update

λk+1(v, ek) = λk(v, ek) + ρ(xk+1(v)− x̄k+1(ek))

Theorem 2: Let q ∈]0, 1[, β = q
1−q , and ρ > 0. If (ek)

is an i.i.d. sequence valued in E such that for all e ∈ E,
P[e1 = e] > 0, then the Asynchronous Gossip for quantile
computation algorithm converges almost surely to a consensus
over a value verifying Eq. (1).

xk → (x?, x?, .., x?)a.s. with x? verifying Eq. (1).

Proof: As the Asynchronous Gossip for quantile compu-
tation algorithm is obtained by randomized coordinate descent
on distributed ADMM, [15, Th. 3] gives the almost sure
convergence to a solution of Prob. (4); and, as for Th. 1, we
get that the solutions of (4) verify Eq. (1) by Lemma 1.

Remark 2: An efficient initialization of the algorithm is to
set x̄0(i, j) = ai. λ0 can be taken null and ρ ≈ 1.

Remark 3: For different gossiping schemes such as asyn-
chronous one-way communication (e.g. broadcast) over undi-
rected graphs, we refer the reader to [25].

V. NUMERICAL EXPERIMENTS

In this section, we illustrate the features of both our dis-
tributed synchronous and asynchronous algorithms. In all ex-
periments, we consider N = 15 agents linked by a connected
undirected graph with 72 edges (out of 105 possible). The
values (ai) of the sensors are taken randomly in the integers
between 0 and 100.

In Fig. 1, we represent all the sensors values (xk(i))
versus the number of iterations for the Distributed quantile
computation with q = 0.8 i.e. a quantile at 80% is sought. We
set β = q/(1 − q) as prescribed and ρ = 0.1. In Fig. 1a,
the objective in the sense of Eq. 1 is to reach a value in
[69, 72] while in Fig. 1b, we manually set as(dqNe) = as(bqNc)
in the (ai) so that the objective is to reach exactly 88. We
observe that the agents have the sought behavior however,
the convergence is slightly slower in the second case, but
not seriously so. In both cases, one can notice that two
goals collide in order to reach consensus over a quantile:
i) the consensus itself, being close to its neighbors; and ii)
minimizing the objective; the relative importance of these two
sub-problems is actually tuned by free parameter ρ.

In Fig. 2, we keep everything as in Fig. 1a but, instead of
taking ρ = 0.1, we use ρ = 3 in Fig. 2a and ρ = 0.001 in
Fig. 2b. In Figure 2c, we plot for both ρ = 3 and ρ = 0.001
at each iteration i) the consensus error, equal to the distance
between the agents value and the mean of the agents values
‖xk − 1

N

∑
i xk(i)‖2; ii) the objective error, equal to the

difference between the mean value and the sought optimum
‖ 1
N

∑
i xk(i) − x?‖2; and iii) the total error, equal to the

distance between the agents values and the sought optimum
‖xk − x?1‖2. One can notice that the lower ρ the slower the
consensus; however, when ρ get too big, the consensus is very
fast but the agents move towards the sought objective more
slowly. In conclusion, while any value for ρ brings conver-
gence theoretically and practically, the convergence times can
be very different. Heuristics to chose a correct parameter have

0 10 20 30 40 50 60 70
0

50

100

(a) 80% quantile: x? = 70.71 ∈ [69, 72]

0 10 20 30 40 50 60 70
0

50

100

(b) 80% quantile: x? = 88

Fig. 1: Distributed quantile computation on different data

appeared in the literature [26] but no distributed version exists
to the best of our knowledge.

In Fig. 3, we illustrate the performance of our Asynchronous
Gossip for quantile computation under the same configuration
as Fig. 1a. In Fig. 3a, we display the agents values over
time, we notice that the convergence has a quite different
shape than the synchronous algorithm. In Fig. 3b, we plot the
norm of the error over the mean of the reached value; as this
value is an acceptable quantile, this evaluates both the error
towards a consensus and an acceptable value. We compare
our distributed synchronous and asynchronous algorithms over
the decrease of this errors versus the number of full uses
of the communication graph, that is 1 per iteration for the
synchronous algorithm, and 1/|E| = 1/72 ≈ 0.014 for the
asynchronous one. Although the synchronous algorithm still
over-performs its asynchronous counterpart in this setup, both
reach machine precision within a few hundreds full graph uses.

VI. CONCLUSION

In this note, we proposed a distributed algorithm for quantile
computation along with an asynchronous gossip-based one.
The derivation and convergence proofs of these algorithm rely
on the application of (randomized) ADMM on a well chosen
distributed problem.

APPENDIX A
DERIVATION OF THE PROXIMAL OPERATOR OF fβa

For any γ > 0 and any z ∈ R, the proximity operator of
fβa is defined as

x = proxγfβa (z) = arg min
w∈R

f
β
a (w) +

1

2γ
‖w − z‖22︸ ︷︷ ︸

g(w)

 .
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Fig. 2: Distributed quantile computation with different ρ
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Fig. 3: Asynchronous Gossip for quantile computation

The derivation of this operator is similar to the one of the
soft-thresholding operator as proximity operator of the `1-
norm. Using the fact that x is the (unique) point such that
0 belongs to the subdifferential of g (see [23, Chap. 16, 26,
27]), we obtain 0 ∈ ∂fβa (x) + 1/γ(x− z). Now let us look at
this equation for three cases: x < a, x > a, and x = a.

x < a ∂fβa (x) = −β thus 0 = −β+1/γ(x−z) so x = z+γβ.
This corresponds to the case where x < a, that is z +
γβ < a, otherwise said z < a− γβ.

x > a ∂fβa (x) = 1 thus 0 = 1 + 1/γ(x − z) so x = z − γ.
Similarly, this corresponds to the case z > a+ γ.

x = a This final case, x = a corresponds to the values of z not
covered in the previous cases.

APPENDIX B
MINIMIZERS OF PROBLEM (4)

For any real number x, define the following quantities:∣∣∣∣∣∣
B(x) := Card {ai : ai < x; i = 1, .., N}
E(x) := Card {ai : ai = x; i = 1, .., N}
A(x) := Card {ai : ai > x; i = 1, .., N}

. (6)

Thanks to the convexity of problem, Fermat’s rule tells us
that the minimizers of Problem (4) are the zeros of the sub-
differential of f (see [23, Chap. 16, 26]):

∂f(x) =
∑
i:x<ai

−β +
∑
i:x>ai

1 +
∑
i:x=ai

[−β, 1]

= −βA(x) +B(x) + E(x)[−β, 1]

= −β(N −B(x)− E(x)) +B(x) + E(x)[−β, 1]

= −βN + (β + 1)B(x) + [0, (1 + β)E(x)].

Now, take β = q
1−q and let us look at the zeros. First, due to

the convexity and polyhedral form of f , we get that the zeros
of ∂f are necessarily either one of the (ai) or a segment of
the form [as(i); as(i+1)].

First, if E(x) = 0, 0 = ∂f(x) implies that B(x) =
β
β+1N = qN . As B(x) is an integer, it is necessarily
equal to bqNc; as there is exactly bqNc entries of a below
x, we get that x ∈]as(bqNc); as(dqNe)[ if q ≥ 1/N , and
x < as(1) = mini ai which verifies the sought condition (4).

Then, if E(x) 6= 0, define x− (resp. x+) as a real number
strictly between x and the next entry of a strictly smaller (resp.
greater) than x. Then, E(x−) = 0 and ∂f(x−) = −βN +
(β + 1)B(x−), the same thing holds with x+. A sufficient
condition so that x is the only point such that E(x) 6= 0 and
0 ∈ ∂f(x) is that ∂f(x−) < 0 and ∂f(x+) ≥ 0. With the
prescribed value for β, we get that ∂f(x−) < 0 if and only if
B(x−) < qN and ∂f(x+) ≥ 0 if and only if B(x+) ≥ qN .
Thus, with our choice of β, x is a zero of ∂f if there are at
least bqNc values below or equal to x (from the x+ part) and
strictly less than bqNc strictly below (from the x− part); thus,
the condition is verified.
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