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Abstract—We derive distributed algorithms for projecting the
local values of the agents of a computing network on the simplex
or on the /;-ball. These algorithms are based on distributed
ADMM to solve a convex optimization problem of the form
ming ). fn(x), where each function f, is local to node n and
has an easy-to-compute proximity operator.

Index Terms—Simplex, 11 norm ball, projection, gossiping,
network, distributed optimization

I. INTRODUCTION

Let us consider a connected network of /N agents, each with
a scalar value a,. The problem of averaging, learning, pro-
jecting, or, broadly speaking, minimizing a function of these
values (an)n=1,... n in a distributed fashion has been receiving
a lot of attention [[1]]-[4]]. Indeed, whenever computing or data
storing resources are distributed, these agents have to exchange
in order to attain a common goal. These communications often
have to happen in a local way, one agent to another (instead of
relying on broadcasts with a master node), for robustness (in
computer networks) or due to reachability (in Wireless Sensor
Networks). Algorithms that distributively solve problems us-
ing local, possibly asynchronous, communications are usually
called gossip algorithms.

Since the seminal work [4]] on gossip for averaging, many
works investigated gossip algorithms for averaging and more
involved problems such as maximal value estimation, or
first-order optimization [4]-[13[]. For solving more general
optimization problems, distributed synchronous [14], [15]]
and asynchronous [16], [[17] algorithms were proposed. The
general idea of these methods is to formulate a distributed
optimization problem (as the sum of local losses plus a
consensus enforcing term), and solving it using (synchronous
or asynchronous) splitting-based optimization methods such
as the popular Alternating Direction Method of Multipliers
(ADMM) [14], [16], [18]-[20], or Primal-Dual algorithms
[21]]-[23]].

Recently, the first author proposed a distributed algorithm
for quantile or median computation [24]] based on

(i) reformulating the problem into the minimization of
F(z) = Y, fa.(x) where each f,, is an R — R,
convex, function, with an easy-to-compute proximity
operator, depending only on the data point a,,;

(i1) building on the structure F' as a sum of local prox-
easy function to use distributed ADMM [14], [15]], [25]
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to generate distributed algorithms solving the original
problem.

In this paper, we address the problem of projecting the agent
values onto the simplex and the ¢; ball in a distributed way.
Efficiently handling these projections is important for signal
processing applications as there are at the heart of convex
relaxations of nonconvex labeling problems, as well as of
unmixing problems, see [26], [27] and references therein. The
approach has the same flavor as the one proposed in [24],
but there are significant differences between the problems
of computing averages or quantiles and projecting onto the
aforementioned sets. Therefore, the proposed formulation as
an optimization problem is completely novel.

First, after recalling known results about simplex and ¢;-
ball projection, we introduce an auxiliary problem in the form
of a sum of local prox-easy functions in Section Then,
in Section we rely on distributed ADMM to derive the
actual distributed algorithm for projecting onto the target sets.
Finally, we provide numerical illustrations of our algorithms
in Section [Vl

II. PROJECTING ON THE SIMPLEX AND /;-BALL

First, let us briefly recall some definitions and results (see
[28] for a detailed overview). Let a = (aq,...,ay) € RY
and let || - || be the Euclidean norm. Out of convenience, we
denote by a+ ¢ the addition of the scalar ¢ to each coordinate
of the vector a. The projections of a onto the simplex and
onto the ¢1-ball are respectively defined as

Pa(a) =argmin|y —al] and Pg(a)=argminl|y — al,
yEA yeB

where A is the simplex defined as the set of nonnegative

vectors whose elements sum up to some fixed constant s > 0

(the usual probability or unit simplex corresponds to s = 1);

that is,

N
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and B is the ¢1-ball:

N

n=1

These two projections are closely related; in fact, they can
be obtained one from the other as detailed in the following
lemma:



Lemma 1 ([29, Lemma 3]).

_fa if Yoasi lan] <s,
Pa(a) = { sign(a) ® Pa(la]) else, ' )
Pal(a) :PB(a—lrnT}nan—i—s/N)7 4)

where sign is the sign function ([sign(x)], =1 if z, >0, —1
if z,, < 0, and 0 else), ® denotes the elementwise product,
and |a| is the vector of the absolute values of the elements of
a.

Consequently, we focus in the following on the projection
onto the simplex; this projection amounts to finding a suitable
threshold value, in the sense of the following result:

Lemma 2 ([30])). There is a unique t € R such that

Pala) =la -1+ )

where [+ is the elementwise maximum with 0.

Since Zgil[PA(a)]n = s, one can directly see that the
problem of projecting onto the simplex boils down to finding
a threshold ¢ satisfying

(6)
nian>t

which is the actual problem that we will solve in a distributed
manner.

III. THE PROJECTION ONTO THE SIMPLEX AS AN
OPTIMIZATION PROBLEM

In this section, we formulate an optimization problem, based
on proposed simplex objective functions, the solution of which
satisfies the equality of Eq. (6).

A. Objective Functions

We define the simplex objective function (f,), for any o €
R, as

if t < a,
else.

1 2 s
Lt—a)?+ 5t
f ={ 7R Q
N
It is straightforward to see that for any o € R, f, is a C!
convex function. In addition, its proximity operator can be
explicitly computed for any v > 0 and any z € R as

1
prox.; (2 = argmm{fa( )+ 2’ytz||2}’

teR

z+’y(a77) . s
_ ?’YN ifz<a+v%, (8)
Z—Yr else.

Indeed, set t = prox.; (). If t < a, we have, from the first
order optimality conditions, t — o +s/N + (t — z)/y = 0,
thus t = (z + v(a —s/N))/(1 + ~y); moreover, the condition
t < « translates on the input z as z < a + s/N. Similarly,
when ¢ > a, one gets s/N + (t — z)/v = 0, which leads to
the second part of the result.

| | | | |
90.5 0 0.5 1 1.5 2 2.5
Fig. 1: Illustration of f,, and f for a = [1.5,0.5,1.0,0.9] and
s = 1, leading to t* = 0.8 and Pa(a) = [0.7,0.0,0.2,0.1].
The dots on the graph represent the junctions between the
parts of the curve. One can see that the function is locally
3-strongly convex on the interval [0.5,0.9] around ¢* .

B. Equivalent Problem

The previously defined functions enable us to formulate our
problem of interest for an input vector a € RY as

min f(t) Z fan (t) )
Theorem 1. Problem Q) has a unique minimizer t* and
Pala) =[a—t*]+ (10)

with f locally p-strongly convex around t* and p = card({n
an >t*}) > 1

Proof. As (9) is an unconstrained minimization of a smooth
function, we have from the first-order optimality conditions

that:
0=Vft*)= > (" —an+s/N)+ > /N
n:a, <t*

Ny >t*

= Y (t"—an)+s

n:an,>t*

Thus, > _,.,. <+ (an —t*) = s which matches the sought-after
relation of (6) and thus Pa(a) = [a — t*]; from Lemma
Finally, set @ = min({a,, : ap, > t*}) and p = card({n :

N
an >t}) > 1 (s >, Pa(@), =, _1lan —t*]4 =s>
0, there is necessarily at least one a,, such that a,, > t*). For

every ¢t € (—oo,a), we have
N
Y S = S fu®+ Y ful)
n=1 n:an>t* nian, <t*
1 s
= 7,.,;” <2<t - an)2 + Nt> + n:(;t* fan (t)
card({n : ap, > t*}) .2

+ 0y (a + ——an )+

niay>t*

(1)

> fa(t)

nian, <t*

convex



as if a, > t*, then, for ¢ < @ = min({a, : a, > t*}),
fa, (t) = 3(t — ay)? + (s/N)t. The part in braces is convex,
as a sum of convex functions, thus f(¢) — (u/2)t? is convex
on (—oo,al. Hence f is p-strongly convex on (—oo,al, and
since t* lies in the interior of this interval, one can say that f
is p-strongly convex around ¢*, which yields the uniqueness
of t*. 0

Figure [I] provides a representation of a simplex objective
function and the global objective function f, in a simple
example.

Finally, let us notice that although for any «, the function f,
is 1-smooth (differentiable with 1-Lipschitz gradient), it has a
linear part on which the gradient is constant and thus gradient
descent may be arbitrarily slow depending on the initialization.
This naturally leads us to consider proximal minimization
algorithms like ADMM or primal-dual algorithms (see [31}
Chap. 27]).

IV. DISTRIBUTED PROJECTION ON THE SIMPLEX

Consider a network of N agents, the agent number n know-
ing only the data value a,, € R. The connected, undirected
network is represented by its set of edges £ = {(n,m) :
the agents n and m are connected}. The agent number n can
send and receive information from its neighborhood N,, =
{m # n : (n,m) € E}. We denote by d,, = card(\N,,) its
degree (number of neighbors).

A. Proposed Algorithm

The objective of this section is to design an algorithm that
distributively projects the full vector a onto the simplex. To
do so, we first reformulate our problem in a distributed way
and use ADMM to solve it; this results in an algorithm using
the proximity operators of the (f,, ), and local exchanges
between the agents (see [6]], [24], [25] for details about the
link between ADMM and gossip-based optimization).

In order to formulate Problem @I) in a distributed manner,
one can introduce a vector x € R and associate each
coordinate n with an agent n, a data point a,, and the
corresponding simplex objective function f,, . Problem () is
equivalent to minimizing ZnN:1 fa, (x5,) under the constraint
that x1 = o = .. = xn in the sense that the solution of
the latter is of the form (¢*,..,¢*) where t* is the solution of
the former. Finally, to take into account the links between the
agents, the constraint 1 = x5 = .. = zy can be reformulated
as ©; = x; for all (i,j) € E as the graph is connected;
putting the constraints in the functions, one gets the distributed
problem

12)

where ¢,(x) = 0 if z, = z; for all j € N, and +o0
elsewhere. Once again, the solution of (I2Z) is of the form
(t*,..,t*) where t* is the solution of (9). Applying ADMM
on it (see the monograph [14] and references therein), leads to
the following algorithm after simplification of some variables
omitted here due to lack of space. This methods relies on

Distributed Projection on the Simplex
Initialization: zo, A0 e RN, p > 0.

At each iteration k =0,1, ...

> [Computation] for each agent n

pdnzkta,—s/N

: k s
ahtl = { L Ltedn o Sant a5 (130
] S
Zn = dum else,
pP* = max(a, — z571,0). (13b)

> [Exchange] all agents send their versions of z**! to their
neighbors

k+1_ —k+1
k+1 _ 1 k+1 k+1 _ \k Ty —Tp
Zy, — dn ZmENn Ty s )‘n - >‘n + 2 )
k41, ~k+1
k+1 _ 2, 47T _ \k+1
Zptt = o AT
(14)

an hyper-parameter p that can be chosen as any positive real
value (although it might affect the convergence rate), a typical
choice which seems to be practically sound is p = 1.

We can note that the overall memory usage is O(|E|), and
the computational complexity per iteration is O(1). Finally,
note that step may not be computed at each iteration as
it gives the sought value from an algorithm variable.

Theorem 2. The Distributed Projection on the Simplex pro-
duces a sequence (x*) that converges linearly to a consensus
over a value t* satisfying Pa(a) = [a — t*]4, and

p* — Pa(a) ask — oco. (15)

Proof. This theorem comes from the fact that the Distributed
Projection on the Simplex is exactly ADMM applied to the
equivalent problem (I2). Since f is locally strongly convex
around its optimum ¢*, (x*) converges linearly to ¢* (see [25,
Th. 2] for the proof and the explicit rate depending on the
graph). Finally, Theorem || allows us to conclude that
holds. O

Remark 1. This algorithm can be extended to asynchronous
versions where only some randomly drawn agents compute
and update at each iterations by applying the same reasoning

as in [16], [17)], [23)], [24].

B. Distributed Projection onto the {1 Ball

Following the results of Section [[I} it is straightforward to
adapt the previous algorithm in order to project on the ¢; ball
rather than on the simplex. Indeed, instead of applying the
Distributed Projection on the Simplex on a, it suffices to apply
it on |a|. Then, the rule of Eq. (3) can be applied to deduce
the projection of a on the ¢;-ball from the projection of |a]
on the simplex. In practice, it suffices to replace (I3al{13b)
by

pdnttlanl=s/N ok :

xﬁ*l{ P e sl ads ae
Zn = pdom else,

ki1 | sign(a,) max(|a,| — 2E+1,0) if 25+ >0,

Bt (16b)
Qn else.

Then the vector b* converges to Pg(a).



V. NUMERICAL EXPERIMENTS
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Fig. 2: Evolution of the variables of the algorithm with respect
to the number of iterations. Each color corresponds to one
agent n.

In this section, we provide an illustration of the features
of our algorithms on an undirected graph of N = 15 nodes
with 72 edges (out of 105 possible ones). The points a,, are
taken randomly from the standard Gaussian distribution and
the objective is to project a on the simplex and on the ¢ ball
with s = 1. We chose p = 1 and initialized all vectors to zero,
which appears to be generally a good choice.

In Fig. [2| we represent the agent threshold values () and
projection values (p%) with respect to the number of iterations
for both problems. We notice that in these results, the agents
quickly agree in terms of threshold values before shifting this
value to the optimal one; this agreement/minimization trade-
off is controlled by p (see [24, Fig. 2] for details).

In Fig. [3| we plot the projection errors (||p* —Pa(a)||? for

the Simplex and ||b* — Pg(a)||? for the ¢;-ball). They both
converge linearly at comparable rates. Finally, in Fig. @] we
compare the ADMM approach of Distributed Projection on
the Simplex with its asynchronous counterpart following [24];
we also add to plots the results of the classical distributed
gradient and its asynchronous counterpart both with stepsizes
1/(1 + k/10) [32]. Out of fairness between asynchronous
and synchronous methods, we plot the Simplex projection
Error ||p* —Pa(a)||? versus the number of full computations
i.e. 1 per iteration for synchronous methods and 2/N per
iteration for asynchronous ones. We notice that, as advocated,
the ADMM-based approach is much more efficient than the
gradient-based one on this problem; in addition, the asyn-
chronous version enjoys a satisfying convergence rate.
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Fig. 3: Simplex projection error ||p* — Pa(a)|? and ¢,
projection error |b* — Pg(a)||? with respect to the number
of iterations.
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Fig. 4: Comparison between ADMM and Distributed Gradient.

VI. CONCLUSION

We proposed a framework to compute the projection onto
the simplex or the ¢; ball of a vector, the elements of which are
stored and processed by the agents of a network in a distributed
way. These methods are based on the careful construction of
an optimization problem which writes as a sum of prox-easy
functions and on distributed versions of the ADMM.
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