
ASYNCHRONOUS LEVEL BUNDLE METHODS

FRANCK IUTZELER
?

, JÉRÔME MALICK
]
, AND WELINGTON DE OLIVEIRA

†

Abstract. In this paper, we consider nonsmooth convex optimization problems with additive structure featuring indepen-

dent oracles (black-boxes) working in parallel. Existing methods for solving these distributed problems in a general form are

synchronous, in the sense that they wait for the responses of all the oracles before performing a new iteration. In this paper,

we propose level bundle methods handling asynchronous oracles. �ese methods require original upper-bounds (using

upper-models or scarce coordinations) to deal with asynchronicity. We prove their convergence using variational-analysis

techniques and illustrate their practical performance on a Lagrangian decomposition problem. Nonsmooth optimization and

level bundle methods and distributed computing and asynchronous algorithms

1. Introduction: context, related work and contributions

1.1. Nonsmooth convex optimization and bundle methods. We consider convex optimization problems of the

form

f? := min

x ∈X
f (x) with f (x) :=

m∑
i=1

f i (x) , (1)

where the constraint set X is compact convex, and the functions f i : �n → � (for all i = 1, . . . ,m) are convex and

possibly nonsmooth. Typically, nonsmoothness comes from the fact that the f i are themselves the results of inner

optimization problems, as in Lagrangian relaxation (see e.g. [22]), in stochastic optimization (see e.g. [32]), or in

Benders decomposition (see e.g. [14]). In such cases, the functions f i are known only implicitly through oracles

providing values and subgradients (or approximations of them) for a given point.

�e so-called bundle methods are a family of nonsmooth optimization algorithms adapted to solve such problems.

Using oracle information, these methods construct cu�ing-plane approximations of the objective function together

with quadratic stabilization techniques. Bundle methods can be traced back to [21]; we refer to the textbook [16] and

the recent surveys [12, 31] for relevant references. Real-life applications of such methods are numerous, ranging from

combinatorial problems [5] to energy optimization [30, 6].

1.2. Centralized distributed setting. In this paper, we further consider the situation where (1) is sca�ered over

several machines: each function f i corresponds to one machine and associated local data. �is sca�ering is due to

the privacy of the data, its prohibitive size, or the prohibitive computing load required to treat it.

�ese machines perform their computations separately and communicate with a master machine which gathers

local results to globally productive updates. �is distributed optimization set-up covers a diversity of situations,

including computer clusters or mobile agents; it is also a framework a�racting interest in machine learning (see

e.g. [20, 26]).

Distributed optimization has been studied for decades; see the early references [35, 4]. �ere is a rich recent

literature on distributed optimization algorithms (with no shared memory) for machine learning applications; we

mention e.g. [40, 24, 27, 1]. In our context, the functions f i are nonsmooth and only known through oracles; moreover,

in many applications, some of the oracles require considerably more computational e�ort than others. To e�ciently

exploit the fact that the oracles f i are independent and could be computed in parallel, we should turn our a�ention

to asynchronous nonsmooth optimization algorithms. An asynchronous algorithm is able to carry on computation

without waiting for slower machines: machines perform computations based on outdated versions of the main

variable, and a master machine gathers the inputs into a productive update. In traditional synchronous algorithms,

latency, bandwidth limits, and unexpected drains on resources that delay the update of machines would cause the

?
Univ. Grenoble Alpes, LJK, F-38000, Grenoble, France.

]
CNRS, LJK, F-38000, Grenoble, France.

†
CMA – Centre de Mathématiqes Appliqées, MINES ParisTech, PSL – Research University, F-06904, Sophia Antipolis, France.

1

entire system to wait. By eliminating the idle times, asynchronous algorithms can be much faster than traditional

ones; see e.g. the recent reference [15].

1.3. Distributed bundle methods. �ough asynchronism is extremely important for e�ciency and resilience of

distributed computing, no asynchronous algorithm exists for solving (1) in the above general distributed se�ing.

For example, big problems in stochastic optimization (where uncertainty is due to intermi�ent renewable energy

sources) are heavily structured, o�en amenable to parallel computing by standard decomposition schemes (e.g. by

scenarios [29, 6], by production units [10], or even both [37]). However, existing optimization algorithms exploiting

this decomposability are all synchronous, expect for the recent [18] (see also references therein) dealing with a speci�c

polyedral problem.

Convincingly, bundle methods are particularly well-suited for asynchronous generalizations: outdated information

provided by late machines could indeed be considered as inexact linearizations, and then could be treated as such by

one of the existing tools (see e.g. the recent [25], the review [9], and references therein). However, to our knowledge,

there is no asynchronous version of bundle methods for the general distributed se�ing. Indeed, there does exist an

asynchronous (proximal) bundle method [11] but it is tailored for the case where m is large and each component

depends only on some of the variables. Moreover its implementation and its analysis are intricate and do not follow

the usual rationale of the literature. �ere is also an asynchronous bundle (trust-region) method [18] designed for

dual decomposition of two-stage stochastic mixed-integer problems. �is algorithm requires to eventually call all the

oracles for all the iterates, which we want avoid in our general situation. Another related work is the incremental

(proximal) bundle algorithm of [38], that could serve as a basis for an asynchronous generalization. However, this

generalization is not provided or discussed in [38], neither are numerical illustrations of the proposed algorithm with

its new features.

In this paper, we propose, analyze, and illustrate the �rst asynchronous bundle method adapted to the general

centralized distributed se�ing, encompassing computer clusters or mobile agents, described previously. We will not

build on the two aforementioned proximal bundle methods of [11, 38], but rather investigate level bundle methods

[23, 19]. In contrast with proximal methods where the iterates’ moves can be small even with reasonably rich

cu�ing-planes, level bundle methods fully bene�t from collected asynchronous information: richer cu�ing-plane

models would tend to generate useful lower bounds, so that the level set would be�er approximate the solution set,

and the next iterate would be�er approximate an optimal solution. Such behavior is discussed in the related context

of uncontrolled inexact linearizations; see the comparisons between proximal and level methods in Section 4 of [25].

�ough asynchronous linearizations of the functions and associated lower-bounds can be well exploited in cu�ing-

plane approximations, existing (level) bundle methods cannot be readily extended in an asynchronous se�ing because

of the lack of upper-bounds: the values of the objective function are never available, since the oracles have no reason

to be all called upon the same point. �e main algorithmic di�culty is thus to �nd and manage upper-bounds within

asynchronous bundle methods. �is is quite speci�c to bundle methods which rely on estimates of functions values

or upper-bounds on the optimal values to compute ad-hoc iterates. In contrast, existing asynchronous methods for

other distributed problems usually use prede�ned stepsize and have an analysis based on �xed-point arguments; see

e.g. [24, 27, 26].

1.4. Contributions, organization. In this work, we present the �rst asynchronous level bundle methods for ef-

�ciently solving (1) in a general distributed master-slave framework where one master machine centralizes the

computations ofm machines corresponding to them oracles of functions fi . To tackle the lack of function evaluation,

we propose two options: (i) to exploit Lispschitz properties of the functions to construct upper-bounds or (ii) to

coordinate the oracles when necessary for convergence, which has the interest of requiring no extra knowledge on

the functions.

�e proposed algorithms are thus totally asynchronous in the terminology of Bertsekas and Tsitsiklis (see Chapter

6 of the book [4]). �is means that every machine updates in�nitely many times and the relative delays between

machines are always �nite (but the sequence of delays is possibly unbounded). We underline that the algorithms does

not rely on any assumption on the computing system, in contrast with almost all existing literature on asynchronous

optimization algorithms; notable exceptions include [34] for coordinate descent and [26] for proximal gradient

methods). In practice, the algorithm are not more di�cult to program than their synchronous counterparts, apart

from the implementation of the exchanges between the master and the machines.

We provide a convergence analysis of our algorithms under the assumption that the convex constraint set X is

compact. By using elegant tools from set-valued analysis, we o�er an original and more straightforward proof of

convergence of level bundle algorithms. To simplify the presentation, we �rst restrict to the case of exact oracles

2

(i.e. when the functions f i are known through subroutines providing their values and subgradient for a given point),

and then present the extension to inexact oracles (i.e. when the subroutine provides noisy approximations of its value

and gradient). �e numerical experiments on a Lagrangian decomposition of a mixed-integer problem illustrate the

features of the asynchronous algorithms compared to the standard (synchronous) one.

�is paper is organized as follows. Section 2 reviews the main ingredients of level bundle methods, presents the

standard level bundle method [19], and introduces disaggregated models, on which asynchronous bundle methods are

built. Section 3 incorporates to this algorithm the asynchronous communications and the upper-bound estimation

to provide a �rst asynchronous bundle algorithm. Section 4 presents and studies a second asynchronous bundle

algorithm using scarce coordination between machines, requiring no extra assumption on the functions. In Section 5,

we extend our previous results to the case of noisy inexact oracles. Finally, Section 6 presents some preliminary

numerical experiments, illustrating and comparing the algorithms.

2. Level bundle methods: recalls and disaggregated version

�is section reviews the main ideas about (synchronous) level bundle methods. In particular, we recall in Section

2.1 the classical algorithm with the associated notation. We also describe in Section 2.2 a disaggregated variant

exploiting the decomposability of the objective function of (1). �e use of disaggregate models is well-known for

proximal bundle methods, but not fully investigated for level bundle methods: we develop here the useful material for

the asynchronous algorithms of the next sections.

2.1. Main ingredients of level bundle methods. We brie�y present the classical scheme of level bundle methods,

dating back to [23, 19], to minimize over X the function f only known through an exact oracle. While presenting

the algorithm and its main features, we introduce standard notation and terminology of convex analysis and bundle

methods; see e.g. the textbook [16].

Algorithm 1 essentially corresponds to the level bundle method of [19]; its main features are the following ones. �e

generic bundle algorithm produces a sequence of feasible points (xk) ⊂ X . For each iterate xk , the oracle information

f (xk) and дk ∈ ∂ f (xk) is assumed to be available. With such information, the method creates linearizations of the

form f (xk) + 〈дk , · − xk 〉 ≤ f (·).We denote 〈x ,y〉 :=
∑

j x jyj the usual inner product of two vectors x ,y ∈ �n , and

‖x ‖ =
√
〈x ,x〉 the associated Euclidean norm. Such linearizations are used to create the cu�ing-plane model for f at

iteration k :

ˇfk (x) := max

j ∈Jk
{ f (x j) + 〈дj ,x − x j 〉} ≤ f (x) (2)

where Jk ⊂ {1,2, . . . ,k } is a set of indices of points at which the oracle was called. For any k , we introduce the level

set �k of
ˇfk associated to level parameter f lev

k ∈ �

�k := {x ∈ X :
ˇfk (x) ≤ f lev

k } ⊃ {x ∈ X : f (x) ≤ f lev

k }.

�is level set de�nes a region of the feasible set in which the next iterate is chosen: xk+1 ∈ �k . It also provides a

lower bound f low

k for f? whenever �k = ∅. Indeed, one can take f low

k+1
= f lev

k as, in this case, f? ≥ f lev

k .

A common rule to choose the next iterate is by projecting a certain stability center x̂k ∈ (xk) onto �k , that is

xk+1 := arg min

x ∈�k

1

2

‖x − x̂k ‖
2 . (3)

When X is a polyhedral set, computing the next iterate consists in solving a mere convex quadratic optimization

problem. �is is also the case when X is a Euclidean ball, as pointed out in [7]. Since the sequence (xk) is available,

an upper bound for the optimal value f? is just f
up

k := minj ∈{1...,k } f (x j). �us, we have an upper and a lower bound

on the optimal value; we can then de�ne the gap

∆k := f
up

k − f low

k ,

�e gap gives a natural stopping test ∆k ≤ tol∆, for some stopping tolerance tol∆ ≥ 0. Moreover, ∆k can also be used

to update the level parameter as

f lev

k := α f low

k + (1 − α) f
up

k = f
up

k − α∆k , with α ∈ (0,1). (4)

3

Remark 1 (About convergence). �e convergence of the standard level bundle method presented in Algorithm 1

follows �eorem 3.5 in [19]. �e proof uses that xk+1 ∈ �k implies f (xk) + 〈дk ,xk+1 − xk 〉 ≤ f lev

k for k ∈ Jk , that in

turn yields

‖xk+1 − xk ‖ ≥
f (xk) − f lev

k

‖дk ‖
≥
α∆k

Λ
, (5)

where the bound ‖дk ‖ ≤ Λ can be guaranteed by compactness and convexity of f . Since this inequality requires the

value of f (xk), it is not guaranteed anymore in asynchronous se�ing. We will pay special a�ention to this technical

point in the algorithms of Section 4.

Algorithm 1 Standard level bundle method

1: Choose x1 ∈ X and set x̂1 = x1

2: De�ne f up

1
= ∞, J0 = ∅ and ∆̂ = ∞

3: Choose a stopping tolerance tol∆ ≥ 0, a parameter α ∈ (0, 1) and a �nite f low

1
≤ f?

4: Send x1 to the oracle

5: for k = 1, 2, . . . do
. Step 1: receive information from oracle

6: Receive (f (xk), дk) from the oracle

7: Set Jk = Jk−1
∪ {k }

8: if f (xk) < f up

k then
9: Update f up

k = f (xk) and xbest = xk . update upper bound

10: end if
. Step 2: test optimality and su�cient decrease

11: Set ∆k = f
up

k − f
low

k
12: if ∆k ≤ tol∆ then
13: Return xbest and f up

k
14: end if
15: if ∆k ≤ α ∆̂ then
16: Set x̂k = xbest, set ∆̂ = ∆k , and possibly reduce Jk . critical iterate

17: end if
. Step 3: compute next iterate

18: Set f lev

k = f up

k − α∆k . Run a quadratic solver on problem (3).

19: if (3) is feasible then
20: Get the new iterate xk+1

∈ �k . Update f low

k+1
= f low

k and f up

k+1
= f up

k
21: else
22: Set f low

k = f lev

k and go to Step 2 . update lower bound

23: end if
. Step 4: send back information to the oracle

24: Send xk+1
to the oracle

25: Set x̂k+1
= x̂k

26: end for

2.2. Disaggregated level bundle iteration. We present here a level bundle algorithm which exploits the additive

structure of the objective function (1) and the presence ofm oracles
1

providing individual information (f i (x),дi) ∈
�1+n

with дi ∈ ∂ f i (x), for every any point x ∈ X . We de�ne J ik ⊂ {1, . . . ,k } as the index set of the points in

the sequence (xk) where the oracle i was called, i.e. such that (f i (x j),д
i
j)j is computed. �e unique feature of our

situation and the main technical point is that the intersection of the index sets may contain only few elements, or

even be empty.

We can de�ne individual cu�ing-plane models for each i and k

ˇf ik (x) := max

j ∈J ik
{ f i (x j) + 〈д

i
j ,x − x j 〉} ≤ f i (x). (6)

Instead of approximating the objective function f by its aggregate cu�ing-plane model
ˇfk (2), we approximate f by its

disaggregated model

∑m
i=1

ˇf ik . While the idea is standard for proximal bundle methods (see e.g. [2] for an application

in electricity management and [13] for an application in network optimization), the use of disaggregated models

1
To be�er underline our contributions on asynchronicity, we consider �rst only exact oracles of the f i as above. Later in Section 5, we explain

how our developments easily extend to the case of inexact oracles providing noisy approximations of (f i (x), дi).
4

has not been fully investigated for level methods: we are only aware of the level algorithm of [39] that employs a

disaggregate model indirectly just to request exact information from on-demand accuracy oracles.

If Jk ⊂ ∩
m
i=1
J ik , then the disaggregated model provides a be�er approximation for f than the aggregated model

based on Jk

ˇfk (x) ≤

m∑
i=1

ˇf ik (x) ≤ f (x) ∀ x ∈ �n .

We can then replace in the level bundle algorithm the quadratic subproblem (3) by the disagregated quadratic

subproblem: {
minx

1

2
‖x − x̂k ‖

2

s.t. x ∈ �d

k ,
with �

d

k :=


x ∈ X :

m∑
i=1

ˇf ik (x) ≤ f lev

k



, (7)

where x̂k is the stability center and f lev ∈ (f low

k , f
up

k) is the level parameter. As in Section 2, if problem (7) is infeasible,

then f lev

k is a lower bound for f?.

Aside from o�ering be�er accuracy, the disaggregate model has another advantage in our context: it allows for

partial update of the cu�ing-plane model using individual oracle evaluations, without calling all m of the oracles at

the same point. �is is an important feature that permits to handle oracles in an asynchronous manner.

We formalize in the next lemma the easy result stating that (7) can be cast as a standard quadratic problem.

Lemma 1 (Disaggregated master problem). Assume that the feasible set of (7) is nonempty. �en the unique solution
of (7) can be obtained by solving the following quadratic optimization problem (in both variables x and r) and disregarding
the r -component of its the solution:




minx,r
1

2
‖x − x̂k ‖

2

s.t. x ∈ X , r ∈ �m

f 1 (x j) + 〈д
1

j ,x − x j 〉 ≤ r 1 ∀ j ∈ J 1

k
...

...
f m (x j) + 〈д

m
j ,x − x j 〉 ≤ rm ∀ j ∈ Jmk∑m

i=1
r i ≤ f lev

k .

(8)

Proof. Let x̄ be the (unique) solution to problem (7), and (xk+1,rk+1) be the solution of (8). �en by de�ning r̄ i = ˇf ik (x̄)

we get that (x̄ , r̄) is feasible for (8) and therefore the optimal value of (8),
1

2
‖xk+1− x̂k ‖

2
is less or equal than

1

2
‖x̄ − x̂k ‖

2
,

the optimal value of (7). �en

∑m
i=1

ˇf ik (xk+1) ≤
∑m

i=1
r ik+1

≤ f lev

k , showing that xk+1 is feasible to problem (7). We

therefore have shown that ‖x̄ − x̂k ‖
2 ≤ ‖xk+1 − x̂k ‖

2 ≤ ‖x̄ − x̂k ‖
2
. Consequently, every x-component solution xk+1

of (8) is also a solution to (7). As the la�er problem has a unique solution, then xk+1 = x̄ . �

3. Asynchronous level bundle method by upper-bound estimation

In this section, we present and analyze the �rst asynchronous level bundle method, using the disagregated master

subproblem (8) to incorporate asynchronous linearizations from the oracles. We will index the time by k , the number

of iterations of the master. One iteration corresponding to the treatment of the information sent by one oracle. At

iteration k , the master receives the information from an oracle, say i , updates the disagregated model, generates a

new point, and sends back a point to oracle i .
�e asynchronicity in the algorithm makes that the oracles do not necessarily provide information on the last

iterate but on a previous one, so that asynchronous bundle method has to deal with delayed linearizations. While

we assume that all oracles respond and are incorporated in �nite time (which is the standard se�ing of totally

asynchronous in the terminology of [4, Chap. 6]), we do not need to upper bound theses response times. In order to

incorporate these delayed cuts, we denote by a(i) the iteration index of the anterior information provided by oracle

i : at iteration k , the exchanging oracle i provides the linearization for f i at the point denoted xa(i) (see lines 6 and 7

of the algorithm and Figure 1). Our �nite response assumption then simply translates to a(i) → ∞ as k → ∞ for all i .
Apart from the above communication with oracles, the main algorithmic di�erence between the asynchronous

level bundle method and the standard level algorithm (Algorithm 1) is the management of upper-bounds f
up

k . �e

strategy presented here (and inspired by [38]) is to estimate upper bounds on f? without evaluating all the component

5

time

Exchanging machine i
at time k ka(i)

time

Other machine j
at time k ka(j)

= exchange with the master.

Figure 1. Notations for the delayed cuts added in our asynchronous bundle algorithms.

functions f i at the same point. To this end, we make the assumption that we know an upper bound Λ̄i
on the Lipschitz

constant Λi
of f i for all i = 1, . . . ,m. In other words, we assume

| f i (x) − f i (y) | ≤ Λ̄i ‖x − y‖ for all x ,y ∈ X . (9)

�e recent work [38] builds on the same assumption and proposes to bound f i (x) at a given point by solving an

extra quadratic problem of size |J ik | + 1 depending on Λ̄i
. Using this technique, we would obtain an upper-bound of

f (x) at the extra cost of solving m − 1 quadratic problems at each iteration. We propose in Algorithm 2 a simpler

procedure to compute upper bounds f
up

k without solving quadratic problems or other extra cost.

Algorithm 2 Asynchronous level bundle method by upper-bounds estimation

1: Given Λ̄i satisfying (9), choose x1 ∈ X , and set x̄best = x̂1 = x1

2: Choose a tolerance tol∆ ≥ 0, a parameter α ∈ (0, 1), and f up

1
> f? + tol∆ and f low

1
≤ f?

3: Set ∆̂ = ∞ and J i
0
= ∅ for all i = 1, . . . ,m

4: Send x1 to the m oracles

5: for k = 1, 2, . . . do
. Step 1: receive information from an oracle

6: Receive from oracle i the oracle information on f i at a previous iterate xk
′

7: Set a(i) = k ′, store (f i (xk′), дik′), and set J ik = J
i
k−1
∪ {k ′ }

. Step 2: test optimality and su�cient decrease
8: Set ∆k = f

up

k − f
low

k
9: if ∆k ≤ tol∆ then

10: Return x̄best and f up

k
11: end if
12: if ∆k ≤ α ∆̂ then
13: Set x̂k = x̄best and ∆̂ = ∆k . Possibly reduce J jk for all j = 1, . . . ,m.

14: end if
. Step 3: compute next iterate

15: Set f lev

k = f up

k − α∆k . Run a quadratic optimization so�ware on problem (8)

16: if QP (8) is feasible then
17: Get new iterate xk+1

∈ �d

k . Update f low

k+1
= f low

k
18: else
19: Set f low

k = f lev

k and go to Step 2 . update lower bound

20: end if

21: if J jk , ∅ for all j = 1, . . . ,m then

22: f up

k+1
= min



f up

k , f lev

k +

m∑
j=1

(
Λ̄j ‖xk+1

− xa(j) ‖ − 〈д
j
a(j), xk+1

− xa(j)〉
)


23: if f up

k+1
< f up

k then
24: set x̄best = xk+1

25: end if
26: else
27: f up

k+1
= f up

k
28: end if

. Step 4: send back information to the oracle
29: Send xk+1

to machine i
30: Set x̂k+1

= x̂k
31: end for

Note that the upper bound is (possibly) improved only a�er all the oracles have responded at least once. �is

means that the index a(j) (representing the iteration index of the last iterated processed by oracle j) is well de�ned.

3.1. Upper-bound estimation in asynchronous case. �e strategy displayed on line 22 of Algorithm 2 to compute

upper bounds is based on the following lemma. �is yields a handy rule for updating f
up

k depending only on the

6

distance (weighted by Λ̄i
) between the current solution of the master QP (8), xk+1, and the last/anterior points upon

which the oracles responded, xa(i) for i = 1, ..,m.

Lemma 2. Suppose that (9) holds true for i = 1, . . . ,m. At iteration k , whenever the master QP (8) is feasible, with
(xk+1,rk+1) its solution, one has

f (xk+1) ≤ f lev

k +

m∑
j=1

(
Λ̄j ‖xk+1 − xa(j) ‖ − 〈д

j
a(j) ,xk+1 − xa(j)〉

)
. (10)

Furthermore,

α∆k ≤ f
up

k − f
up

k+1
+ 2

m∑
j=1

Λ̄j ‖xk+1 − xa(j) ‖. (11)

Proof. Note �rst that

f (xk+1) =
m∑
j=1

f j (xk+1) =
m∑
j=1

f j (xa(j)) +
m∑
j=1

(
f j (xk+1) − f j (xa(j))

)
.

�is yields

f (xk+1) ≤
m∑
j=1

(
r jk+1
− 〈дja(j) ,xk+1 − xa(j)〉

)
+

m∑
j=1

(
f j (xk+1) − f j (xa(j))

)
≤ f lev

k +

m∑
j=1

(
Λ̄j ‖xk+1 − xa(j) ‖ − 〈д

j
a(j) ,xk+1 − xa(j)〉

)
,

where the �rst inequality comes from the fact that (xk+1,rk+1) is feasible point for the master QP (8). �e second

inequality uses that

∑m
j=1

r jk+1
≤ f lev

k as (xk+1,rk+1) is a feasible point of (8) and the Lipschitz assumption (9) for the

functions.

To prove the second part of the result, we proceed as follows:

f
up

k+1
≤ f lev

k +

m∑
j=1

(
Λ̄j ‖xk+1 − xa(j) ‖ − 〈д

j
a(j) ,xk+1 − xa(j)〉

)
≤ f

up

k − α∆k + 2

m∑
j=1

Λ̄j ‖xk+1 − xa(j) ‖,

where the second inequality is due to the de�nition of f lev

k and due to the bound on the scalar product provided by

the Lipschitz assumption (9). �is concludes the proof. �

At each iteration, the asynchronous level algorithm (Algorithm 2) computes upper bounds of the functional

values by using inequality (10). �e rest of the algorithm corresponds essentially
2

to the standard level algorithm

(Algorithm 1) using the disaggregated model (8). In particular, since the values f
up

k are provable upper bounds, we

still have f? ∈ [f low

k , f
up

k] for all k and the stopping test ∆k ≤ tol∆ is valid. �e convergence analysis of the next

section relies on proving that the sequence of gaps (∆k) does tend to 0 when tol∆ = 0.

2
Note that Algorithm 2 still needs initial bounds f up

1
and f low

1
. �ese bounds can o�en be easily estimated from the data of the problem.

Otherwise, we can use the standard initialization: call the m oracles at an initial point x1 and wait for their �rst responses from which we can

compute f up

1
= f (x1) =

∑
i f i (x1) and f low

1
as the minimum of the linearization f (x1) + 〈д1, x − x1〉 over the compact set X . If we do not want to

have this synchronous initial step, we may alternatively estimate f lev
and set f up

1
= +∞ and f low

1
= −∞. �is would require small changes in the

algorithm (in line 15) and in its proof (in Lemma 3). For sake of clarity we stick with the simplest version of the algorithm and the most frequent

situation where we can easily estimate f up

1
and f low

1
.

7

timek (` + 1)k (` + 1) − 1k (`) k (`) + 1

critical iteration critical iteration

K`

Figure 2. Illustration of the set K `
used in convergence analysis

3.2. Convergence analysis. �is section analyzes the convergence of the asynchronous level bundle algorithm

described in Algorithm 2, under the assumption (9). At several stages of the analysis, we use the fact that the sequences

of the optimality gap ∆k and upper bound f
up

k are non-increasing by de�nition, and that the sequence of lower bound

f low

k is non-decreasing. More speci�cally, we update the lower bound only when the master QP (8) is infeasible.

We count with ` the number of times the gap signi�cantly decreases, meaning that line 13 is accessed, and denote

by k (`) the corresponding iteration. We have by construction

∆k (`+1) ≤ α∆k (`) ≤ α
2∆k (`−1) ≤ · · · ≤ α

`∆1 ∀ ` = 1,2, . . . (12)

We call k (`) a critical iteration, and xk (`) a critical iterate. We introduce the set of iterates between two consecutive

critical iterates as illustrated by Fig 2:

K `
:= {k (`) + 1, . . . ,k (` + 1) − 1}. (13)

�e proof of convergence of Algorithm 2 consists in showing the algorithm performs in�nitely many critical

iterations when tol∆ = 0. We start with basic properties for iterations in K `
, valid beyond Algorithm 2 for any level

bundle method under mild assumptions.

Lemma 3 (Between two consecutive critical iterates). Consider a level bundle method (such as Algorithm 2) satisfying
• f

up

k is a non-increasing sequence of upper-bounds on f?;
• f low

k is updated only when the master QP is empty, and f low

k is chosen as a lower bound greater or equal to f lev

k ;
• f lev

k satis�es f lev

k = α f low

k + (1 − α) f
up

k ;
• all the linearizations are kept between two critical steps.

Fix an arbitrary ` and let K ` be de�ned by (13). �en, (�d

k) is a nested non-increasing sequence of non-empty compact
convex sets: �d

k ⊂ �
d

k−1
for all k ∈ K ` . Furthermore, for all k ∈ K ` ,

(i) the master QP (8) is feasible;
(ii) the stability center and the lower bound are �xed: x̂k = x̂k (`) and f low

k = f low

k (`) ;
(iii) the level parameter and the gap can only decrease: f lev

k ≤ f lev

k (`) and ∆k ≤ ∆k (`) .

Proof. We start with proving (i), (ii) and (iii). Each �d

k is non-empty as otherwise the master QP (8) would be

infeasible. Indeed, if (8) was infeasible at time k , f low

k receives f lev

k and therefore f low

k = f
up

k − α∆k ≥ f
up

k − α∆k (`) so

f
up

k − f low

k ≤ α∆k (`) , which contradicts the fact that k ∈ K `
(i.e, is not a critical step). �is proves (i).

For each k ∈ K `
, the stability center is �xed by construction and the lower bound is updated (increased) only when

the master QP (8) is found infeasible which is impossible for k ∈ K `
(see above). �is establishes (ii).

�e inequality on the level parameter comes directly as follows: f lev

k = α f low

k + (1− α) f
up

k = α f
low

k (`) + (1− α) f
up

k ≤

α f low

k (`) + (1 − α) f
up

k (`) = f lev

k (`) . Note �nally that f
up

k is non-increasing and so is ∆k . We thus have also (iii).

Finally, each�d

k is compact as X is compact, and it is also convex as X is convex and the disaggregate cu�ing-plane

model is convex. �e fact that (�d

k) is a nested non-increasing sequence is thus direct from (iii) as the local cu�ing

plane models only get richer with k (as the model is only reduced in critical steps which cannot happen in K `
). �

We now provide a proof of convergence featuring elegant results from variational analysis [28].

�eorem 1 (Convergence). Assume that X is a convex compact set and that (9) holds. Let tol∆ = 0 in Algorithm 2,
then the sequence of gaps vanishes, limk ∆k = 0, and the sequence of best iterates is a minimizing sequence for (1),
limk f

up

k = f?. As a consequence, for a strictly positive tolerance tol∆ > 0, the algorithm terminates a�er �nitely many
steps with an approximate solution: f? ≤ f (x̄best) ≤ f? + tol∆.

8

Proof. �e convergence ∆k → 0 is given by (12) as soon as the counter of critical steps ` increases inde�nitely. �us

we just need to prove that, a�er �nitely many steps, the algorithm performs a new critical iteration. For the sake of

contradiction, suppose that only �nitely many critical iterations are performed. Accordingly, let
¯` be the total number

of critical iterations and k (¯`) be the index of the last critical iteration. Observe that x̂k = x̂ is �xed and ∆k ≥ ∆ > 0 for

all k > k (¯`). We have from Lemma 3, that (�d

k) is a nested non-increasing sequence of non-empty compact convex

sets for k > k (¯`). Suppose that there is an in�nite number of asynchronous iterations a�er the last critical iteration

k (`), then (�d

k) converges to �d
in the sense of the Painlevé-Kuratowski set convergence [28, Chap. 4.B]:

lim

k
�

d

k = �
d =

⋂
k

cl�d

k .

Now, Šmulian’s theorem [33, 3] guarantees that the intersection �d = ∩kcl�d

k is nonempty. Moreover, �d
is by

de�nition a convex compact set and, therefore, the projection of x̂ onto �d
is well de�ned and unique:

P�d (x̂) = arg min

x ∈�d

1

2

‖x − x̂ ‖2.

�en [28, Prop. 4.9] implies that xk+1 = arg minx ∈�d

k

1

2
‖x − x̂ ‖2 = P�d

k
(x̂) converges to P�d (x̂). Hence, (xk) is a

Cauchy sequence

∀ε > 0 ∃ ¯k ∈ � such that ∀s,t ≥ ¯k =⇒ ‖xs − xt ‖ ≤ ε .

By taking ε = α
4m maxi Λ̄i

∆ and
3 k ≥ min

j=1, ...,m
a(j) ≥ ¯k , the inequality in (11) gives

α∆ ≤ α∆k ≤ f
up

k − f
up

k+1
+ 2

m∑
j=1

Λ̄j ‖xk+1 − xa(j) ‖

≤ f
up

k − f
up

k+1
+ 2

m∑
j=1

Λ̄j α

4m maxi Λ̄i
∆ ≤ f

up

k − f
up

k+1
+
α

2

∆,

showing that f
up

k − f
up

k+1
≥ α

2
∆ > 0 for all k ≥ min

j=1, ...,m
a(j) ≥ ¯k . �is is in contradiction with the fact that the sequence

(f
up

k) is non-increasing and lower bounded, thus convergent. Hence, the index set K `
is �nite and ` grows inde�nitely

if tol∆ = 0. Finally, the proof that (f
up

k) converges to the optimal value follows easily by noting that

f? ≤ f
up

k = f low

k + ∆k ≤ f? + ∆k

from f low

k ≤ f? ≤ f
up

k and ∆k = f
up

k − f low

k , which ends the proof. �

4. Asynchronous level bundle method by coordination

�e level bundle algorithm of the previous section is fully asynchronous for solving problem (1). It relies however

on having bounds on the Lipshitz constant of the functions fi , which is a strong practical assumption. To compute

upper-bounds f
up

k , we propose here an alternative strategy based on coordination of the machines to evaluate f (xk)
if necessary. We present this method in Section 4.1 (Algorithm 3) and we analyze its convergence in Section 4.2.

4.1. Upper-bounds by coordination. In our asynchronous se�ing, the oracles have no reason to be called upon

the same point except if the master decides to coordinate them. We propose a test that triggers coordination of the

points sent to the machines, when the proof of convergence is in jeopardy (namely, when (5) does not hold). �us

we introduce a coordination step (see line 32 in Algorithm 3): if the test is valid, this step consists in sending to all

oracles the same iterate at the next iteration for which they are involved. We note that some incremental algorithms

(as [17]) also have such a coordination step. In such algorithms though, there is usually a coordination step a�er a

�xed number of iterations. Here, in contrast, we require coordination only when the di�erence between two iterates

becomes too small. Our coordination strategy does not generate idle time because the machines are not requested to

abort their current jobs.

�e second asynchronous algorithm is given in Algorithm 3. Its steps correspond to the ones of Algorithm 2,

with more complex communications (Steps 1 and 4). Step 2 (optimality and su�cient decrease test) is unchanged.

3
As the oracles are assumed to respond in a �nite time, the inequality minj=1,. . .,m a(j) ≥ ¯k is guaranteed to be satis�ed for k is large enough.

9

Finally, Step 3 (next iterate computation) relies on the same master problem (8) in both algorithm, but here the

coordination-triggering test replaces by a upper-bound test.

�e coordination iterates are denoted by x̄k in Algorithm 3. Assuming that all oracles always eventually respond

(a�er an unknown time), the coordination allows to compute the full value f (x̄k) and a subgradient д ∈ ∂ f (x̄k) at

the coordination iterate x̄k (see line 10, where rr (“remaining to respond”) counts the number of oracles that have

not responded yet). �e functional value is used to update the upper bound f
up

k , as usual for level methods; the

subgradient is used to update the bound L approximating the Lipschitz constant of f .

In the algorithm, the coordination is implemented by two vectors of booleans (to-coordinate and coordinating):

• �e role to-coordinate[i] is to indicate to machine i that its next computation has to be performed with the

new coordination point x̄k+1; (at that moment, to-coordinate[i] is set to False and coordinating[i] is set to

True.)

• �e role coordinating[i] is to indicate to the master that machine i is responding to a coordination step,

which is used to update the upper bound (Line 14).

Notice that the major di�erence between this algorithm with respect to Algorithm 2 and the incremental (proximal)

bundle algorithm [38], which both require the knowledge of a bound on Lipschitz constants: here, we just use

the estimation of line 16 to guarantee that the bound L used in the test is always greater than all the computed

subgradients.

We note that, as usual for level bundle methods, the sequence of the optimality gaps ∆k is non-increasing by

de�nition. We will further count with ` the number of times in which ∆k decreases su�ciently: more precisely, `
is increased whenever line 24 is accessed, and k (`) denotes the corresponding iteration index. As in the previous

section, we call k (`) a critical iteration and we consider K `
the set of iterates between two consecutive critical iterates

(recall (13) and Fig 2).

4.2. Convergence analysis. �is section analyzes the convergence of the asynchronous level bundle algorithm

described in Algorithm 3. As previously, we have by de�nition of critical iterates the chain of inequalities (12) and we

rely on Lemma 3. �e scheme of the convergence proof consists in showing that there exist in�nitely many critical

iterations. Note though that between two critical steps, we can have several coordination steps: the next lemma

shows that two coordination iterates cannot be arbitrary close.

Lemma 4 (Between two coordination iterates). For a given ` and two coordinate iterates x̄k1
and x̄k2

(with x̄k1
, x̄k2

)
and k1 < k2 ∈ K

` , there holds

‖x̄k1
− x̄k2

‖ ≥ α
∆k2

L
. (14)

Proof. At the second coordinate iterate x̄k2
∈ �d

k2−1
, all the oracles have responded at least one time and all of them

have been evaluated at x̄k1
. Since the set of constraints of (8) keeps growing as k increase within K `

, we have that

x̄k2
satis�es the m constraints generated by linearizations at x̄k1

. Summing these m linearizations and using that

x̄k2
∈ �d

k2−1
(see Eq. (7)) gives

f (x̄k1
) + 〈дk1

, x̄k2
− x̄k1

〉 =

m∑
i=1

(
f i (x̄k1

) + 〈дik1

, x̄k2
− x̄k1

〉
)
≤

m∑
i=1

ˇf ik2−1
(x̄k2

) ≤ f lev

k2−1

�is yields −‖дk1
‖‖x̄k2

− x̄k1
‖ ≤ f lev

k2−1
− f (x̄k1

) so that ‖x̄k2
− x̄k1

‖ ≥ (f (x̄k1
) − f lev

k2−1
)/‖дk1

‖.

�e value f (x̄k1
) was fully computed before the next coordinate iterate, so before k2. It is then used to update the

upper bound, we have f (x̄k1
) ≥ f

up

k2

. �is gives f (x̄k1
) − f lev

k2−1
≥ f

up

k2

− (f
up

k2−1
− α∆k2−1) ≥ α∆k2−1 ≥ α∆k2

where we

used that (∆k) is non-increasing by construction. Finally, using the bound ‖дk1
‖ ≤ L as provided by the algorithm at

line 16 completes the proof. �

�eorem 2 (Convergence). Assume that X is a convex compact set and that (9) holds. Let tol∆ = 0 in Algorithm 3, then
the sequence of gaps vanishes, limk ∆k = 0, and the sequence of coordination iterates is a minimizing sequence for (1),
limk f (x̄k) = f?. For a strictly positive tolerance tol∆ > 0, the algorithm terminates a�er �nitely many steps with an
approximate solution.

Proof. �e convergence ∆k → 0 is given by (12), as soon as the counter ` increases inde�nitely. �us, we need to

prove that there are in�nitely many critical iterations. We obtain this by showing that, for any `, the set K `
is �nite;

10

Algorithm 3 Asynchronous level bundle method by scarce coordination

1: Choose x1 ∈ X and set x̄1 = x̂1 = x1

2: Choose tol∆ ≥ 0, α ∈ (0, 1), bounds f up

1
> f? + tol∆ and f low

1
≤ f?, and a constant L > 0

3: Set ∆̂k = ∞, rr =m, J i
0
= ∅ for all i = 1, ..,m,

¯f = 0 ∈ �,and д̄ = 0 ∈ �n

4: Set to coordinate[i] = False and coordinating[i] = True for all i = 1, ..,m
5: Send x1 to the m oracles

6: for k = 1, 2, . . . do
. Step 1: receive information from an oracle

7: Receive from oracle i the oracle information on f i at a previous iterate xk
′

8: Store (f i (xk′), дik′), and set J ik = J
i
k−1
∪ {k ′ }

9: if coordinating[i] = True then
10: rr← rr − 1 and coordinating[i]← False

11: Update
¯f ← ¯f + f i (xk′) and д̄ ← д̄ + дik′

12: if rr = 0 then . Full information at point x̄k
13: if ¯f < f up

k then
14: Update f up

k = ¯f and x̄best = x̄k . update upper bound

15: end if
16: Update L ← max{L, ‖д̄ ‖ }
17: end if
18: end if

. Step 2: test optimality and su�cient decrease
19: Set ∆k = f

up

k − f
low

k
20: if ∆k ≤ tol∆ then
21: Return x̄best and f up

k
22: end if
23: if ∆k ≤ α ∆̂ then . Critical Step

24: Set x̂k = x̄best and ∆̂ = ∆k . Possibly reduce index sets J jk (j = 1, . . . ,m)

25: end if
. Step 3: compute next iterate

26: Set f lev

k = f up

k − α∆k . Run a quadratic solver on problem (8)

27: if (8) is feasible then
28: Get new iterate xk+1

∈ �d

k . Update f low

k+1
= f low

k , f up

k+1
= f up

k
29: else
30: Set f low

k = f lev

k and go to Step 2 . update lower bound

31: end if
32: if rr = 0 and ‖xk+1

− xk ‖ < α ∆k
L then

33: Set x̄k+1
= xk+1

and to coordinate[j] = True (j = 1, ..,m) . Coordination Step

34: Reset rr =m,
¯f = 0, д̄ = 0

35: else
36: Set x̄k+1

= x̄k
37: end if

. Step 4: send back information to the oracle
38: if to coordinate[i] = True then
39: Send x̄k+1

to machine i .
40: Set to coordinate[i] = False and coordinating[i] = True
41: else
42: Send xk+1

to machine i
43: end if
44: Set x̂k+1

= x̂k
45: end for

for this, suppose that ∆k > ∆ > 0 for all k ∈ K `
. We proceed in two steps, showing that (i) the number of coordination

steps in K `
is �nite; and (ii) the number of asynchronous iterations between two consecutive coordination steps is

�nite as well.

Part (i). De�ne (x̄s) the sequence of coordination steps in K `
. By Lemma 4, we obtain that for any s < s ′

‖x̄s − x̄s ′ ‖ ≥ α
∆s ′

Λ
≥

∆

Λ
.

11

timek (` + 1)k (`)

critical step critical step

K`

coordination rr = 0 new coordination

test line 32 active

≤ T ≤ T ′

Figure 3. Notations for the proof

If there was an in�nite number of coordination steps inside K `
, the compactness of X would allow us to extract a

converging subsequence, and this would contradict the above inequality. �e number of coordination steps inside K `

is thus �nite.

Part (ii). We turn to the number of asynchronous iterations between two consecutive coordination iterations, that is

the number of iterations before the test of line 32 is active. �is part is illustrated by the green arrows in Fig. 3.

Since all the oracles are responsive, there is a �nite number of iterations between two updates of any oracle: as

a consequence, at a given iteration k , there exists a T (the dependence on k is dropped for simplicity) such that all

oracles will exchange at least twice in [k,k +T]; in other words, the �rst part of the test rr = 0 will be veri�ed within

a �nite number T of iterations.

Now, let us show by contradiction that the second part of the test, ‖xk+1 − xk ‖ < α∆k/L, will be veri�ed a�er

a �nite number of iterations. As in the proof of �eorem 1, we have from Lemma 3 that (�d

k) is a nested non-

increasing sequence of non-empty compact convex sets for k ∈ K `
. If there was an in�nite number of asynchronous

iterations before the test is veri�ed, the sequence �d

k would converge to an non-empty �d
in the sense of the

Painlevé-Kuratowski (see [28, Chapter 4, Sec B] and [33, 3]). As a consequence,

xk+1 = arg min

x ∈�d

k

1

2

‖x − x̂ ‖2 −→ P�d (x̂) = arg min

x ∈�d

1

2

‖x − x̂ ‖2.

As (xk) converges, for any ε > 0, there exists T ′ such that for any k ≥ T ′, ‖xk+1 − xk ‖ ≤ ε . Taking ε = α∆/(2L)
with ∆k > ∆ > 0, the second part of the test is veri�ed a�er T ′ iterations which contradicts the in�nite number of

asynchronous iterations before the test is veri�ed. �us, there are at mostT +T ′ iterations between two coordination

steps.

Combining (i) and (ii), we can then conclude that the algorithm performs only �nitely many iterations between

two consecutive critical iterations. �is in turn shows that there are in�nitely many critical iterations, and thus we

get convergence using (12). Similarly, for a strictly positive tolerance, there are a �nite number of critical steps, and

thus a �nite number of iterations. �e result on the convergence of (f
up

k) follows from exactly the same arguments as

in the end of the proof of �eorem 1. �

5. Inexact oracles within asynchronous methods

Many applications of optimization to real-life problems lead to objective functions that are assessed through

“noisy” oracles, where only some approximations to the function and/or subgradient values are available; see e.g. the

recent review [9]. �is is the typical case in Lagrangian relaxation of (possibly mixed-integer) optimization problems,

in stochastic/robust programming, where the oracles perform some numerical procedure to evaluate functions and

subgradients, such as solving optimization subproblems, multidimensional integrations, or simulations.

Level bundle methods are well-known to be sturdy to deal with such inexact oracles; see [9, 8, 36]. In particular,

when the feasible set X is compact no special treatment is necessary to handle inexactness in standard level methods

[9, Sec. 3]. As we show below, this is also the case for our asynchronous level bundle variants, more precisely: (i) the

asynchronous algorithms converge to inexact solutions when used with oracles with bounded error (Section 5.1),

and (ii) with a slight modi�cation of the upper bounds, they can converge to exact solutions when used with lower

oracles with vanishing error (Section 5.2).

12

5.1. Inexact oracles with error bounds. We assume to have an approximate oracle for f i delivering, for each

given x ∈ X , an inexact linearization on f , namely (f ix ,д
i
x) ∈ �×�

n
such that




f ix = f i (x) − η v,ix

дix ∈ �
n

such that f i (·) ≥ f ix + 〈д
i
x , · − x〉 − η

s,i
x

with η v,ix ≤
η v

m and ηs,ix ≤
ηs

m for all x ∈ �n .

(15)

�e subscripts v and s on the oracle errors make the distinction between function value and subgradient errors.

Note that oracles can overestimate function values, as η v,ix can be negative. In fact, both the errors η v,ix and ηs,ix can

be negative but not simultaneously because they satisfy
4 η v,ix + η

v,i
x ≥ 0. Bounds η v ,ηs ≥ 0 on the errors should

exist but are possibly unknown. When ηs = 0, we have the so-called lower oracles returning lower linearizations:

f i (x) − η v,ix = f ix 6 f i (x) and f i (·) > f ix + 〈д
i
x , · − x〉. �e exact oracle corresponds to taking ηs = η v = 0.

Our asynchronous algorithms do not need to be changed to handle inexactness: the information provided by these

inexact oracles is used in the same way as done previously where the oracles were exact. Indeed, we can de�ne the

inexact disaggregated cu�ing-plane model as

ˇf ik (x) := max

j ∈J ik
{ f ix j + 〈д

i
x j ,x − x j 〉}

and the inexact level set �d

k as in (7) (but with the inexact model). We then have the easy following result showing

that f low

k is still relevant.

Lemma 5 (Inexact lower bound). �e update of f low

k in Algorithms 2 and 3 guarantees that it is an inexact lower bound,
in the sense that

f low

k ≤ f? + η
s for all k . (16)

In particular, if the oracle is a lower oracle (ηs = 0) then the algorithms ensure that f low

k is a valid lower bound in every
iteration k .

Proof. By summing them inequalities f ix j + 〈д
i
x j ,x − x j 〉 ≤ f i (x) + ηs,ix , we have that the inexact cu�ing-plane model

satis�es
m∑
i=1

ˇf ik (x) ≤ f (x) + ηs ∀ x ∈ X .

We deduce that

�
d

k =


x ∈ X :

m∑
i=1

ˇfk (x) ≤ f lev

k



⊃

{
x ∈ X : f (x) ≤ f lev

k − ηs
}
.

�erefore, if�d

k = ∅ then the right-hand set is empty as well, which means f lev

k ≤ f? + η
s
. �us the de�nition of f low

k
in Algorithms 3 and 2 give indeed an inexact lower bound. �

Similarly, the next lemma shows that f
up

k is relevant, up the oracle error.

Lemma 6 (Inexact upper bound). �e de�nitions of f up

k in Algorithms 2 and 3 guarantee that it is an inexact upper
bound; more precisely, at iteration k

f
up

k ≥ f (x̄best) − η
v ≥ f? − η

v . (17)

Proof. We �rst consider Algorithm 2. As (xk+1,rk+1) solves the inexact version of (8) (where the exact linearizations

are replaced by the inexact ones), we get
5

f ixa(i) + 〈д
i
a(i) ,xk+1 − xa(i)〉 + Λ̄

i ‖xk+1 − xa(i) ‖ ≤ r i + Λ̄i ‖xk+1 − xa(i) ‖.

�e oracle’s assumptions give f ixa(i) ≥ f i (xa(i)) −
η v

m . Consequently,

f i (xa(i)) + Λ̄
i ‖xk+1 − xa(i) ‖ ≤ r i + Λ̄i ‖xk+1 − xa(i) ‖ − 〈д

i
a(i) ,xk+1 − xa(i)〉 +

η v

m
.

4
By substituting f ix = f

i (x) − η v,i
x in the inequality f i (·) ≥ f ix + 〈д

i
x , · − x 〉 − η

s,i
x and evaluating at x , we get that f (x) ≥ f (x) − η v,i

x − η
s,i
x .

�is shows that η v,i
x + η

s,i
x ≥ 0 and in fact дix ∈ ∂

(η v,i
x +η

v,i
x)

f i (x).
5
As in Section 3, a(i) is the iteration index of the anterior information provided by oracle i ; see Algorithm 2.

13

Assumption (9) yields f i (xa(i)) + Λ̄
i ‖xk+1 − xa(i) ‖ ≥ f i (xk+1). By combining these last two inequalities and summing

up over i = 1, . . . ,m we obtain

f (xk+1) ≤ f lev

k +

m∑
i=1

[Λ̄i ‖xk+1 − xa(i) ‖ − 〈д
i
a(i) ,xk+1 − xa(i)〉] + η

v . (18)

�erefore, the rule on line 22 of Algorithm 2 yields (17) by taking x̄best = xk+1.

�e case of Algorithm 3 is straightforward as

f
up

k = min

j=1, ...,k
fx j ≥ min

j=1, ...,k
f (x j) − η

v

which also gives (17) by de�nition of x̄best at iteration k . �

�e previous two lemmas thus show that the inexact upper and lower bounds appearing in the asynchronous

algorithms with inexact oracles satisfy

f low

k − ηs ≤ f? ≤ f
up

k + η
v

for all k .

We now formalize a theorem to conclude that, as in the standard case, inexactness can be readily handled by our

asynchronous level methods.

�eorem 3. �e convergence results for Algorithms 2 and 3, namely �eorems 1 and 2 still hold, up to the oracle error,
when inexact oracles (15) are used. More precisely, we obtain tol∆ +η

v + ηs -solution of (1):

• when tol∆ = 0, we have limk f
up

k ≤ f? + η
v + ηs

• when tol∆ > 0, we have f? ≤ f (x̄best) ≤ f? + tol∆ +η
v + ηs

Proof. �e proofs are valid verbatim until the end about the convergence of (f
up

k). In the inexact case, we combine

(17) and (16) to write

f? − η
v ≤ f (x̄best) − η

v ≤ f
up

k = f low

k + ∆k ≤ f? + η
s + ∆k .

Passing to the limit, this ends the proof. �

As previously mentioned, no special treatment is necessary to handle inexactness in the proposed asynchronous

level methods. �e obtained solution is optimal within the precision tol∆ +η
v + ηs , the given tolerance plus the

(possibly unknown) oracle error bounds. If we target obtaining tol∆-solutions, more assumptions on the inexact

oracles need to come into play, and minor changes in the algorithms must be made, as explained in the next section.

5.2. Lower oracles with vanishing error bound. We consider further the case of (15) with ηs = 0 and controllable

η v , for which the asynchronous algorithms converge to an optimal solution if we slightly change the upper bound.

We assume here that the error bound η v is known and controllable in the sense that the algorithm can decrease or

increase η v along the iterative process. �us we consider the following special case of (15): given a trial point x and

an error bound η v as inputs, the oracle provides




f ix = f i (x) − η v,ix

дix ∈ �
n

such that f i (·) ≥ f ix + 〈д
i
x , · − x〉

with η v,ix ≤
η v

m for all x ∈ �n .

(19)

�e fact that we control η v allows us to incorporate the oracle error in the algorithm, which eventually will yield

convergence to optimality. �e fact that ηs = 0 gives that f low

k is always a lower bound (recall Lemma 5).

At iteration k we index the error bound with k and we drive η vk below a fraction of the gap at the preceeding

decrease. More precisely, we consider the following control: there exists κ ∈ (0, 1) such that the m oracles satisfy (19)

with

0 ≤ η vk ≤ κ∆k (`) , for all k∈ K `
(20)

where k (`) corresponds to the last critical iteration (the iteration yielding enough decrease on line 12 of Algorithm 2

or on line 24 of Algorithm 3). �is control on η vk is standard in methods with on-demand accuracy [8].

14

�eorem4. Consider Algorithm 2 with inexact oracles (19). If the oracles error can be controlled by (20)withκ ∈ (0,α2/2),
and if the update of f up

k+1
in line 22 is replaced with

min



f

up

k ,
*.
,
f lev

k +

m∑
j=1

(
Λ̄j ‖xk+1 − xa(j) ‖ − 〈д

j
a(j) ,xk+1 − xa(j)〉

+/
-
+ η vk

)

,

then the convergence result of �eorem 1 still holds.

Proof. First note that the update rule of f
up

k+1
provides valid upper bounds: just take Eq. (18) from the proof of Lemma 6

with error boundη v therein replaced with the new (and known) boundη vk . �e de�nitions of f lev

k , f
up

k , and assumptions

(9) give

f
up

k+1
≤ f lev

k +

m∑
j=1

Λ̄j ‖xk+1 − xa(j) ‖ − 〈д
j
a(j) ,xk+1 − xa(j)〉 + η

v

k

≤ f
up

k − α∆k + 2

m∑
j=1

Λ̄j ‖xk+1 − xa(j) ‖ + η
v

k ,

showing that α∆k ≤ f
up

k − f
up

k+1
+ 2

∑m
j=1

Λ̄j ‖xk+1 − xa(j) ‖ + η
v

k . As in the proof of �eorem 1, one can show by

contradiction that there are in�nitely many critical steps and thus convergence of ∆k to 0. Indeed, suppose that there

are a �nite number of critical steps so that ∆k ≥ ∆ > 0 and x̂k is �xed a�er some k , then the nested non-increasing

character of sequence (�d

k) implies that (xk) converges. In our totally asynchronous set-up (all oracles respond in a

�nite time horizon), we have, for all j, that a(j) diverges with k . As (xk) converges, it is a Cauchy sequence which

implies that xk+1 − xa(j) vanishes for all j. �erefore

‖xk+1 − xa(j) ‖ ≤ ε =
κ

2m maxi Λ̄i
∆k (`) for k large.

Since ∆k > α∆k (`) for all k ∈ K `
, this yields

α2∆k (`) < α∆k ≤ f
up

k − f
up

k+1
+ 2

m∑
j=1

Λ̄j ‖xk+1 − xa(j) ‖ + η
v

k

≤ f
up

k − f
up

k+1
+ 2

m∑
j=1

Λ̄j κ

2m maxi Λ̄i
∆k (`) + η

v

k ≤ f
up

k − f
up

k+1
+ 2κ∆k (`) ,

showing that f
up

k − f
up

k+1
>

(
α2 − 2κ

)
∆k (`) ≥

(
α2 − 2κ

)
∆ > 0 for all k large enough. �is contradicts the fact that the

bounded and non-increasing sequence (f
up

k) is convergent. Finally, as ∆k → 0 and we have upper and lower bounds,

the convergence holds as stated in �eorem 1. �

�eorem 5. Consider Algorithm 3 with inexact oracles (19). If the oracles error are controlled by (20) with κ ∈ (0,α2),
then the convergence result of �eorem 2 still holds when the update of the upper bound of line 11 is replaced with

¯f ← ¯f + f ixk′ +
η vk ′

m
. (21)

Proof. Since the oracle noise is added in (21), f
up

k is a valid upper bound. Hence by construction, (f
up

k) and ∆k are

non-increasing and we have

f low

k ≤ f? ≤ f (x̄best) ≤ f
up

k for all k = 1,2 . . .

Hence, in order to conclude the proof we only need to show that limk ∆k = 0. �e proof of �eorem 2 still holds but

with a slightly modi�ed version of Lemma 4 that we show below.

Let x̄k1
and x̄k2

(with k1 < k2 and k1,k2 ∈ K `
) be two consecutive coordinate iterates. Since x̄k2

satis�es the m
constraints of linearizations at x̄k1

, we obtain

fx̄k
1

+ 〈дk1
, x̄k2
− x̄k1

〉 =

m∑
i=1

(
f ix̄k

1

+ 〈дik1

, x̄k2
− x̄k1

〉
)
≤ f lev

k2−1
≤ f lev

k1

,

which implies, by Cauchy-Schwarz and boundedness of subgradients,

L‖x̄k2
− x̄k1

‖ ≥ ‖дk1
‖‖x̄k2

− x̄k1
‖ ≥ fx̄k

1

− f lev

k1

≥ f
up

k1

− η vk1

− f lev

k1

= α∆k1
− η vk1

.

15

�e last inequality above is due to the new rule (21) to update the upper bound. Noticing that ∆k1
> α∆k (`) and

η vk1

≤ κ∆k (`) by rule (20), we get

‖x̄k2
− x̄k1

‖ ≥
(α2 − κ)∆k (`)

L
> 0

by the choice of κ. As k1 and k2 are arbitrary indexes in K `
and X is a compact set, the above inequality can hold

only for �nitely many steps. �is shows that each index set K `
is �nite and, therefore, that the number of critical

iterations ` grows inde�nitely if tol∆ = 0. Hence, (12) gives limk ∆k = 0. �

�us we show that the two asynchronous algorithms also share the well-known robustness of synchronous level

bundle methods for dealing with inexact oracles with on-demand accuracy [8, 36].

6. Numerical illustrations

We have run preliminary numerical experiments and comparisons between the level algorithms discussed in the

paper. �ese experiments are limited and just illustrate the e�ectiveness and the potential interest of asynchronicity

in bundle methods. A thorough numerical assessing of the interests and limits of the algorithms would deserve a

whole study of itself to take into account the various biases from the inputs and the computed system (in particular,

the variance of the solution times of the numerical subroutines and the communications between machines). Here we

consider a basic implementation of the (distributed) algorithms, a trivial set-up and computing system, and a simple

randomly-generated problem. Extensive numerical experiments are beyond the scope of this paper.

6.1. Experimental set-up.
Problem. We consider the instance of problem (1) where each function f i is the optimal value of the following

mixed-integer linear program (MILP): for x ∈ �n ,

f i (x) =




max πi
(
〈ci ,p〉 − 〈x ,Aip〉

)
s.t. ‖p‖∞ ≤ B, Gip ≤ hi

p ∈ �m1 ×�m2

(22)

where ci ,Ai ,Gi ,hi are random vectors/matrices with suitable sizes (we denote by nc the number of a�ne constraints

of the problem i.e. the number of lines of Gi
, kept constant among oracles). Such oracles appear when solving

Lagrangian relaxations of di�cult mixed-integer optimization problems. �e oracle i solves, for given a point x , the

above MILP to get an optimal point p?, which gives

f i (x) = πi (〈c
i ,p?〉 − 〈x ,Aip?〉) and дi = −πiA

ip? ∈ ∂ f i (x).

Note that we have a bound on the Lipschitz constant for f i by

‖πiA
ip‖2

2
≤ π 2

i (
m∑
j=1

‖Ai
j ‖

2

1
)‖p‖2∞ ≤ π 2

i (
m∑
j=1

‖Ai
j ‖

2

1
)B2 =: Λ̄i . (23)

Tested algorithms. We compare the four following algorithms: the �rst is the existing one; the three others are

introduced in this paper.

• S Synchronous level bundle algorithm (Algorithm 1)

• SD Synchronous Disaggregated algorithm (Algorithm 1 using (8))

• AU Asynchronous algorithm by Upper-bounds (Algorithm 2)

• AC Asynchronous algorithm by Coordination (Algorithm 3)

�e four algorithms use the same initialization and global parameters. �e only exception is the level parameter α :

we use the simple value α = 0.5 except for AU, where we use α = 0.9. �is higher value allows us to compensate the

rough upper-bounding (23) to get be�er levels f lev

k .

16

Computing setup. All the code is wri�en in Python 2.7.6 and run on a laptop with an Intel Core i7-5600U and 8GB of

RAM. Each machine is assigned to a thread. MPI is used as a communication framework (more precisely the mpi4py
implementation of OpenMPI 1.6.5). �e MILPs (22) of the oracles and the quadratic problems at the master are

computed using Gurobi 8.0.0.

Notice that for the standard algorithm S, the quadratic problem (3) uses the total function oracle while the

disaggregated quadratic problem (8) uses all the oracles separately. In terms of distributed programming, the �rst one

can be performed by map-reduce (with a sum operation in the reduce) while the second needs a separate gathering of

the oracle results.

Instance generation. We considerm=8 machines/oracles on a problem sizen=20. We generate moderately imbalanced

oracles: six comparable oracles (m1=20, m2=40, B=5, nc = 100, and πi = 1) and two slightly bigger (m1=50, m2= 100,

B = 10, nc = 100, and π1 = π2 = 0.1). �e matrices Ai ,Gi
are drawn independently with coe�cients taken from the

uniform distribution in (−1,1), ci is taken from the normal distribution with variance 100. Moreover hi is taken from

the uniform distribution in [0.1,1.1), so that p=0 is feasible for all problems (22) and f low

0
=0 is a valid lower-bound

on f?.

Experiments. With the above set-up, we run preliminary experiments. We observe a high variance of the solution

times of Gurobi and the communication between machines: this strongly impacts the time for an oracle to respond,

the order of oracles responses for asynchronous algorithms, and therefore the behaviour of the algorithms. Note also

that while the asynchronous methods have the same parameters as the standard level bundle methods, the behavior

of the algorithm (e.g. the coordination frequency) highly depends on the problem and computing system. A complete

computational study is out of the scope of this paper; we focus here only on showing that using asynchronous

methods can save time.

�us, we generate, as described above, one problem instance for which the two bigger oracles (oracles 1 and 2) are

computationally more expensive in practice. We consider �ve runs of the algorithms: the �gures reported in next

tables are the average (and the standard deviation) of the obtained results. We compare the algorithms, �rst for a

coarse precision target (in Section 6.2), then for a �ner precision (in Section 6.3). Finally, we investigate the case of

inexact oracles (in Section 6.4).

6.2. Experiments for coarse precision. In this part, we stop the algorithms as soon as ∆k/f? < 10% and we display

in Table 1 the number of iterations, the total CPU time, and number of oracle calls to reach this criterion. �ese

�gures illustrates the interest of disaggregation and asynchronicity. Indeed, we �rst see that there is a real di�erence

in computing time between the the usual level algorithm and the disagreggated ones proposed in this paper: 249s for

the standard level bundle S vs 122s for its disaggregated counterpart SD, and as low as 53s for the best asynchronous

method. We also see that the two asynchronous algorithms converge quickly compared to the synchronous ones:

for example, S converges in 10 (synchronous) iterations which corresponds to 80 oracle calls whereas AC needs 192

oracle calls but its computing time is 5 times lower. We thus observe that synchronous methods are more reliable

(less variance) and asynchronous ones may be faster (as they have a be�er use of wall clock time) even though they

may compute more (they make more oracles calls).

Algo # iters f1 f2 f3 f4 f5 f6 f7 f8 time

S 10 10 10 10 10 10 10 10 10 249s

(Alg. 1) = 80 ±0 ±0 ±0 ±0 ±0 ±0 ±0 ±0 ± 4s

SD 8 8 8 8 8 8 8 8 8 122s

= 64 ±0 ±0 ±0 ±0 ±0 ±0 ±0 ±0 ± 6s

AU 232 14 18 31 33 33 32 31 32 78s

(Alg. 2) ±60 ±6 ±9 ±8 ±9 ±9 ±9 ±9 ±9 ± 39s

AC 192 4 19 28 27 29 28 28 29 53s

(Alg. 3) ±50 ±0 ±7 ±8 ±6 ±6 ±7 ±7 ±7 ± 29s

Table 1. Comparison of the four algorithms (in terms of number of iterations, number of oracles

calls, and total computing time) in the case of low precision. We report the average and the standard

deviation of the �ve results.

�e two asynchronous algorithms reach the precision more quickly thanks to the asynchronous bundle information

used to improve their lower-bounds, as showed in Figure 4. In this �gure, we see that synchronicity provides tight

17

10
−1

10
0

10
1

10
2

10
4

10
5

wallclock time (s) – 1 tick = 1 iteration

f
u

n
c
t
i
o

n
a
l

v
a
l
u

e

f low

k – S f
up

k – S
f low

k – SD f
up

k – SD
f low

k – AU f
up

k – AU
f low

k – AC f
up

k – AC

Figure 4. Evolution of f low

k and f
up

k for on representative run of the algorithms. �e two axis

(functional values and iterations) are in log-scale.

upper bounds to S and SD but they need more time to get good lower bounds. �e greater variety of cuts added

to the disaggregated master QP (8) by asynchronous methods enable them to enjoy be�er lower bounds than their

synchronous counterparts. To close the gap, the asynchrounous methods show di�erent behaviors on upper-bounds.

Indeed, we notice that the upper-bounds (23) used by AU are weak with respect to the empirical estimation of the

associated Lipschitz constants observed from norms of computed subgradients in AC; see Figure 5. �us, the two

asynchronous algorithms AU and AC reach the prescribed coarse precision faster than the synchronous ones, with

roughly the same time. However, the loose upper-bounds in AU make it less competitive as the precision becomes

�ner.

1 2 3 4 5 6 7 8

0

200

400

600

800

oracle

v
a
l
u

e

upper bound by (23)

gradients norms on a run of AC

Figure 5. Estimation of the Lipschitz constants for the oracles: apriori upper bounds by (23),

vs. observed lower bounds by norms of computed subgradient.

6.3. Experiments with �ner precision. For our second experiments, we stop the algorithms whenever ∆k/f? < 1%.

In order to precise the reach of our methods, we focus here on our �agship asynchronous algorithm with coordination

AC and compare with the synchronous baseline S. We notably illustrate the impact of the proposed coordination

strategy by investigating two variants of AC: when the test of line 32 is ‘on’ or ‘o�’, ‘o�’: corresponding to the case

where a coordination is triggered as soon as the previous one has been completed. In the following table, we again

display the average on 5 runs as well as the standard deviation.

18

Algo # iters f1 f2 f3 f4 f5 f6 f7 f8 time

S 20 20 20 20 20 20 20 20 20 390s

(Alg. 1) = 160 ±0 ±0 ±0 ±0 ±0 ±0 ±0 ±0 ± 7s

AC 285 6 32 41 40 42 41 41 42 116s

(Alg. 3) ±57 ±1 ±10 ±9 ±7 ±7 ±8 ±8 ±8 ± 37s

AC 294 5 32 42 42 45 41 43 44 128s

test o� ±91 ±1 ±14 ±12 ±13 ±13 ±13 ±13 ±13 ± 63s

Table 2. Comparison of the asynchronous algorithm AC with the baseline S (in terms of number

of iterations, number of oracles calls, and total computing time) in the case of high precision. We

illustrate the impact of the coordination step of line 32 by looking at AC when the test is turned

‘o�’. We report the average and standard deviation on 5 runs.

0 20 40 60 80 100 120 140

10
4

10
5

number of oracle calls

f
u

n
c
t
i
o

n
a
l

v
a
l
u

e

f low

k – S f
up

k – S
f low

k – AC f
up

k – AC

10
−1

10
0

10
1

10
2

10
4

10
5

wallclock time (s) – 1 tick = 1 iteration

f
u

n
c
t
i
o

n
a
l

v
a
l
u

e

f low

k – S f
up

k – S
f low

k – AC f
up

k – AC

Figure 6. Evolution of f low

k and f
up

k for S and AC for a representative run.

We notice that the asynchronous algorithms achieve a clear speedup compared to the synchronous bundle. �is

can be explained intuitively by the fact that the �rst two oracles are more time consuming than the other (as their

associated subproblem is harder to solve) while they do not contribute proportionally more in the global model. �e

asynchronous algorithms thus achieve the sought precision a�er only 5 or 6 calls from oracle 1 and around 40 for the

others while the synchronous one has to get 20 global calls.

In Fig. 6, we plot the values of f low

k and f
up

k computed along the methods versus the number of oracle calls.

We notice that while the synchronous method improves iteration by iteration (there are 8 calls per iteration), the

asynchronous algorithm improves more scarcely but with more signi�cant decreases. Due to the di�erence in terms

of computational cost between the workers, one has to keep in mind that the wallclock time cost of a certain number

of oracle calls is smaller in the asynchronous setup, which allows for faster convergence.

19

6.4. Experiments with inexact oracles. In this section, we compare our asynchronous algorithms AU and AC
with their on-demand accuracy counterparts from Section 5, named AU/on-demand and AC/on-demand.

We control the accuracy of the oracles by sending to the workers a target precision along with the trial point. More

precisely, at iteration k , we send κ∆k/f lev

k as a target (relative) precision, used by the worker as the precision-control

parameter MIPGap of Gurobi. �e parameter κ was chosen equal to 0.001 which, given the functional values,

corresponds to a relative precision lowering from 10 in the �rst iterations to 10
−3

in the �nal steps; compared to a �xed

precision of 10
−9

for AU and AC. We stop the algorithms whenever ∆k/f? < 3%, corresponding to the intermediate

precision compared to the two previous sections. �e rest of the setup is exactly the same as in the previous section.

In Table 3, we display the average on 5 runs as well as the standard deviation. �e use of inexact oracles seems to

speed-up the convergence of AU and AC both in terms of wall-clock time and number of oracle calls (with a more

even number of calls across the oracles); this could be due to the fact that larger gaps in the �rst iterations would

make an exact oracle too expensive for the potential gain in the master bundle.

Algo # iters f1 f2 f3 f4 f5 f6 f7 f8 time

AU 308 14 24 32 40 51 47 49 50 132s

(Alg. 2) ±104 ±6 ±11 ±15 ±14 ±15 ±15 ±15 ±15 ± 76s

AU 320 40 40 38 40 41 40 41 41 129s

on-demand ±73 ±10 ±9 ±7 ±9 ±9 ±9 ±10 ±9 ±56s

AC 219 4 18 25 30 36 35 35 37 67s

(Alg. 3) ±46 ±1 ±6 ±8 ±6 ±7 ±7 ±7 ±8 ± 26s

AC 97 12 12 11 12 13 12 12 13 14s

on-demand ±9 ±1 ±1 ±2 ±1 ±1 ±1 ±1 ±1 ± 2s

Table 3. Comparison of the two asynchronous algorithms and their counterparts with on-demand

accuracy (in terms of number of iterations, number of oracles calls, and total computing time). We

report the average and the standard deviation on 5 runs.

Acknowledgements We are grateful to the two referees for their rich feedback on the initial version of our paper. We would

like to acknowledge the partial �nancial support of PGMO (Gaspard Monge Program for Optimization and operations research)

of the Hadamard Mathematics Foundation, through the project “Advanced nonsmooth optimization methods for stochastic

programming”.

References

[1] Arda Aytekin, Hamid Reza Feyzmahdavian, and Mikael Johansson, Analysis and implementation of an asynchronous optimization
algorithm for the parameter server, arXiv preprint arXiv:1610.05507, (2016).

[2] Léonard Bacaud, Claude Lemaréchal, Arnaud Renaud, and Claudia Sagastizábal, Bundle methods in stochastic optimal power
management: A disaggregated approach using preconditioners, Computational Optimization and Applications, 20 (2001), pp. 227–244.

[3] Nilson C. Bernardes, On nested sequences of convex sets in Banach spaces, Journal of Mathematical Analysis and Applications, 389 (2012),

pp. 558 – 561.

[4] Dimitri P Bertsekas and John N Tsitsiklis, Parallel and distributed computation: numerical methods, vol. 23, Prentice hall Englewood Cli�s,

NJ, 1989.

[5] Olivier Briant, Claude Lemaréchal, Ph Meurdesoif, Sophie Michel, Nancy Perrot, and François Vanderbeck, Comparison of bundle
and classical column generation, Mathematical programming, 113 (2008), pp. 299–344.

[6] Sergio V. B. Bruno, Leonardo A. M. Moraes, and Welington de Oliveira, Optimization techniques for the Brazilian natural gas network
planning problem, Energy Systems, 8 (2017), pp. 81–101.

[7] Welington de oliveira, Target radius methods for nonsmooth convex optimization, Operations Research Le�ers, 45 (2017), pp. 659 – 664.

[8] Welington de Oliveira and Claudia Sagastizábal, Level bundle methods for oracles with on-demand accuracy, Optimization Methods and

So�ware, 29 (2014), pp. 1180–1209.

[9] Welington de Oliveira and Mikhail Solodov, Bundle methods for inexact data. tech. report, 2018.

[10] Louis Dubost, Robert Gonzalez, and Claude Lemaréchal, A primal-proximal heuristic applied to the french unit-commitment problem,

Mathematical programming, 104 (2005), pp. 129–151.

[11] Frank Fischer and Christoph Helmberg, A parallel bundle framework for asynchronous subspace optimization of nonsmooth convex functions,
SIAM Journal on Optimization, 24 (2014), pp. 795–822.

[12] Antonio Frangioni, Standard bundle methods: Untrusted models and duality, tech. report, Universita di Pisa, 2018.

[13] Antonio Frangioni and Enrico Gorgone, Bundle methods for sum-functions with �easy� components: applications to multicommodity
network design, Mathematical Programming, 145 (2014), pp. 133–161.

[14] Arthur M Geoffrion, Generalized benders decomposition, Journal of optimization theory and applications, 10 (1972), pp. 237–260.

20

[15] Robert Hannah and Wotao Yin, More iterations per second, same quality–why asynchronous algorithms may drastically outperform traditional
ones, arXiv preprint arXiv:1708.05136, (2017).

[16] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal, Convex analysis and minimization algorithms, vol. 305 and 306, Springer science

& business media, 1993.

[17] Rie Johnson and Tong Zhang, Accelerating stochastic gradient descent using predictive variance reduction, in Advances in neural information

processing systems, 2013, pp. 315–323.

[18] K. Kim, C. Petra, and V. Zavala, An asynchronous bundle-trust-region method for dual decomposition of stochastic mixed-integer programming,

SIAM Journal on Optimization, 29 (2019), pp. 318–342.

[19] Krzysztof C. Kiwiel, Proximal level bubdle methods for convex nondiferentiable optimization, saddle-point problems and variational inequalities,
Mathematical Programming, 69 (1995), pp. 89–109.

[20] Jakub Konecnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik, Federated optimization: Distributed machine learning for
on-device intelligence, arXiv preprint arXiv:1610.02527, (2016).

[21] Claude Lemaréchal, An extension of davidon methods to nondi�erentiable problems, Mathematical programming study, 3 (1975), pp. 95–109.

[22] Claude Lemaréchal, Lagrangian relaxation, in Computational combinatorial optimization, Springer, 2001, pp. 112–156.

[23] Claude Lemaréchal, Arkadi Nemirovskii, and Yurii Nesterov, New variants of bundle methods, Math. Program., 69 (1995), pp. 111–147.

[24] Chenxin Ma, Virginia Smith, Martin Jaggi, Michael Jordan, Peter Richtarik, and Martin Takac, Adding vs. averaging in distributed
primal-dual optimization, in International Conference on Machine Learning, 2015, pp. 1973–1982.

[25] Jérôme Malick, Welington de Oliveira, and Sofia Zaourar, Uncontrolled inexact information within bundle methods, EURO Journal on

Computational Optimization, 5 (2017), pp. 5–29.

[26] Konstantin Mishchenko, Franck Iutzeler, Jerome Malick, and Massih-Reza Amini, A delay-tolerant proximal-gradient algorithm for
distributed learning, in Proceedings of the 35th International Conference on Machine Learning, vol. 80 of Proceedings of Machine Learning

Research, PMLR, 10–15 Jul 2018, pp. 3584–3592.

[27] Zhimin Peng, Yangyang Xu, Ming Yan, and Wotao Yin, Arock: an algorithmic framework for asynchronous parallel coordinate updates,
SIAM Journal on Scienti�c Computing, 38 (2016), pp. A2851–A2879.

[28] R. Tyrrell Rockafellar and Roger J.-B. Wets, Variational Analysis, Springer Verlag, Heidelberg, Berlin, New York, 1998.

[29] R Tyrrell Rockafellar and Roger J-B Wets, Scenarios and policy aggregation in optimization under uncertainty, Mathematics of operations

research, 16 (1991), pp. 119–147.

[30] Claudia Sagastizábal, Divide to conquer: decomposition methods for energy optimization, Mathematical programming, 134 (2012), pp. 187–222.

[31] , A VU-point of view of nonsmooth optimization, Proc. Int. Cong. of Math, 3 (2018), p. 3785��3806.

[32] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński, Lectures on stochastic programming: modeling and theory, SIAM,

2009.

[33] Vitold Smulian, On the principle of inclusion in the space of the type (b), Rec. Math. [Mat. Sbornik] N.S., 5(47) (1939), pp. 317–328.

[34] Tao Sun, Robert Hannah, and Wotao Yin, Asynchronous coordinate descent under more realistic assumptions, in Advances in Neural

Information Processing Systems, 2017, pp. 6182–6190.

[35] John Tsitsiklis, Dimitri Bertsekas, and Michael Athans, Distributed asynchronous deterministic and stochastic gradient optimization
algorithms, IEEE transactions on automatic control, 31 (1986), pp. 803–812.

[36] Wim van Ackooij and Welington de Oliveira, Level bundle methods for constrained convex optimization with various oracles, Computation

Optimization and Applications, 57 (2014), pp. 555–597.

[37] Wim van Ackooij and Jerome Malick, Decomposition algorithm for large-scale two-stage unit-commitment, Annals of Operations Research,

238 (2015), pp. 587–613.

[38] Antonio Frangioni Wim van Ackooij, Incremental bundle methods using upper models, Tech. Report 2357, Dipartimento di Informatica, TR .

University of Pisa, 2016.

[39] Christian Wolf, Csaba I Fábián, Achim Koberstein, and Leena Suhl, Applying oracles of on-demand accuracy in two-stage stochastic
programming. A computational study, European Journal of Operational Research, 239 (2014), pp. 437–448.

[40] Ruiliang Zhang and James Kwok, Asynchronous distributed admm for consensus optimization, in International Conference on Machine

Learning, 2014, pp. 1701–1709.

21

	1. Introduction: context, related work and contributions
	1.1. Nonsmooth convex optimization and bundle methods
	1.2. Centralized distributed setting
	1.3. Distributed bundle methods
	1.4. Contributions, organization

	2. Level bundle methods: recalls and disaggregated version
	2.1. Main ingredients of level bundle methods
	2.2. Disaggregated level bundle iteration

	3. Asynchronous level bundle method by upper-bound estimation
	3.1. Upper-bound estimation in asynchronous case
	3.2. Convergence analysis

	4. Asynchronous level bundle method by coordination
	4.1. Upper-bounds by coordination
	4.2. Convergence analysis

	5. Inexact oracles within asynchronous methods
	5.1. Inexact oracles with error bounds
	5.2. Lower oracles with vanishing error bound

	6. Numerical illustrations
	6.1. Experimental set-up
	6.2. Experiments for coarse precision
	6.3. Experiments with finer precision
	6.4. Experiments with inexact oracles

	References

