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Abstract—Many machine learning and signal processing applications
involve high-dimensional nonsmooth optimization problems. The nons-
moothness is essential as it brings a low-dimensional structure to the
optimal solutions, as (block, rank, or variation) sparsity. In this work,
we exploit this nonsmoothness to reduce the communication cost of
optimization algorithms solving these problems in a distributed setting.
We introduce two key ideas: i) a random subspace descent algorithm;
ii) an adaptative subspace selection based on sparsity identification of
the proximal operator. We get significant performance improvements in
terms of convergence with respect to data exchanged.

I. INTRODUCTION

We consider composite optimization problems of the form

min
x∈Rn

M∑
i=1

fi(x) + g(x) (1)

where all fi are convex and differentiable and g is convex and
nonsmooth. Problems of this type usually appear in large scale signal
processing and machine learning (see e.g. [1], [2] ) and call for
first-order optimization algorithms, such as coordinate descent (see
e.g. [7] ) and proximal gradient (see e.g. [8] ). Additionally this
formulation corresponds to a centralized distributed setup without
shared memory where there are M machines referred to as “workers”
that can operate with their own functions fi and perform their com-
putations independently and one “master” machine for coordination
and communication.

It is commonly admitted that in case of large-dimensional prob-
lems, one must focus not only on the data accesses, but also on the
size of communicated data, thus rehabilitating batch algorithms (see
e.g. [6] ). In the context of this work, communications are typically
the practical bottleneck of the learning process (see e.g. [10] ).

In this work, we present a general sketch-and-project framework to
solve problem (1) efficiently in terms of total size of communications
made. This algorithm has a practical interest if the regularizer g
enforces a strong geometric structure to the optimal points and if
projections are chosen in accordance with it.

II. ALGORITHM

Algorithm 1 Distributed Randomized Proximal Subspace Descent -
DRPSD

1: [M] Input: Q = P−
1
2

2: for k = 1, . . . in parallel do
3: [M] Randomly select a subspace Sk

4: [Wi] Receive xk, Sk from master [SPARSE for some g]
5: [Wi] yki = Q

(
xk − γ∇fi

(
xk
))

6: [Wi] Send PSk

(
yki
)

to master [SPARSE]
7: [M] zk =

∑M
i=1 PSk

(
yki
)
+ (I − PSk )

(
zk−1

)
8: [M] xk+1 = proxγg

(
Q−1

(
zk
))

9: end for

Here, the steps preceded by [M] are performed by the master while
the steps preceded by [Wi] are performed by all workers in parallel.

Let us consider the family of linear subspaces C = {Ci}i of Rn
such that

∑
i Ci = Rn. Let us also consider the random selection

S(ω) =
∑s
j=1 Cij for ω = {Ci1 , . . . , Cis} such that P[x ∈ S] > 0

for all x ∈ Rn. Let PS be the orthogonal projection onto linear
subspace S. In this context the average projection P := E[PS] is a
positive definite matrix.

We assume that the functions fi are L-smooth and µ-strongly con-
vex and the function g is convex, proper, and lower-semicontinuous.
In this case, Algorithm 1 converges almost surely to the optimal
solution with the linear rate. Moreover, it has tamed communications
from workers to master if the selected subspaces have small dimen-
sion s � n and additionally sparse communications from master
when regularizer g enforces sparsity of the optimal solution.

Theorem 1 (DRPSD convergence rate). If the selection sequence
S1,S2, ..,Sk is i.i.d. then, for any γ ∈ (0, 2/(µ + L)], the
sequence (xk) of the iterates of DRPSD converges almost surely to
the minimizer x? of (1) with rate

E
[
‖xk+1 − x?‖22

]
≤
(
1− λmin(P)

2γµL

µ+ L

)k
C,

where C = λmax(P)‖z0 − Q(x? − γ
∑M
i=1∇fi(x

?))‖22.

III. IDENTIFICATION

The use of proximal operators to handle the nonsmooth part g plays
a prominent role as it typically enforces some “sparsity” structure on
the iterates, see e.g. [9] . It gives an intuition that it can be more
useful to use linear subspaces that adapts to the sparsity structure
of the current iterate leading to ADRPSD1. For example, for TV
regularized problems, the optimal solution x? has a small amount of
jumps2. It means that the linear spaces for the family of sparsification
subspaces should be spaces of points with fixed jumps structure.

In contrast with an identification-based proximal algorithm for
regularizers that enforce (block) coordinate sparsity (see e.g. [4])
algorithms that enforce subspace sparsity (for example TV [3]) due
to nonseparable structure of the regularizer requires more complicated
algorithms. As a result, it is possible to do adaptation every round in
the first ones but not in the second ones as illustrated on Fig. 1.

IV. NUMERICAL EXPERIMENTS

To demonstrate the practical interest of our algorithm we consider
a logistic loss minimization problem with common sparsity-inducing
regularizers: `1, `1,2, TV. We compared different modifications
of our algorithm3 with distributed vanilla proximal descent method
(PGD) see Figs. 2, 4 and with a distributed version of SEGA [5] see
Fig. 3. In addition, we present some figures to show the robustness of
our randomized method with adaptive subspaces selection in Fig. 5.

1DRPSD with adaptive family of subsets
2jumps(x) =

{
i : x[i+1] 6= x[i]

}
, with x[j] being jth coordinate of x.

3we use x “algorithm name” notation for the algorithm set up with the
rank of each projection be equal to x. x% means that the rank is x% of n.
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Fig. 1: Adaptation frequency in ADRPSD
Comparisons between theoretical and harsh updating time for
ADRPSD with every projection been of rank 1 on Fused Lasso on
synthetic generated data.
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Fig. 2: `1 regularized logistic regression on rcv 1 dataset
Comparison of DRPSD and ADRPSD with distributed vanilla proximal
gradient descent in case of coordinate sparsity.
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Fig. 3: `1,2 regularized logistic regression on rcv 1 dataset
Comparison of DRPSD and ADRPSD with SEGA in case of block sparsity.
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Fig. 4: TV regularized logistic regression on a1a dataset
Comparison of DRPSD and ADRPSD with distributed vanilla proximal
gradient descent in case of variation sparsity.
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Fig. 5: Robustness of ADRPSD
20 runs of ADRPSD and their median (in bold) on TV-regularized logistic
regression on a1a dataset.
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