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Abstract. In this paper, we propose an asynchronous distributed learn-
ing algorithm where parameter updates are performed by worker ma-
chines simultaneously on a local sub-part of the training data. These
workers send their updates to a master machine that coordinates all
received parameters in order to minimize a global empirical loss. The
communication exchanges between workers and the master machine are
generally the bottleneck of most asynchronous scenarios. We propose to
reduce this communication cost by a sparsification mechanism which, for
each worker machine, consists in randomly and independently choosing
some local update entries that will not be transmitted to the master.
We provably show that if the probability of choosing such local entries is
high and that the global loss is strongly convex, then the whole process
is guaranteed to converge to the minimum of the loss. In the case where
this probability is low, we empirically show on three datasets that our
approach converges to the minimum of the loss in most of the cases with a
better convergence rate and much less parameter exchanges between the
master and the worker machines than without using our sparsification
technique.
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1 Introduction

Given the tremendous production of data and the ever growing size of collec-
tions, there is a surge of interest in both Machine Learning and Optimization
communities for the development of efficient and scalable distributed learning
strategies. In such context, training observations are generally split over different
computing nodes and learning is performed simultaneously where each node, also
referred to as a worker, has its own memory and processing unit. Note that this
is different from shared-memory parallel computing, where each worker machine
can potentially have access to all available memory [17,9]. However, the bottle-
neck of distributed learning is the network bandwidth as for parameter tuning,
information is exchanged across the nodes that are organized across a LAN. Most
of the distributed algorithms perform parameter updates in a synchronized man-
ner [2,4]. For these approaches, the slower worker machines may slow down the
whole learning process as the faster ones have to wait all updates in order to
terminate their computation and exchange information. Recently, many studies
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have focused on asynchronous distributed frameworks, where worker machines
update their parameters simultaneously on a local sub-part of data and send
their updated parameters to a master machine. The master integrates then all
received parameters and broadcasts them back to each computing node for a
new local update of their parameters [8,14]. The communication cost between
workers and the master machine is generally prohibitive in asynchronous sce-
narios and most attention has been paid on reducing this cost [12,11,18]. In this
way, asynchronous coordinate descent methods were proposed in [7,16]. These
techniques are able to handle unbounded delays but they are based on decreas-
ing stepsizes. To overcome this restriction, the recent works of [14,13] provide a
delay-independent analysis technique that allows to integrate assumptions on the
computing system with a constant stepsize and which was shown to outperform
other asynchronous distributed strategies.

In this paper, we propose a first theoretically founded Sparse asynchrOnous
Distributed leArning framework (called SODA). Our strategy aims to reduce the
size of communications where just a part of the information is transmitted from a
worker to the master in order to accelerate the convergence of delay-independent
asynchronous distributed methods using a sparsification mechanism. This is done
trough a sparsification mechanism that consists in choosing some local update
entries that will not be transmitted to the master. Moreover, in the case of `1-
regularized problems, we show that at the master level, update iterates identify
some sparsity pattern in finite time with probability one, resulting in sparse
downward communications from the master to the workers. Thus, communica-
tions in both directions (from the workers to the master and vice versa) become
sparse. As a consequence, we leverage on this identification to improve our spar-
sification technique by preferably sampling the entries in the support of the
master model. We show that in the case of strongly convex objectives, the con-
vergence to the global empirical risk estimated over the whole training set is
guaranteed when the probability of choosing such local entries is high. In the
case where this probability is low, we empirically show on three datasets that
our approach converges to the minimum of the loss in most of the cases with a
better convergence rate than without using our sparsification strategy.

In the following section, we present our asynchronous distributed framework
with sparse communication and prove in Section 3, that the approach is guar-
anteed to converge to the minimum of a strongly convex global empirical loss if
entries of parameters transmitted to the master machine are randomly chosen
with high probability. Section 4 describes experimental results that support this
approach and Section 5 concludes this work by giving some pointers for some
future work.

2 Asynchronous distributed learning with sparsification

In this section we present our asynchronous distributed algorithm with sparse
communications. Section 2.1 introduces the notation and problem formulation
for asynchrony, and Section 2.2 presents the algorithm.



Sparse Asynchronous Distributed Learning 3

2.1 Notations and Framework

We consider the following distributed setup where there are M worker machines,
i ∈ {1, . . . ,M}, each of which contains a subset Si ⊂ S of the training set (i.e.
S = tMi=1Si). Learning over such scattered data leads to optimization problems
with composite objective of the form:

min
w∈Rn

L(w) =

M∑
i=1

πifi(w) + λ1‖w‖1, (1)

where w ∈ Rn are the parameters shared over all computing machines, m = |S|
is the size of the training set, πi = |Si|/m is the proportion of observations locally
stored in worker machine i, fi(w) = 1

|Si|
∑
j∈Si `j(w) is the local empirical risk

estimated on the subset Si for machine i; `j is a smooth loss function for the
training example j ∈ Si.

In this setting, our algorithm carries out computations without waiting for
slower machines to finish their jobs. Each worker machine performs computa-
tions based on outdated versions of the main variable that it has. The master
machine gathers the workers inputs, updates the parameters at each communi-
cation and sends back the updated versions to the current worker with which it
is in interaction. We formalize this framework as :

– For the master. We define k, as the number of updates that the master has
received from any of the worker machines. Thus, at time k, the master re-
ceives some input from a worker, denoted by ik, updates its global variables,
wk and wk; and sends wk back to worker ik.

– For a worker i ∈ {1, . . . ,M}. At time k, let dki be the elapsed moment since
the last time the master has communicated with worker i (dki = 0 iff the
master gets updates from worker i at exactly time k, i.e. ik = i). We also
consider Dk

i as the elapsed time since the second last update. This means
that, at time k, the last two moments that the worker i has communicated
with the master are k − dki and k −Dk

i .

2.2 Sparsity mask selection

Each worker independently computes a gradient step on its local loss for a ran-
domly drawn subset of coordinates only. More specifically, the master machine
keeps track of the weighted average of the most recent workers outputs, com-
putes the proximity operator of the regularizer at this average point, and sends
this result back to the updating worker ik.

At iteration k, the randomly drawn subset of entries that worker ik up-
dates at time k is called mask and is denoted by Mk

p (in uppercase bold, to
emphasize that it is the only random variable in the algorithm). We propose
to select all the coordinates that are nonzero in the last parameter w received
from the master machine, called supp(w), and select some random zero entries
of w with a fixed probability p (Algorithm 1). Without sparsification (i.e. p = 1
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Algorithm 1 SODA

Worker i

Initialize wi = w+
i = w0

while not interrupted do
Receive w from master
Draw sparsity mask Mp as

P[j ∈Mp] =

{
1, if j ∈ supp(w)

p, if j /∈ supp(w)

w+
i = [w − γ∇fi(w)]Mp

+ [wi]Mp

∆ = w+
i −wi

wi = w+
i

Send ∆ to master
end while

Master

Initialize w0

while not converged do

Receive ∆k from agent ik

wk = wk−1 + πik∆k

wk = proxγr(w
k)

Send wk to agent ik

end while
Output wk

and Mk
1 = {1 . . . , n} at any time k), this iteration corresponds to the delay-

independent asynchronous proximal-gradient algorithm proposed in [14].
The proposed algorithm SODA uses the following notation: for a vector of

w ∈ Rn and a subset S of {1, .., n}, [w]S denotes the sparse vector where S is
the set of non-null entries, for which they match those of w, i.e. ([w]S)[i] = w[i] if

i ∈ S and 0 otherwise. In addition, we denote by Mp = {i ∈ {1, . . . , n} : i /∈Mp}.
In algorithm 1, communications per iteration are (i) a blocking send/receive

from a slave to the master (in blue) of size |Mp|, and (ii) a blocking send/receive
from the master to the last updating slave (in red) of the current iterate.

3 Theoretical analyses

In this section, we first bound the expected deviation of the distance between a
current solution found at iteration k and the true minimizer of the global loss
(1) and then present our main result.

3.1 General convergence result

Lemma 1 (Expected deviation [6]). Suppose all functions {fi}i=1,..,M are
µ-strongly convex and L-smooth (i.e. differentiable with Lipschitz continuous
gradient). Let w? be the minimizer of the loss (1), and take γ ∈ (0, 2/(µ+L)],
then for all k ∈ [ks, ks+1) :

E‖wk −w?‖2≤ (1− β)s max
i=1,..,M

‖w0
i −w?

i ‖2, (2)

where w?
i = w?−γ∇fi(w?); i ∈ {1, . . . ,M}, and, the sequence of stopping times

(ks) defined iteratively as k0 = 0 and

ks+1 = min
{
k : k −Dk

i ≥ ks for all i
}
, (3)
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and

β = 2
γµL

µ+ L
− 1 + p.

This general result deserves several comments:

– The sequence (ks) of stopping times is defined such that there are at least two
updates of each worker between ks+1 and ks. This sequence directly embeds
the number of machines and the delays, and thus automatically adapts the
various situations.

– Furthermore, we retrieve the convergence results of [13] in the case where
there are no sparsification (i.e. p = 1), and if there is no delay, we recover
the rate of vanilla proximal-gradient algorithm.

– Assuming that all machines are responsive (i.e. s → ∞ when k → ∞), the
inequality (5) gives convergence if β > 0, i.e. p > 1− α. In other words, when
we sample entries non-uniformly, we still have convergence if the probability
of selection is big enough.

– Finally, when the problem is well-conditioned (i.e. µ ' L and thus α ' 1),
the algorithm is guaranteed to converge for any reasonable choice of p.

3.2 Sparsity Structure Identification and Effect on Communications

Recently, many studies have been conducted on introducing sparsity in the struc-
ture of parameters minimizing a learning objective with a `1-norm regularization
term [1,3] and the identification of such sparsity structures with proximal gra-
dient methods [5,15]. Unfortunately, proximal gradient algorithms with `1-norm
regularization term featuring random values, as the mask that is used for spar-
sification of update, might not identify structure with probability one. However,
as soon as an almost sure convergence is established, sparsity structure identifi-
cation holds [10]. Taking into account that there is no almost sure convergence in
our case let us adapt the identification result of [5] using the following Lemma.

Lemma 2 (Identification). Suppose that that for any ε > 0 there exists iterate
number K such that for any k > K the average point ‖wk−w?‖22< ε is ε-close to
the final solution. Furthermore, let us assume that problem (1) is non-degenerate.
That is : (

M∑
i=1

πi∇fi(w?)

)
[j]

< λ1 for all j ∈ supp(w?). (4)

Then for any k > K, we have : supp(wk) = supp(w?).

Now we are ready to present the following theoretical result that explains the
practical interest of using the SODA algorithm in the case where the identification
property takes place.
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Theorem 1. Suppose that all functions {fi}i=1,..,M in (Eq. 1) are µ-strongly
convex and L-smooth. Let γ ∈ (0, 2/(µ + L)], then in the case of identification
of Lemma 2, supp(wk) = supp(w?), we have the following inequality :

‖wk −w?‖2≤ (1− α)sCi, (5)

where α = 2 γµLµ+L , eCi = (1 − α)−si‖wksi+1 − w?‖22, and ki ∈ [ksi , ksi+1) be

ki = max{k : supp(wk−1) 6= supp(w?)} with (ks) the sequence of iterations
defined in (3).

We can see from this theorem that after identification; the convergence rate
does not depend on probability p. This means that communications become
lessen with the same rate. On the other hand, as identification depends on this
probability p, in practice, the selection of p should be a trade off between speed
of identification and the size of sparsification.

4 Numerical experiments

In the previous sections we proved the convergence of SODA in the case where the
mask is formed with a high probability p. In this section, we present numerical
results providing empirical evidence on a faster execution of SODA with lower
communication cost than if the mask is not used.

4.1 Experimental setup

In our experiments, we consider `1−`2-regularized Logistic Regression surrogate
loss that is common to many machine learning and signal processing applications
and which can be minimized in a distributed way. With respect to our composite
learning problem (1), that is :

∀i ∈ {1, . . . ,M}, fi(w) =
1

|Si|
∑

(xj ,yj)∈Si

[
log
(

1 + e−yjx
>
j w
)

+
λ2
2
‖w‖22

]
(6)

where Si = (xj , yj)j∈{1,...,|Sj | ∈ (Rn×{−1,+1})|Sj | is the sub-part of the training
set stored in the worker machine i ∈ {1, . . . ,M}.

We performed experiments on three publicly available datasets1. Each dataset
is normalized by dividing each feature characteristic by the maximum of the ab-
solute value in the column using the scikit-learn Transformer API.2 In Table 1,
we present some statistics for these datasets as well as the percentage of no-zero
entries of the final parameter (supp(w?)).

For the communications between the master and the workers, we used the
message passing interface for Python (MPI4py)3. We compared our approach

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
2https://scikit-learn.org/stable/modules/generated/sklearn.

preprocessing.normalize.html
3https://mpi4py.readthedocs.io/en/stable/citing.html

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html
https://mpi4py.readthedocs.io/en/stable/citing.html
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Dataset m n λ1 λ2 |supp(w?)| in (%)
madelon 2000 500 2× 10−2 10−3 7

real-sim 72309 20958 10−4 10−3 8.6

rcv1 train 20242 47236 10−4 10−3 4.1

Table 1. Statistics of datasets used in our experiments: λ1, λ2 are respectively
the hyperparmeters corresponding to `1 and `2 regularization terms, and the
percentage of non-zero entries of the final solution w.r.t. this selection.

SODA with its direct competitor DAve-PG [14] which was shown to outperform
other state-of-the-art asynchronous distributed algorithms. For comparisons, we
plot objective values as their relative distance to the optimum, referred to as
suboptimality, with respect to time, and also with respect to iterations and the
number of exchanges for different values of the probability p used in the mask.
We also present the dependence of sparsity of iterates to the number iterates.

DAve-PG SODA, p = 10 4 SODA, p = 10 3 SODA, p = 10 2 SODA, p = 10 1
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Fig. 1. Suboptimality versus time and epoch and the evolution of supp(w?) with
respect to time for real-sim (left) and rcv1 train (right) datasets.

Speed of convergence. Figure 1 presents suboptimality versus time and
epochs for the DAve-PG algorithm [14], and the SODA algortihm with four values
of probability p, to form the mask with M = 20 workers on real-sim and (top)
rcv1 train (down) datasets. To this end, the minimum of the loss function (1),
using (6), is first obtained with a precision ε = 10−15. As it can be observed, for
larger values of the probability p; SODA converges much faster than DAve-PG (up
to 2 times faster for p = 10−1 on both datasets). This is mainly because that
SODA passes through the whole data (epochs) in less time than DAve-PG.
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Fig. 2. madelon dataset

Cost of communication. We have computed
the cost of communication, as the number of ex-
changes, between the master and the worker ma-
chines until convergence for different values of the
probability p to form the mask. In the case where
p is low, we know from the previous section that
there is no guarantee that the algorithm SODA

converges. However, note that as all workers are
minimizing their local convex objectives, after one
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round of communication between the master and all workers, it is easy to de-
tect when the global objective (1) does not decrease at the master level and the
algorithm can be stopped and restarted in this case. In Figure 2 we plot the
amount of exchanges between the master and the workers for different values of
the probability p used to form the mask on the madelon dataset. For each value
of p; we run the algorithm 10 times. Blue dots correspond to successful runs
where the algorithm converged to the minimum of the objective (1) up to the
precision 10−15. Red numbers at the bottom of the figure mention the number
of times when the algorithm diverged and expected amount of exchanges are
shown by orange stars.

In addition, we plot the line (in cyan blue) for the number of exchanges of the
DAve-PG algorithm [14]. As it can be seen, in mostly all the cases the SODA algo-
rithm converges to the minimum of (1) with much fewer exchanges between the
master and the workers than in the DAve-PG algorithm. For lower values of p,
the number of times where the algorithm converges is low and for larger values
of p; the expected number of exchanges tends to the one of the DAve-PG algo-
rithm. This figure suggests that for this dataset the best compromise between
the number of convergence and number of exchanges is reached for the values of
p ∈ [0.01, 0.6].

Evolution of sparsity. Let us now discuss the importance of sparsity, as
the number of no-zero entries, of the final solution. Figure 3, shows the evo-
lution of the percentage of no-zero entries of the parameter with respect to
epochs on rcv1 train dataset for M = 20 workers and λ1 = 10−5. The sparsity
of the solution increases over epochs for both DAve-PG and SODA algorithms.
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Fig. 3. rcv1 train dataset

This is mainly due to the use of the `1 in both algo-
rithms. This sparsification is accentuated for SODA
by the use of the mask. From previous plots, we
observed that for higher values of the probability
p, the proposed algorithm converges faster to the
minimum of the composite objective. From this fig-
ure, it comes out that the SODA algorithm is able
to identify the same set of informative non-zero
entries, than DAve-PG, at convergence for higher
values of the probability p.

5 Conclusion

In this paper, we proposed an asynchronous distributed learning algorithm with
sparsification. The sparsification is induced through a mask that selects a sub-
part of the model parameters constituted with all non-zero entries and some
others chosen randomly with a fixed probability p. We have analyzed the con-
vergence property of the algorithm by showing that when p is moderately high
the algorithm is ensured to converge for strongly convex composite objectives.
In the case of small values of p, we have empirically shown on three benchmarks
that when the algorithm converges, it reaches faster the minimum with much
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less communications between the master and the worker machines than if the
mask is not used.
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