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Abstract

Distributed learning aims at computing high-
quality models by training over scattered data.
This covers a diversity of scenarios, including
computer clusters or mobile agents. One of the
main challenges is then to deal with heteroge-
neous machines and unreliable communications.
In this setting, we propose and analyze a flexible
asynchronous optimization algorithm for solv-
ing nonsmooth learning problems. Unlike most
existing methods, our algorithm is adjustable
to various levels of communication costs, ma-
chines computational powers, and data distribu-
tion evenness. We prove that the algorithm con-
verges linearly with a fixed learning rate that does
not depend on communication delays nor on the
number of machines. Although long delays in
communication may slow down performance, no
delay can break convergence.

1. Introduction
Distributed learning set-up We consider a general
learning problem formulated as the following nonsmooth
optimization problem

min
x∈Rd

1

n

n∑
i=1

`i(x) + r(x), (1)

where n is the size of the training set, the `i’s are smooth
convex empirical loss functions and r is a non-smooth con-
vex regularizer. This template models a broad range of
problems arising in machine learning and signal process-
ing: finite-sum structure of the data-fidelity term includes
the least-squares or logistic loss functions; the regulariza-
tion term includes penalties such as `1 or group lasso.
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In our distributed setting, the n data examples are split
acrossM machines, each machine i having a private subset
Si of the examples. Problem (1) then reformulates as

min
x∈Rd

M∑
i=1

(ni
n

)
︸ ︷︷ ︸
:=πi

proportion

 1

ni

∑
j∈Si

`j(x)


︸ ︷︷ ︸

:=fi(x)
local empirical loss

+r(x) (2)

where ni = |Si| the cardinality of the local data subset,
πi the proportion of data locally stored, and fi the local
empirical loss at machine i. This type of problem arises
when one wants to learn over distributed devices, each of
which having a local part of the data (this locality coming
from the prohibitive size of the data, or its privacy), as in
federated learning (Konečnỳ et al., 2016).

The communication constraints of the distributed set-
ting naturally lead us to consider a master-slave frame-
work. More precisely, we present an optimization algo-
rithm where slave machines compute (deterministic) up-
dates based on their local data and asynchronously com-
municate their result to a master machine where the updates
are aggregated to produce a new iterate. To cope up with
the diversity of the scenarios included in this framework
(e.g. computing clusters, mobile devices), we pay a special
attention to have realistic assumptions on communication
delays and data distribution.

Contributions We propose a proximal-gradient opti-
mization algorithm for distributed learning with flexible
asynchronous communications. This algorithm allows ev-
ery slave to perform an arbitrary number of passes on his
local data, thus adjusting the computation/communication
trade-off. We show that the algorithm converges linearly,
in the strongly convex case, with a rate independent of the
computing system, which is highly desirable for scalability.
To this end, we develop a new epoch-based mathematical
analysis, encompassing computation times and communi-
cation delays, to refocus the theory on algorithmics.

Ouline of the paper The paper is structured as follows.
In Section 2, we review the related literature and their
limitations in our context. Then we present in Section 3
the new asynchronous distributed algorithm, denoted as
DAve-RPG for Distributed Averaging of Repeated Prox-
imal Gradient steps. In Section 4, we provide local and
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global convergence analyses in the strongly convex case by
showing that the algorithm converges linearly with a rate
and with a stepsize, both independent from machines and
delays. Finally, we provide and discuss numerical results
in section 5 based on typical large-scale problems.

2. Related work
Parallel Stochastic algorithms Stochastic algorithms
have received a lot of attention, regarding convergence
rates, acceleration, parallelization, generalization to non-
smooth or sparse gradient cases; see e.g. (Shalev-Shwartz
& Zhang, 2013; Johnson & Zhang, 2013; Defazio et al.,
2014). Parrallel versions of stochastic algorithms have also
been proposed where subparts of the data are stored in dif-
ferent machines (Hogwild! (Recht et al., 2011), Distributed
SDCA (Takáč et al., 2015), Distributed SVRG (Lee et al.,
2015; Zhao & Li, 2016), ASAGA (Leblond et al., 2017),
ProxASAGA (Pedregosa et al., 2017)).

Despite their theoretical properties and practical success
in the context of multicore computers, these algorithms
are not well suited for our distributed setting. For exam-
ple, ASAGA (Leblond et al., 2017; Pedregosa et al., 2017)
makes computation in parallel but is not fully distributed
as it assumes uniform sampling with shared memory be-
tween computing parties. Thus, a naive extension of such
parallel stochastic methods would be inefficient in practice
due to large overheads in communications. For this rea-
son, it is commonly admitted (see e.g. (Ma et al., 2017b;a))
that in a distributed computing environment, one must fo-
cus not only on the number of data accesses, but also on the
number of communication steps, which rehabilitates batch
algorithms. In light of this remark, our batch approach al-
lows for several local iterations which gives a way to adjust
the trade-off between communication and computation.

Distributed algorithms There exists a rich literature
on distributed optimization algorithms with no shared
memory. We mention e.g. ARock (Peng et al., 2016),
Asynchronous ADMM (Zhang & Kwok, 2014), COCOA
(Ma et al., 2015), Delayed Proximal Gradient algorithms
(Feyzmahdavian et al., 2014; Aytekin et al., 2016; Vanli
et al., 2016), or dSAGA (Calauzènes & Roux, 2017). These
methods often have strong assumptions about synchrony
of communications, or boundedness of the delays between
fastest and slowest machines. For instance, the asyn-
chronous distributed ADMM of (Zhang & Kwok, 2014)
allows asynchronous updates only until a maximal delay,
after which every worker has to wait for the slowest one.

Usually, the bounds on delays also impact the learning rates
as in (Peng et al., 2016) and/or the convergence rates as in
(Feyzmahdavian et al., 2014). Except (Sun et al., 2017) in a
stochastic context, the assumptions on delays of the above
algorithms are very restrictive. In contrast, we propose an

asynchronous algorithm with no assumption on delays in
the sense that, while they may slow down the convergence,
the stepsize of our algorithm and its convergence are inde-
pendent of the delays. Moreover, the convergence rate is
expressed along a suitable epoch sequence which makes it
adapted to varying delays or crashes.

3. DAve-RPG: Distributed Averaging of
Repeat Proximal Gradient steps

This section presents our distributed proximal-gradient al-
gorithm, that we call DAve-RPG, where DAve stands for
the global communication scheme based on distributed av-
eraging of iterates, and RPG stands for the local optimiza-
tion scheme, based on repeated proximal-gradient steps.

3.1. DAve Communication scheme

Recall our distributed learning problem (2) where data sub-
sets are stored privately on M different machines

min
x∈Rd

M∑
i=1

πifi(x) + r(x)

with πi being the proportion ni/n of data locally stored at
machine i, and fi(x) = 1

ni

∑
j∈Si `j(x) the local empiri-

cal risk1 at machine i. Each machine makes local compu-
tations in view of solving globally the above problem.
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Figure 1: Schematic view on the asynchronous algorithm

Our communication scheme DAve is based on a distributed
averaging of the parameters of the machines done by a mas-
ter machine in a fully asynchronous manner. More pre-
cisely, as soon as a slave machine, say i, finishes the com-
putation of a new local parameter xi and the corresponding
adjustment ∆, defined later, it sends this adjustment to the

1Note that, unlike in many stochastic optimization settings,
each function fi correspond to arbitrary number of data points.
This asymmetry is automatically handled by the algorithm.
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master node that adds it to its master parameter x. The
master immediately sends back this parameter to machine
i which begins a new computation step. This scheme is
thus inherently fully asynchronous as the actions and com-
munications of the machines are triggered by the reception
of new information. Notably, the slaves machines compute
updates restlessly without idle times.

A key point of this scheme is that the master parame-
ter always represents the average of the machines local
parameters, weighted with their proportion of data x =∑M
i=1 πixi. This property is forced by assigning the dif-

ference between new and previous values of xi with coef-
ficient πi. At the same time, due to asynchrony, the local
parameters are not computed from the same version of the
master parameter which calls for a proper time index and
delays notations.

In terms of information storage, slave i only has its own
subset of data Si, the last received master parameter, its last
computed local parameter, and potentially local variables;
the master machine only stores its master parameter.

Asynchrony and Delays. We call iteration/time k (denoted
by a superscript k) the k-th time the master has updated
x. The corresponding master parameter, xk, is equal to
the average of the received parameter of the agents (xki ),
where xki is the latest parameter received from slave i be-
fore time k.

For a slave i and a time k, we denote by dki the delay rela-
tive to i and k, i.e. the number of master updates, since slave
i sent information to the master. For instance, if slave i up-

dates at time k, then dki = 0; we thus have xki = x
k−dki
i and

xk =

M∑
i=1

πix
k
i =

M∑
i=1

πix
k−dki
i . (3)

In addition, we denote by Dk
i the delay from the penul-

timate update, so that Dk
i = dki + d

k−dki−1
i + 1. These

definitions are illustrated in Fig. 2.

Intuitively, our algorithm holds at the master the weighted
average of each agent local computation output in order
to cope with delays in an efficient manner. Indeed, when
one agent is updating much more frequently than the oth-
ers, this kind of update prevents the master value to derail
towards a biased solution.

Notion of epoch. To encompass general delays (no bound-
ing assumptions, no probability assumption), we introduce
a new time scale. We define the epoch sequence (km)m as
a stopping time in the martingale sense: km+1 is the first
moment k when xk no longer directly depends on informa-

global time

∆i : updates of i : iteration k

∆i

k

∆i

k −Dk
i

∆i∆i

(a) i = i(k) (dki = 0)

global time
k

∆i

k − dki

∆i

k −Dk
i

∆i∆i

(b) i 6= i(k) (dki > 0)

Figure 2: Illustration of the delays notation.

tion from moments k < km. Mathematically,

k0 = 0

km+1 = min {k : each machine made at least
2 updates on the interval [km, k]}

For any M , we see from (3) that this definition implies

that xk depends on local parameters (x
k−dki
i )i, which them-

selves were computed using (once more delayed) global

parameters (x
k−Dk

i
i )i. Thus km+1 is exactly the first time

such that xk does not depend directly on any xk
′

with
k′ < km. These notions will be crucial in our analysis.

A nice property of this definition is that if M = 1, we have
km = m as on the interval [m,m + 1] there are exactly
two updates of the one and only slave. Also, if the delays
dki are uniformly bounded by d (which is not our working
assumption), then we haveDk

i 6 D := 2d+1 and km+1−
km 6 D.

3.2. RPG Optimization scheme

A core feature of our proposed algorithm is the way we
compute the update ∆ (or equivalently xki ), which we call
RPG. As Problem (2) features a smooth and a non-smooth
part, it is natural to use proximal gradient steps; also, as we
wish to be flexible in terms of computing time, we allow the
repetition of local proximal gradient steps before exchang-
ing with the master. The number of repetitions (called p in
the algorithm) can vary over time and agent. We present
our RPG scheme in 3 stages.

� G. If r ≡ 0, then the objective function is merely an
average of smooth functions, thus ∆ might be generated by
a simple gradient step:

xki ← xk−d
k
i − γ∇fi(xk−d

k
i )

∆← πi

(
xki − x

k−dki
i

)
.

(4)
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The first line in (4) corresponds to one gradient step and the
second maintains the averaging property. It is noteworthy
that if we use (4) to express xk in terms of the previous x’s,
then the recursion will be

xk =

M∑
i=1

πix
k−dki
i

=

M∑
i=1

πix
k−Dk

i − γ
M∑
i=1

πi∇fi(xk−D
k
i ). (5)

Each update is equivalent to an averaged gradient step but
in a conservative manner; instead of updating from xk−1

as it is usually done, the proposed method uses some av-
eraged point

∑M
i=1 πix

k−Dk
i . Thus, though each master

update relies on only one agent (and thus part of the data),
all the data is always implicitly involved in the master vari-
able, with even proportions. This allows us to cope with the
heterogeneity of the computing system (data distribution,
agents delays,...). This also prevents breaking convergence
in the case where some slave is silent for too long.

� PG. To tackle the non-smooth part r, a standard approach
is to use a proximal operator, defined by

proxγr(x) = arg min
z

{
r(z) +

1

2γ
‖z − x‖2

}
.

Using this, we can generalize (4) in the same way as
proxγr(x− γ∇f(x)) generalizes a gradient step.

z ← proxγr(x
k−dki ),

xki ← z − γ∇fi(z)

∆← πi

(
xki − x

k−dki
i

)
.

(6)

One can notice here that we are performing the proximal
operation before the gradient step; this way, the master av-
erages output of gradient step and not the output of proxim-
ity operators. This is a crucial point as the average of prox-
imal operators, known as the proximal average (Bauschke
et al., 2008) is itself a proximal operator but on a Moreau-
like envelop of the original function (that has been applied
in learning contexts, see e.g. (Yu, 2013)). In order to con-
verge to a solution of (2) itself, the average must be taken
on the output of gradient steps and not the output of prox-
imity operators. Thus, the converging master variable is

x̂k := proxγr
(
x̄k
)
. (7)

� RPG. After computing iteration (6), the slave could send
the adjustment ∆ to the master and get xk in response.
However, the difference between the latest x and xk−d

k
i

might be small, so the slave would not get much of infor-
mation. When communications costs are prohibitive, it is

preferable to limit the number of communications. Instead,
we suggest to perform additional proximal gradient updates
by taking as the starting point xk−d

k
i + ∆. We will show

in Section 4.2 that there is no restrictions on the number of
repetitions (p in the algorithm), as any value can be chosen
and it can vary both across machines and over time.

3.3. Full algorithm

Putting together our communication and optimization
schemes, we end up with the following distributed algo-
rithm, called DAve-RPG. We present it using the notation
of the initial learning problem (2).

DAve-RPG

Master:

Initialize x = x0, k = 0
while not converge do

when an agent finishes an iteration:
Receive an adjustment ∆ from it
x← x+ ∆
Send x to the agent in return
k ← k + 1

end
Interrupt all slaves
Output x̂ = proxγr (x)

Slave i:

Initialize x = x0i = x0

while not interrupted by master do
Receive the most recent x
Take x from the previous iteration
Select a number of repetitions p
Initialize ∆ = 0
for q = 1 to p do

z ← proxγr(x+ ∆)

x+ ← z − γ 1
ni

∑
j∈Si ∇`j(z)

∆← ∆ + πi (x+ − x)
x← x+

end
Send the adjustment ∆ to the master

end

4. Convergence analysis
In this section, we prove that DAve-RPG has a linear con-
vergence rate with respect to the epoch sequence when the
objective is strongly convex.

Assumption 1. The functions (`i) are µ-strongly convex
and L-smooth, that is differentiable with L-Lipschitz gra-
dients; and r is convex and proper.
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In this situation, we have existence and uniqueness of the
solution of (1), that we denote by x?. We prove in Sec-
tion 4.1 a general convergence result that we refine later
for multiple local iterates in Section 4.2, and for specific
learning problems in Section 4.3.

4.1. General convergence under strong convexity

We first prove that we have a control on the convergence
of local iterates of a slave with respect to the other slaves
values, and that for any number of inner repetitions p, as
stated in the next lemma (the proof of which is reported in
the supplementary material).

Lemma 1. Let Assumption 1 hold. For any i, define x?i =
x? − γ 1

ni

∑
j∈Si ∇`j(x

?). Then, the local iterates at slave
i satisfy, for all k,∥∥xki − x?i ∥∥2 6 (1− γµ)

2
ck−Dk

i

where for any moment k we define

ck = max

(∥∥xk − x?∥∥2 ,∥∥∥xk−i(k) − x?−i(k)∥∥∥2)
with i(k) being the slave making the update k, and

x? =

M∑
i=1

πix
?
i ,

x?−i =
(∑
j 6=i

πj

)−1∑
j 6=i

πjx
?
j =

∑
j 6=i

nj
n− ni

x?j ,

xk−i =
(∑
j 6=i

πj

)−1∑
j 6=i

πjx
k
j =

∑
j 6=i

nj
n− ni

xkj .

This technical lemma is the working horse bringing the fol-
lowing global convergence result. We prove that, along the
epoch sequence (km), the proposed algorithm converges
linearly.

Theorem 1. Let Assumption 1 hold and take γ ∈(
0, 2

µ+L

]
. Then for all k ∈ [km, km+1), DAve-RPG pro-

duces iterate verifying∥∥x̂k − x?∥∥2 6 (1− γµ)
2m

max
i

∥∥x0i − x?i ∥∥2 .
Proof. Let us take i = i(k) ,the slave making the update
at moment k. Using this definition, we are going to prove
convergence of the sequence

ck = max
(∥∥xk − x?∥∥2 ,∥∥xk−i − x?−i∥∥2) ,

where x?, x?−i and xk−i are defined as in Lemma 1. Accord-
ing to this lemma, for any j∥∥xkj − x?j∥∥2 6 (1− ρ)2ck−Dk

j

with ρ = γµ. Using the convexity of the squared norm, we
deduce that∥∥xk − x?∥∥2 6 M∑

j=1

πj
∥∥xkj − x?j∥∥2

6 (1− ρ)2
M∑
j=1

πjck−Dk
j
6 (1− ρ)2 max

j
ck−Dk

j
,

because
∑
j πj = 1. Similarly,∥∥xk−i − x?−i∥∥2 6 (1− ρ) max

j 6=i
ck−Dk

j
.

What values may k − Dk
j take? Clearly, Dk

j > 0, and on
the other hand, for k ∈ [km, km+1), there were at least two
updates by slave j in [km−1, km] so km−1 6 k −Dk

j thus

ck 6 (1− ρ)2 max
j
ck−Dk

j
6 (1− ρ)2 max

k′∈[km−1,k)
ck′ .

If we apply this inequality sequentially to km, km +
1, . . . , km+1 − 1, we get

ckm 6 (1− ρ)2 max
k′∈[km−1,km)

ck′ , (8)

ckm+1 6 (1− ρ)2 max

(
max

k′∈[km−1,km)
ck′ , ckm

)
6 (1− ρ)2 max

k′∈[km−1,km)
ck′ (using Eq. (8))

...

max
k∈[km,km+1)

ck 6 (1− ρ)2 max
k′∈[km−1,km)

ck′

6 (1− ρ)2m max
k′<k0

ck′

6 (1− ρ)2m max
i

∥∥x0i − x?i ∥∥2 .
From the linear convergence of (ck) along the epoch se-
quence, we are now able to prove the convergence rate of
the produced iterates. The optimality of x? implies that it
is the fixed point of a (full) proximal gradient step

0 ∈
M∑
i=1

πi∇fi(x?) + ∂r(x?)

⇔ x? = proxγr

(
x? − γ

M∑
i=1

πi∇fi(x?)

)

= proxγr

(
M∑
i=1

πix
?
i

)
= proxγr (x?) .

Finally, using the non-expansiveness of the proximal oper-
ator, we get∥∥x̂k − x?∥∥2 =

∥∥proxγr
(
xk
)
− proxγr (x?)

∥∥2
6
∥∥xk − x?∥∥2 6 ck

which concludes the proof.
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This result states that the proposed algorithm converges lin-
early at a rate that depends only on the function proper-
ties but neither on the number of machines nor on the de-
lays as they are directly embedded in the sequence (km).
When there is only one machine, the epochs sequence cor-
responds to the time sequence (m = k), and we recover the
standard rate for the proximal-gradient algorithm.

It is important to notice here that the stepsize γ can be taken
in the usual range for (proximal) gradient descent and in
particular does not depend on the delays in any way, in
contrast with many existing asynchronous algorithms pre-
sented in Section 2.

Thus the delays and the computing system do not appear
in the choice of the stepsize and in fact anywhere of the
algorithm. As a consequence, the algorithm shows a sta-
ble, efficient behavior, even in the presence of arbitrary de-
lays. This is illustrated in the numerical experiments with
long delays, simulating crashes/repairs. This is also stud-
ied in the appendix in the case of infinite delays, simulat-
ing crashes with loss of data; in this case, the algorithm still
provides an approximate solution, depending on previously
computed information.

4.2. Improved rate for multiple inner iterations

The general convergence analysis of the previous section
can be refined in the case when the slaves make at least
p0 proximal-gradient iterations (the proof of this result is
postponed to the supplementary).

Theorem 2. In addition to the assumptions of Theorem 1,
assume that every local loop in DAve-RPG uses p > p0.
Then, ∥∥x̂k − x?∥∥2 6 [η(p0)]m max

i

∥∥x0i − x?i ∥∥2
where

η(p0) = (1− ρ)2
(

1− ρ

M
− · · · − ρ(1− ρ)p0−2

Mp0−1

)2

with ρ = γµ.

When p0 = 1, we retrieve the rate of Theorem 1. When
p0 > 1, the guaranteed convergence rate is better at the
price of more expensive iterations. We have here the usual
trade-off in distributed optimization between local compu-
tations and global exchanges.

4.3. Analysis for learning with elastic net regularization

The strong convexity of the functions `i’s required by the
analysis of the previous sections may seem restrictive at
first glance. But it is actually verified in many machine
learning objectives. It is for example the case when learn-
ing with `1 and `2 regularization (a.k.a. elastic net (Zou &

Hastie, 2005)). The learning optimization problem can be
formulated as

min
x

1

n

n∑
j=1

lj(x) + λ1‖x‖1 +
λ2
2
‖x‖22, (9)

where the (lj) are losses over some example (zj , yj). Typ-
ical functions include least-squares regression lj(x) =
(zTj x− yj)2, logistic loss lj(x) = log(1 + exp(−yjzTj x)).
The only assumption that we require on the (lj)’s is the
L-smoothness. The squared `2 norm can be split over all
examples, which actually brings strong convexity in the
smooth part:

min
x

1

n

n∑
j=1

(
lj(x) +

λ2
2
‖x‖22

)
︸ ︷︷ ︸

:=`j(x)

+λ1‖x‖1, (10)

where the smooth local losses `j’s are now (L+λ2)-smooth
λ2-strongly convex functions.

Moreover, the proximal operator of the `1 norm has the
explicit form as an elementwise soft thresholding

[
proxγλ1‖·‖1(x)

]
a

=


[x]a − γλ1 if xa > γλ1,

0 if |xa| 6 γλ1,
[x]a + γλ1 if xa < −γλ1,

where [·]a denotes the a-th coordinate of a vector. Thus,
if the data is split into subsets (Si) distributed over
M machines, an inner proximal gradient update for our
DAve-RPG algorithm writes

z ← proxγλ1‖·‖1
(
x+ ∆

)
(11a)

x+ ← (1− λ2) z − γ 1

ni

∑
j∈Si
∇lj(z) (11b)

∆← ∆ + πi
(
x+ − x

)
(11c)

x← x+. (11d)

The linear convergence result of Theorem 1 can then be
restated in the following specific form.

Corollary 1. Assume that λ2 > 0 and that the func-
tions (li) in (10) are (non-strongly) convex and L-smooth.

Take γ ∈
(

0, 2
L+2λ2

]
, then the iterations of DAve-RPG

for k ∈ [km, km+1) with update rules (11) for machine
i ∈ {1, . . . ,m} verify :∥∥x̂k − x?∥∥2 6 (1− γλ2)

2m
max
i

∥∥x0i − x?i ∥∥2 .
5. Numerical experiments
We illustrate the performance of our algorithm DAve-RPG
on a standard setting of large-scale learning. We consider
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the regularized logistic surrogate loss

1

n

n∑
j=1

log(1+exp(−yjzTj x)) + λ1‖x‖1+
λ2
2
‖x‖22 , (12)

with the hyperparameter λ2 fixed to the typical value λ2 =
1
n . In forthcoming plots, we will report the decrease of this
function with respect to wall clock time.

We use publicly available datasets2, presented in Table 1.
We consider M = 100 machines connected by fast data
transmission. Each slave is allocated 1 CPU with 4 GB
of memory. We report some of the numerical results here;
others are included in supplementary material.

Dataset n d L λ1
RCV1 697641 47236 0.25 3 · 10−6

URL 2396130 3231961 128,4 10−6

Covtype 581012 54 21930585,25 10−6

Table 1: Characteristics of datasets used in our experi-
ments; n, d, L and λ1 denote respectively, the size of the
training set, the number of features, the Lipschitz constant,
and the value of the hyperparamater corresponding to the
`1 regularization.

Comparison. We compare our algorithm DAve-RPG in
terms of speed of convergence with its two main competi-
tors in our distributed framework (with splitting of exam-
ples and no shared memory): i) Proximal Incremental Av-
erage Gradient (PIAG), using the maximum of two step-
sizes provided in (Aytekin et al., 2016) and (Vanli et al.,
2016) (for better performance); and ii) the direct extension
of the proximal-gradient in Map-Reduce that we refer to as
synchronous Proximal Gradient (Synchronous PG). These
algorithms were implemented in Python by using sockets
for communications between the workers and the master.
All communications are processed one by one to avoid in-
consistent reads and support the theory.

Figure 3 illustrates the difference between the regular-
ized loss (12) and its minimum, denoted as suboptimal-
ity, with respect to time for the three above methods on
RCV1.binary and the URL datasets. We put a significant
proportion of the data on the first machine (9% and 15%
respectively) and the rest is evenly distributed among the
other 99 workers. We fixed the number of inner iterations
per worker to p = 1. It comes out that DAve-RPG consis-
tently outperforms the other two approaches.

Delay-tolerance In Figure 4, we exhibit the resilience of
our algorithm to delays by introducing additional simulated
delays. We use the RCV1 dataset distributed evenly among

2https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/

M = 10 machines, meaning that a long delays for one ma-
chine would hold out 10% of the data. Delays are simulated
by randomly stopping any machine for some random time.
We can see that while delays obviously affect the conver-
gence rate, the speed remains comparable. This is an im-
portant feature of our algorithm, especially when looking at
the maximal delay dk = maxi d

k
i record which is varying

a lot as expected from a practical point of view. Notice that
the delays are only upper bounded by a large value d ≈ 300
which would deeply affect the stepsize and convergence of
competitor algorithms, but not ours.
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Figure 5: Trade-off computation/communication with p for
URL dataset.

Trade-off communication vs computation To illustrate
the trade-off between communication and computation, we
increase the number of inner-iterations of each worker (p =
1, 4, 7, 10). These results are depicted in Figure 5 for the
URL dataset splitted evenly among the 100 workers. We
see that the increase of p from 1 to 7 allows to reach the
minimum faster, up to a certain point, where the time spent
on inner iterations affect the speed of convergence as for
p = 10.
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Figure 6: Speedup with respect to number of machines on
RCV1.

Scalability We ran the algorithm with different number of
workers and measured its speedup as the inverse of the re-
quired time to reach suboptimality 10−2; this is represented
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Figure 3: Regularized loss (12) suboptimality on the training set versus wall clock time. On the left: RCV1 dataset with
9% of the data on the 1st machine. On the right: URL dataset with 15% of the data on the 1st machine.
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Figure 4: Illustration of the resilience of DAve-RPG to additional delays.

in Fig. 6. We set p = 50 and distributed RCV1 dataset
evenly in all runs. In the ideal case, performance would
scale linearly with the number of workers. We observe that
the speedup is far from linear but it is not surprising from
a practical point of view. Indeed, the main reason for this
behaviour is that the greater the number of workers, the big-
ger the asynchrony becomes. Besides, the communication
bottleneck becomes narrower especially as we processed
communications one by one to avoid inconsistent reads.

6. Conclusion
We proposed and analyzed an asynchronous distributed op-
timization algorithm for learning objectives. The key fea-
tures of our algorithm are i) a distributed averaging of the
parameters; and ii) repeated local proximal-gradient itera-
tions. Dave-RPG enjoys a linear convergence rate with a

fixed stepsize independent of delays. These convergence
properties and the possibility to adjust the computation vs.
communication trade-off by repeating the local iterations
make it particularly well suited for distributed learning, as
demonstrated in the numerical experiments.
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