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>>> Regularization in Learning

Regularized Empirical Risk Minimization problem:

Find x* € arg min
g
XERN

R (x; {ai, bi}itq)

obtained from

statistical modeling

g * : m 1/, T )2
e.g. Lasso: Find X~ € arg)l}elﬁgr% Zi:l E(ai x —bi)

Structure Regularization

sparsity r=1-1h
anti-sparsity r=|-lleo

low rank = p

Regularization can improve statistical properties (generalization, stability, ...).

A r(x)

chosen
regularization

A el

< Tibshirani: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (1996)
< Tibshirani et al.: Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society (2004)
< Vaiter, Peyré, Fadili: Model consistency of partly smooth regularizers. IEEE Trans. on Information Theory (2017)
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>>> Optimization for Machine Learning

Composite minimization

Find x*eargm%Rn R (e {ai,bitit;) + Ar(x)
xeR?
Find x* € arg m]iRn fx) + gl
x€RM

smooth non-smooth

> f: differentiable surrogate of the empirical risk = Gradient
non-linear smooth function that depends on all the data
> g: non-smooth but chosen regularization = Proximity operator
non-differentiability on some manifolds implies structure on the solutions
closed form/easy for many regularizations:
-8(x) = [Ix|
-8(x) =TV(x)

- g(x) = indicatorc(x)

prox_, (u) = argminyexn {g(y) + 2 v — ul3}

Natural optimization method: proximal gradient

U1 = Xk — 7V (xx)
X1 = prox'yg(uk+1)

and its stochastic variants: proximal sgd, etc.
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>>> Structure, Non-differentiability, and Proximity operator

Example: LASSO

Find X" € arg m'%n R (x;{ai,bi}it,) + Ar(x)
x€ER
. o . 1 _ 2
Find x € arg min 3 1Ax —=bll; +  Allx|l:

smooth non-smooth

Coordinates ~ Structure <>  Optimality conditions
vi  xf=0 & Al (A —b) e[\

Proximity Operator: per coordinate

u—Xy ifu> Xy Il
[proxwwl(u)]i =< 0 %fui € [=Ay;A7] 2
ui+ Ay ifu <=My

Proximal Gradient (aka ISTA):

{ Uk+1 = Xk — ’YAT (Axk — b)
Xier1 = PrOX. 1, (U1)

t> {0} per coord.
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>>> Structure, Non-differentiability, and Proximity operator

Example: LASSO

Find x* € argmin R (x; {a;,bi},) + X r(x)
xeR?
Find x* € argmin 1llAx —bl; + Alx|h
xXERN
smooth non-smooth
Coordinates ~ Structure <>  Optimality conditions Proximity operation

¢ 2

AT(Ax* —b) € [-A, )] [proxw,ul(u*)]i =0

u* =x* —HA" (Ax* —b)

Vi xi=0 &

2 N ANERN
oo
150 g \
WAy ifui> Ny ~
[pmxﬂu H‘(u)] :{ 0 ifu € [~Ay: M) kA
‘ wi+ Ay ifw < =Xy 10 -
Proximal Gradient (aka ISTA): 05 i N
{ Uy = X — AT (Axi — b) o
Xey1 = PIOX, y . (Uir1)
.?4
—0.519> N
5 75 B -,
L
1Ll | !
-1 0 1 2

ItEI ates Xk ]each the same structure as x™ 1n ﬁIllte tlllle'.
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>>> Mathematical properties of Proximal Algorithms

15 \, N\

T
B

Proximal Algorithms:

e

Upey1 = Xk — Y Vf(xk) I =
Xicp1 = ProX., (U+1) R

> project on manifolds

Let M be a manifold and u* such that
x* = prox.,(u*) € M and ”*;x* € ri 0g(x*)

If g is partly smooth at x* relative to M™* locally smooth along M and nonsmooth across,
then

prox.,(u) € M*
for any u close to u*.

¢ Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis
(2004)

¢ Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured
optimization problems. Optimization (2006)
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>>> Mathematical properties of Proximal Algorithms

u* (= x* —Vf(x"))

Proximal Algorithms:

U1 = Xk — YV (k)
Xicp1 = ProX.,(U1)

> project on manifolds
> identify the optimal structure

Let (x;) and (ui) be a pair of sequences such that
_ k _
Xk = Prox.,(u) — x* = prox.,(u*)
and M be a manifold. If x* € M and the qualification condition
Je > O such that for all u € B(u*, ), prox.,(u) € M (QQ)
“structure is stable under small perturbation of the data”
holds, then, after some finite but unknown time, x; € M.
& Lewis: Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization (2002)
¢ Fadili, Malick, Peyré: Sensitivity analysis for mirror-stratifiable convex functions. SIAM Journal on Optimization

(2018)
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>>> “Nonsmoothness can help”

o>

> Nonsmoothness is actively studied in Numerical Optimization...

Subgradients, Partial Smoothness/prox-regularity, Bregman geometry, etc.

Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. J. of Conv. Analysis (2004)
Lemarechal, Oustry, Sagastizabal: The U-Lagrangian of a convex function. Trans. of the AMS (2000)

Bolte, Daniilidis, Lewis: The ojasiewicz inequality for nonsmooth subanalytic functions with applications to
subgradient dynamical systems. SIAM J. on Optim. (2007)

Chen, Teboulle: A proximal-based decomposition method for convex minimization problems. Math. Prog. (1994)
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>>> “Nonsmoothness can help”

> Nonsmoothness is actively studied in Numerical Optimization...

Subgradients, Partial Smoothness/prox-regularity, Bregman geometry, etc.

> ...but often suffered because of lack of structure/expression.

Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.

¢ Nesterov: Smooth minimization of non-smooth functions. Mathematical Programming (2005)

¢ Burke, Lewis, Overton: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. on
Optim. (2005)

¢ Solodov, Svaiter: A hybrid projection-proximal point algorithm. J. of Conv. Analysis (1999)

¢ de Oliveira, Sagastizabal: Bundle methods in the XXIst century: A bird’s-eye view. Pesquisa Operacional (2014)
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>>> “Nonsmoothness can help”

> Nonsmoothness is actively studied in Numerical Optimization...
Subgradients, Partial Smoothness/prox-regularity, Bregman geometry, etc.

> ...but often suffered because of lack of structure/expression.

Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.

> For Machine Learning objectives, it can often be harnessed

Feature selection, Screening, Faster rates, etc.

Bach, et al.: Optimization with sparsity-inducing penalties. FnT in Machine Learning (2012)

Massias, Salmon, Gramfort: Celer: a fast solver for the lasso with dual extrapolation. ICML (2018)

Liang, Fadili, Peyré: Local linear convergence of forwardbackward under partial smoothness. NeurIPS (2014)
O’Donoghue, Candes: Adaptive restart for accelerated gradient schemes. Foundations of Comp. Math. (2015)
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>>> “Nonsmoothness can help”

> Nonsmoothness is actively studied in Numerical Optimization...
Subgradients, Partial Smoothness/prox-regularity, Bregman geometry, etc.
> ...but often suffered because of lack of structure/expression.
Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.
> For Machine Learning objectives, it can often be harnessed
Feature selection, Screening, Faster rates, etc.
> Why?
- Explicit/“proximable” regularizations /1, nuclear norm
- We know the expressions and activity of sought structures sparsity, rank
- Any converging proximal algorithm will identify the optimal structure of
the problem.

> . & Malick: Nonsmoothness in Machine Learning: specific structure, proximal
identification, and applications, review/pedagogical paper, Set-Valued and
Variational Analysis, 2020, https://arxiv.org/abs/2010.00848

Thanks to the Optimization for Machine Learning week at CIRM in March 2020!
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https://arxiv.org/abs/2010.00848

>>> Question

Let us solve a Regularized ERM problem with a proximal algorithm
ury1 = Update (f; {xe}o<k; {ue}e<k; v)
Xiy1 = Prox. . (uk+1)

with x; = prox_, (ux) — x* = prox_,(u*)

> The proximity operator gives a current structure M; C R"
partial identif/screening

> We know that eventually M; = M* after some finite time
identification

1- Does faster minimization means faster identification ?

2— Can we efficiently restrict our update to M;?

Example: Sparse structure and g = || - ||1.

M represents the points with the same support as x* (ie. non-selected features are put to zero).

My = {x € R" : supp(x;) = supp(x;) } is the current structure.
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B  INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION

NEWTON ACCELERATION ON IDENTIFIED MANIFOLDS



>>> Acceleration of the Proximal Gradient ACCELERATION VS IDENTIF

Urt1 =Yk — YVf (k)

X1 = PrOX.,(Uk+1)

Vi1 = X1 + Qi1 (1 — Xx)
—_—————

inertia/acceleration

> ak41 = 0 : vanilla Proximal Gradient
> g = ’,z;—; : accelerated Proximal Gradient (aka FISTA)

Optimal rate for composite problems (coefficients may vary a little)

| PG Accel. PG
F(xx)—F* | O(1/k) O(1/k*)
iterates convergence yes yes
monotone functional decrease yes no
Fejér-monotone iterates yes no

Nesterov: A method for solving the convex programming problem with convergence rate O(1,/k?). Sov. Dok.
(1983)

Beck, Teboulle: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. on Imag.
Sci. (2009)

Chambolle, Dossal: On the convergence of the iterates of “FISTA”. J. of Optim. Theory and App. (2015)
L., Malick: On the Proximal Gradient Algorithm with Alternated Inertia. J. of Optim. Theory and App. (2018)
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>>> Interplay between Acceleration and Identification = ACCELERATION VS IDENTIF

min ||Ax — b||3 + Ar(x)
x€R2

=

T K

—e— Proximal Gradient |7

<

—0.5 9>

7

0.28— 61 - .
\ —«— Proximal Gradient |-
0.2

Q%
125
34 0 . 028 A
i | I o5l g I i
0 1 2 —-1.5 -1 —0.5 0 0.5
r(x) = [lxlh r(x) = max(|lx|l1.3 — 1;0)

1-norm regularization

distance to 1.3-norm unit ball
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>>> Interplay between Acceleration and Identification = ACCELERATION VS IDENTIF

min ||Ax — b||3 + Ar(x)
x€R2

2 T T - 1.5 T V.56 T 179
- ) [ 0.28 I
—e— Proximal Gradient 1 —— Proximal Gradient
1zl —+— Accelerated Proximal Gradient || —— Accelerated Proximal Gradient

—0.5 :
52 o9 o056 |
Y Lo | !
—1.5 -1 —0.5 0 0.5
r(x) = llxllx r(x) = max(|lx|[1.s — 1;0)
1-norm regularization distance to 1.3-norm unit ball

> PG identifies well;
> Accelerated PG explores well, identifies eventually, but erratically.

Can we converge fast and identify well?
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>>> A test-based algorithm ACCELERATION VS IDENTIF

T is a boolean function of past iterates; decides whether to accelerate or not.

Urt1 =Yk — YVf (k)
X1 = PrOX.  (Uk+1)

| X k(e —x)  ifT=1
Y1 = xe if T=0

Proposed tests:
We pre-define a collection C = {M, .., M, } of sought structures

1. No Acceleration i.e. T! =0 2. No Accelerationi.e. T2 =0
when a new pattern is reached: if this means getting less structure:

Xk+1 € M and x € M Ty (xx1) € M and 75 (k1 + 1 (k1 — Xx)) € M

for some structure M € C. for some M € C.

where T, := proxvg(- — v Vf(+)) is the proximal gradient operator.

Examples of sought structures: sparsity supports, rank.
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>>> Convergence result ACCELERATION VS IDENTIF

Theorem

Let f, g be two convex functions such that f is L-smooth, g is lower semi-continuous, and f + g is
semi-algebraic with a minimizer. Take v € (0,1/L]. Then, the iterates of the proposed
methods with test T* or T2 satisfy

F(xg1) —F =0 (%)

for some R > 0.

Furthermore, if the problem has a unique minimizer x* and the qualifying
constraint (QC) holds, then the iterates sequence (xi) converges, finite-time
identification happens and

F(xep1) — F(x*) = O (klz) .

L-smooth means that f is differentiable and Vf is L-Lipschitz continuous.
Je > Osuch that for allu € B(x* — yVf(x*), ), prox_,(u) € M* (QC)
For the ¢; norm, this means this means —V; f(x*) € (—X; ).
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>>> Back to initial problems: /; norm

min [|Ax — b||2 + Allx|h
xER2

1

T T | N

- y =
—e— Proximal Gradient

—+— Accelerated Proximal Gradient ||

—0.5

o

ACCELERATION VS IDENTIF
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>>> Back to initial problems: /; norm

min [|Ax — b||2 + Allx|h
xER2

2 T T T
—+— Proximal Gradient K
15| —=+— Accelerated Proximal Gradient ||
. o
. . TZ \
10 X < o
i
|
> =
0.5 % — £
\ =3
g o
0 — —
0.5+ 3
—05 135> i
3 - A
\(9 *s — e
3
L= 1 L L
-1 0 1 2 3 4

10-2

1077

10-12

107

ACCELERATION VS IDENTIF

Proximal Gradient

- -~ Prov. Alg- T!
Prov. Alg - T?

Accel. Proximal Gradient ||

Il Il Il
50 100 150 200
number of proximal gradient steps

@ marks identification time
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>>> Back to initial problems: distance to 1.3-norm ball ACCELERATION VS IDENTIF

min [|[Ax — b||3 + Amax(|x||1.3 — 1;0)
XER2

15 T .56 T 129

—e— Proximal Gradient
—+— Accelerated Proximal Gradient
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>>> Back to initial problems: distance to 1.3-norm ball ACCELERATION VS IDENTIF

min [|[Ax — b||3 + Amax(|x||1.3 — 1;0)
XER2

56 T Ve

; 10 T T =]
Proximal Gradient

—e— Proximal Gradient
—=+— Accelerated Proximal Gradient
e !

Accel. Proximal Gradient
~~ - Prov. Alg-T!
Prov. Alg - T?

T2 10-3 |-

10-8 |-

Flx) — F*

10-13 |

10-18 [ B

number of proximal gradient steps

@ marks identification time
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>>> Matrix regression with nuclear-norm regularization ACCELERATION VS IDENTIF

min_||AX — B||2 + A||X]|

XG]RZOXZO
> S € R?%2 5 3 rank 3 matrix;
> A € RU6x16)x(20x20) j5 qrawn from the normal distribution;
> B = AS + E with E drawn from the normal distribution with variance .01

<

R 100 47— 5

g Proximal Gradient |- 10° 100

—~ 80 Accel. Proximal Gradient |

£ 80

5 =

M 60 -107° X

E 6 k
) -
= ~ 10-6 40 &
S 10 =
T 20

< 20

E oLl I I | 10~

o 0-10° 1-10* 2. 10* 3.10* 0

I

i 100 ————— A 100 51— S

) 10° 100

& & 50

k] .

X 60 -107° 60 103 B
g |

= 40 =
1~ 107 10-6 =
T 20

3 20

M

E 0 - > ! L On 0 | | | L 1099

e 0-10° 1-10° 2-10* 3.10* 0.10° 1.10° 2.10° 3.10°

iterations iterations 13/22



>>> Take-Home Message #1 ACCELERATION VS IDENTIF

> Acceleration can hurt identification for the proximal gradient algorithm
= Faster convergence does not means faster structure identification
= Accuracy vs. Structure tradeoff for the learning problem

> We propose a method with stable identification behavior, maintaining an
accelerated convergence rate

> General ideas:

= keep a list of the possible structures you are looking for sparsity patterns,
rank

= look at their activity at the output of the proximity operator

> Bareilles & I.: On the Interplay between Acceleration and Identification for the
Proximal Gradient algorithm, Computational Optimization and Applications, 2020,
https://arxiv.org/abs/1909.08944. Try it in Julia on
https://github.com/GillesBareilles/Acceleration-Identification
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INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION

B NEWTON ACCELERATION ON IDENTIFIED MANIFOLDS



>>> Using a Riemannian structure NEWTON ACCELERATION

Find X* € arg min R (x;{ai, bitizy) + A r(x)
x€ERM
Find x* € arg m]iRn fx) + g
xeRn
smooth non-smooth

Recall that when solving a Regularized ERM problem with proximal gradient

U1 =Xk — 7Vf(xx)

Xk+1 = prox'yg(uk+1)
the proximity operator outputs a current structure My C R" (xx € M;) and
eventually My = M*.

Reminder: Think of M as a sparsity pattern or a rank in matrix regression.
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>>> Using a Riemannian structure NEWTON ACCELERAT

Find X* € arg min R (x;{ai, bitizy) + A r(x)
x€ERM
Find x* € arg n€1]ian1 fx) + g

smooth non-smooth

Recall that when solving a Regularized ERM problem with proximal gradient

Observe My, thenyx,; = RiemannianStep; +g(xk, My)
U1 =Yk — vYVf(x)
Xky1 = prox,yg(ukﬂ)

the proximity operator outputs a current structure My C R" (xx € M;) and
eventually M; = M*.

Reminder: Think of M as a sparsity pattern or a rank in matrix regression.

Predictor-Corrector methods: perform a Riemannian step on My, then a
proximal step to correct the structure, and so on.

¢ Lemaréchal, Oustry, Sagastizabal: The U-Lagrangian of a convex function. Trans. of the AMS (2000)
¢ Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured
optimization problems. Optimization (2006) 15/22



>>> Riemannian optimization NEWTON ACCELERATI

> F = f + g is nonsmooth on R" but smooth along M nonsmooth across
> Riemannian optimization method
eg. Riemannian gradient step:
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>>> Riemannian optimization NEWTON ACCELERATION

> F = f + g is nonsmooth on R" but smooth along M nonsmooth across
> Riemannian optimization method
eg. Riemannian gradient step:

x — vOF(x)

We start from a point on M
Computation of a subgradient of F, 9F(x), in the full space
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>>> Riemannian optimization NEWTON ACCELERATION

> F = f + g is nonsmooth on R" but smooth along M nonsmooth across
> Riemannian optimization method
eg. Riemannian gradient step:

x — vOF(x)

x — ~ygradF (x)

We start from a point on M
Computation of a subgradient of F, 9F(x), in the full space
Projection on the tangent plane to get a Riemannian gradient
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>>> Riemannian optimization NEWTON ACCELERATION

> F = f + g is nonsmooth on R" but smooth along M nonsmooth across
> Riemannian optimization method
eg. Riemannian gradient step:

x — vOF(x)

We start from a point on M

Computation of a subgradient of F, 9F(x), in the full space
Projection on the tangent plane to get a Riemannian gradient
Retraction on the manifold to perform a Riemannian gradient step
(Test different ~ to decrease F)
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>>> Riemannian optimization NEWTON ACCELERATION

> F = f + g is nonsmooth on R" but smooth along M nonsmooth across
> Riemannian optimization method
eg. Riemannian gradient step:

x — vOF(x)

x — ~ygradF (x)

We start from a point on M

Computation of a subgradient of F, 9F(x), in the full space
Projection on the tangent plane to get a Riemannian gradient
Retraction on the manifold to perform a Riemannian gradient step

> 1st and 2nd order optimization methods can be implemented on
manifolds (see https://www.manopt.org/ in Matlab, Python, Julia)
> Tractable for linear spaces (sparsity), fixed rank, etc.
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>>> Newton acceleration NEWTON ACCELERATION

Find Xx* € arg m%Rn R(x;{ai, bitiny) + A r(x)
xXERN

Find x* € arg Hel%an flo) + gl
X n
smooth non-smooth
Observe M
Yk+1 = RiemannianNewtony g (xi, M)
U1 =Yk — vYVfx)
Xkt1 = ProxX. . (wet1)

> Intuition from the sparse//; case:
We temporarly restrict to vectors with the same sparsity pattern as Xy
Compute the gradient and Hessian for these coordinates
Perform a Newton step possible since it is locally smooth
The proximal gradient step after will ensure the structure validity
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>>> In theory NEWTON ACCELERATION

Theorem

Provided that the minimum x* lies on some manifold M and is qualified,
alternating:

i) a proximal gradient step with v < 1/L

ii) a Riemannian Newton step on the identified manifold with backtracking line-search
generates iterates that

a) belong to M in finite time

b) converge quadratically to x*:

dist g (er1,x™) < distag (xk,x*)2

> Qualification is needed as before for identification...
(QQC) + partial smoothness at x* for M

> ... and for quadratic convergence of Newton
Riemannian Hessian positive definite at x*
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>>> In practice I NEWTON ACCELERAT

—+—  Proximal Gradient

Accel. Proximal Gradient
—o— Alt. Newton
Alt. Truncated Newton

£1-regularized logistic regression: 8000 examples, size 4000

T T
4,000 - @ -
100 [
& 3,000 |- =
E (Vi =
£ B
B 2
s . E 2000 -
g 107 B
R K
000 - 1%, -
10712 i LA
o . W
10-16 I I I I I Ofwn v i i T
0 2 4 6 8§ 10 12 14 16 10° 10! 10? 103
time (s) iterations
Algorithm Tolerance F(x) — minF #prox. grad. steps  # Ri ian steps  #HessF(-)[] #f #g
Prox. Gradient 1-10™ 0.0009963198229036019 357 = = 779 358
Prox. Gradient 1-107° 9.965078207052613e-10 2306 = = 4677 2307
Accel. Prox. Gradient 1-10" 0.0009257766624239938 90 = = 246 91
Accel. Prox. Gradient 1-107° 9.899422392933843e-10 953 = = 1972 954
Alt. Newton 1-10~ 0.0009759231753842523 62 61 6303 556 427
Alt. Newton 1-107° - - - - - -
Alt. Truncated Newton ~ 1-10" 0.0009557819627238895 51 50 2616 437 321
Alt. Truncated Newton ~ 1-10~° 3.774758283725532e-15 105 105 5091 742 572

> Newton is too costly without a low dimensional structure
> Truncated Newton offers a good compromise approximate Newton equation
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>>> In practice II NEWTON ACCELERAT

—+—  Proximal Gradient

Accel. Proximal Gradient
—a— Alt. Newton

low rank matrix regression: 60 matrices, size 10x12 Al Truncated Newton

AL 01 1 B
102 120 e T wammmt i
b \
,,,,,,,,,,,,,,,,,,,, Sm——— “J‘HW
115 v‘ b
-6 | i
;: 10 . ‘
S L b
= s 110 ‘
R e R RS Sh Lt >
< 1070 1 &
5 S 10| ‘ .
[
10714 - 100 b
s b
1018 I I I I 95 Cowd il el il s
0 2 4 6 8 100 10t 102 10°  10*  10°
time (s) iterations
Algorithm Tolerance F(xi) — minF #prox. grad. steps  # Ri ian steps  #HessF(:)[:] #f #g
Prox. Gradient 1-10™ - - = = = -
Prox. Gradient 1-107° - - - - - -
Accel. Prox. Gradient 1-10° 0.00099894916795637 1489 = = 3073 1490
Accel. Prox. Gradient 1-107° 9.858174276899945e-10 43283 = = 86661 43284
Alt. Newton 1-107" 0.0009833250032105778 93 93 28063 873 687
Alt. Newton 1-107° - - - - - -
Alt. Truncated Newton ~ 1-10~ 0.0009695009931029591 76 76 16342 738 568
Alt. Truncated Newton ~ 1-107°  2.2716245551279712e-11 128 128 27786 1101 879

> Stable structure identification & much less iterative algorithm
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>>> Take-Home Message #2 NEWTON ACCELERATI

> The structure of Regularizeds ERM can be harnessed by Riemannian
methods
Thanks to the local smooth along the structure manifold

> Proximal steps have to be intertwined to ensure identification

Prox. grad. = identification step — Riemannian Newton = efficent step

> Non-convex regularizations can work

you may use £y semi norm, rank for a matrix

> Bareilles, 1., Malick: Newton acceleration on manifolds identified by
proximal-gradient methods, https://arxiv.org/abs/2012.12936
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>>> Harnessing Structure in Optimization for ML CONCLUSI

> Machine Learning problems often have a noticeable structure;
sparsity, low rank
> This structure is identified progressively by proximal methods;
+ CD, Var. Red., Distributed methods, etc.
> For most problem, we do not know if the identified structure is optimal;
adaptivity is key
> Nevertheless, it can be used to boost numerical performance;
low complexity model
> Structure vs. Optimality tradeoff in Optimization for ML.
structure is better than overfitting

> I., Malick: Nonsmoothness in Machine Learning: specific structure, proximal identification, and
applications, Set Valued & Variational Analysis, 2020, https://arxiv.org/abs/2010.00848

> Bareilles, I.: On the Interplay between Acceleration and Identification for the Proximal Gradient
algor'ithm, Computation Optimization and Applications, 2020, https://arxiv.org/abs/1909.08944.

> Bareilles, I., Malick: Newton acceleration on manifolds identified by proximal-gradient methods,
https://arxiv.org/abs/2012.12936
Thanks to ANR JCJC STROLL @

Thank you! - Franck IUTZELER http://www.iutzeler.org
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