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>>> Regularization in Learning

Regularized Empirical Risk Minimization problem:

Find x? ∈ argmin
x∈Rn

R (x; {ai, bi}m
i=1) + λ r(x)

obtained from chosen
statistical modeling regularization

e.g. Lasso: Find x? ∈ argmin
x∈Rn

∑m
i=1

1
2 (a

>
i x − bi)

2 + λ ‖x‖1

Structure Regularization
sparsity r = ‖ · ‖1

anti-sparsity r = ‖ · ‖∞
low rank r = ‖ · ‖∗...

...

Regularization can improve statistical properties (generalization, stability, ...).

� Tibshirani: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (1996)
� Tibshirani et al.: Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society (2004)
� Vaiter, Peyré, Fadili: Model consistency of partly smooth regularizers. IEEE Trans. on Information Theory (2017)
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>>> Optimization for Machine Learning

Composite minimization

Find x? ∈ argmin
x∈Rn

R (x; {ai, bi}m
i=1) + λ r(x)

Find x? ∈ argmin
x∈Rn

f(x) + g(x)

smooth non-smooth

> f : differentiable surrogate of the empirical risk ⇒ Gradient
non-linear smooth function that depends on all the data

> g: non-smooth but chosen regularization ⇒ Proximity operator
non-differentiability on some manifolds implies structure on the solutions

proxγg(u) = argminy∈Rn

{
g(y) + 1

2γ ‖y − u‖2
2

} closed form/easy for many regularizations:

– g(x) = ‖x‖1

– g(x) = TV(x)

– g(x) = indicatorC(x)

Natural optimization method: proximal gradient

{
uk+1 = xk − γ∇f(xk)
xk+1 = proxγg(uk+1)

and its stochastic variants: proximal sgd, etc.
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>>> Structure, Non-differentiability, and Proximity operator

Example: LASSO

Find x? ∈ argmin
x∈Rn

R (x; {ai, bi}m
i=1) + λ r(x)

Find x? ∈ argmin
x∈Rn

1
2 ‖Ax − b‖2

2 + λ‖x‖1

smooth non-smooth

Coordinates Structure ↔ Optimality conditions

↔ Proximity operation

∀i x?
i = 0 ⇔ A>

i (Ax? − b) ∈ [−λ, λ]

⇔
[
proxγλ‖·‖1

(u?)
]

i
= 0

u? = x? − γA>(Ax? − b)

Proximity Operator: per coordinate[
proxγλ‖·‖1

(u)
]

i
=


ui − λγ if ui > λγ
0 if ui ∈ [−λγ;λγ]
ui + λγ if ui < −λγ

Proximal Gradient (aka ISTA):{
uk+1 = xk − γA>(Axk − b)
xk+1 = proxγλ‖·‖1

(uk+1)

−3 −2 −1 1 2 3

−1

1

2

| · |

SoftThresholding

[−1,1]→ {0} per coord.

Iterates (xk) reach the same structure as x? in finite time!
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>>> Mathematical properties of Proximal Algorithms

Proximal Algorithms:{
uk+1 = xk − γ∇f(xk)
xk+1 = proxγg(uk+1)
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Proximal Gradient M⋆

x⋆

u⋆ = x⋆
− γ∇f(x⋆)

x⋆ + γ∂g(x⋆)
proxγg

> project on manifolds

> identify the optimal structure

Let M be a manifold and u? such that

x? = proxγg(u
?) ∈ M and u?−x?

γ
∈ ri ∂g(x?)

If g is partly smooth at x? relative to M? locally smooth along M and nonsmooth across,
then

proxγg(u) ∈ M?

for any u close to u?.

� Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis
(2004)

� Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured
optimization problems. Optimization (2006)
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u?(= x? − γ∇f(x?))

x? SoftThresholding

> project on manifolds
> identify the optimal structure

Let (xk) and (uk) be a pair of sequences such that

xk = proxγg(u
k) → x? = proxγg(u

?)

and M be a manifold. If x? ∈ M and the qualification condition

∃ε > 0 such that for all u ∈ B(u?, ε), proxγg(u) ∈ M (QC)

“structure is stable under small perturbation of the data”

holds, then, after some finite but unknown time, xk ∈ M.

� Lewis: Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization (2002)
� Fadili, Malick, Peyré: Sensitivity analysis for mirror-stratifiable convex functions. SIAM Journal on Optimization

(2018)
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>>> “Nonsmoothness can help”

> Nonsmoothness is actively studied in Numerical Optimization...
Subgradients, Partial Smoothness/prox-regularity, Bregman geometry, etc.

> ...but often suffered because of lack of structure/expression.
Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.

> For Machine Learning objectives, it can often be harnessed
Feature selection, Screening, Faster rates, etc.

> Why?
- Explicit/“proximable” regularizations `1, nuclear norm

- We know the expressions and activity of sought structures sparsity, rank

- Any converging proximal algorithm will identify the optimal structure of
the problem.

� Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. J. of Conv. Analysis (2004)
� Lemarechal, Oustry, Sagastizabal: The U-Lagrangian of a convex function. Trans. of the AMS (2000)
� Bolte, Daniilidis, Lewis: The ojasiewicz inequality for nonsmooth subanalytic functions with applications to

subgradient dynamical systems. SIAM J. on Optim. (2007)
� Chen, Teboulle: A proximal-based decomposition method for convex minimization problems. Math. Prog. (1994)
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the problem.

� Nesterov: Smooth minimization of non-smooth functions. Mathematical Programming (2005)
� Burke, Lewis, Overton: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. on

Optim. (2005)
� Solodov, Svaiter: A hybrid projection-proximal point algorithm. J. of Conv. Analysis (1999)
� de Oliveira, Sagastizábal: Bundle methods in the XXIst century: A bird’s-eye view. Pesquisa Operacional (2014)
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- We know the expressions and activity of sought structures sparsity, rank

- Any converging proximal algorithm will identify the optimal structure of
the problem.

� Bach, et al.: Optimization with sparsity-inducing penalties. FnT in Machine Learning (2012)
� Massias, Salmon, Gramfort: Celer: a fast solver for the lasso with dual extrapolation. ICML (2018)
� Liang, Fadili, Peyré: Local linear convergence of forwardbackward under partial smoothness. NeurIPS (2014)
� O’Donoghue, Candes: Adaptive restart for accelerated gradient schemes. Foundations of Comp. Math. (2015)
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Feature selection, Screening, Faster rates, etc.

> Why?
- Explicit/“proximable” regularizations `1, nuclear norm

- We know the expressions and activity of sought structures sparsity, rank

- Any converging proximal algorithm will identify the optimal structure of
the problem.

. I. & Malick: Nonsmoothness in Machine Learning: specific structure, proximal
identification, and applications, review/pedagogical paper, Set-Valued and
Variational Analysis, 2020, https://arxiv.org/abs/2010.00848
Thanks to the Optimization for Machine Learning week at CIRM in March 2020!
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>>> Question

Let us solve a Regularized ERM problem with a proximal algorithm{
uk+1 = Update (f ; {x`}`≤k; {u`}`≤k; γ)
xk+1 = proxγg(uk+1)

with xk = proxγg(uk) −→ x? = proxγg(u
?)

> The proximity operator gives a current structure Mk ⊂ Rn

partial identif/screening

> We know that eventually Mk = M? after some finite time
identification

1– Does faster minimization means faster identification ?

2– Can we efficiently restrict our update to Mk?

Example: Sparse structure and g = ‖ · ‖1.

M? represents the points with the same support as x? (ie. non-selected features are put to zero).

Mk = {x ∈ Rn : supp(xi) = supp(xi)} is the current structure.
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INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION

NEWTON ACCELERATION ON IDENTIFIED MANIFOLDS



>>> Acceleration of the Proximal Gradient ACCELERATION VS IDENTIF


uk+1 = yk − γ∇f(yk)
xk+1 = proxγg(uk+1)

yk+1 = xk+1 + αk+1(xk+1 − xk)︸ ︷︷ ︸
inertia/acceleration

> αk+1 = 0 : vanilla Proximal Gradient
> αk+1 = k−1

k+3 : accelerated Proximal Gradient (aka FISTA)

Optimal rate for composite problems (coefficients may vary a little)

PG Accel. PG
F(xk)− F? O(1/k) O(1/k2)

iterates convergence yes yes
monotone functional decrease yes no

Fejér-monotone iterates yes no

� Nesterov: A method for solving the convex programming problem with convergence rate O(1/k2). Sov. Dok.
(1983)

� Beck, Teboulle: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. on Imag.
Sci. (2009)

� Chambolle, Dossal: On the convergence of the iterates of “FISTA”. J. of Optim. Theory and App. (2015)
� I., Malick: On the Proximal Gradient Algorithm with Alternated Inertia. J. of Optim. Theory and App. (2018)
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>>> Interplay between Acceleration and Identification ACCELERATION VS IDENTIF

min
x∈R2

‖Ax − b‖2
2 + λr(x)
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r(x) = ‖x‖1

1-norm regularization
r(x) = max(‖x‖1.3 − 1; 0)

distance to 1.3-norm unit ball

> PG identifies well;
> Accelerated PG explores well, identifies eventually, but erratically.

Can we converge fast and identify well?
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>>> A test-based algorithm ACCELERATION VS IDENTIF

T is a boolean function of past iterates; decides whether to accelerate or not.
uk+1 = yk − γ∇f(yk)
xk+1 = proxγg(uk+1)

yk+1 =

{
xk+1 + αk+1(xk+1 − xk) if T = 1
xk+1 if T = 0

Proposed tests:
We pre-define a collection C = {M1, ..,Mp} of sought structures

1. No Acceleration i.e. T1 = 0
when a new pattern is reached:

xk+1 ∈ M and xk 6∈ M

for some structure M ∈ C.

2. No Acceleration i.e. T2 = 0
if this means getting less structure:

Tγ(xk+1) ∈ M and Tγ(xk+1 + αk+1(xk+1 − xk)) 6∈ M

for some M ∈ C.

where Tγ := proxγg(· − γ∇f(·)) is the proximal gradient operator.

Examples of sought structures: sparsity supports, rank.
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>>> Convergence result ACCELERATION VS IDENTIF

Theorem
Let f , g be two convex functions such that f is L-smooth, g is lower semi-continuous, and f + g is

semi-algebraic with a minimizer. Take γ ∈ (0, 1/L]. Then, the iterates of the proposed
methods with test T1 or T2 satisfy

F (xk+1)− F? = O
(

1
k

)
for some R > 0.
Furthermore, if the problem has a unique minimizer x? and the qualifying
constraint (QC) holds, then the iterates sequence (xk) converges, finite-time
identification happens and

F (xk+1)− F(x?) = O
(

1
k2

)
.

L-smooth means that f is differentiable and ∇f is L-Lipschitz continuous.

∃ε > 0 such that for all u ∈ B(x? − γ∇f(x?), ε), proxγg(u) ∈ M? (QC)

For the `1 norm, this means this means −∇i f(x?) ∈ (−λ;λ).
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>>> Back to initial problems: `1 norm ACCELERATION VS IDENTIF

min
x∈R2

‖Ax − b‖2
2 + λ‖x‖1
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>>> Back to initial problems: distance to 1.3-norm ball ACCELERATION VS IDENTIF
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>>> Back to initial problems: distance to 1.3-norm ball ACCELERATION VS IDENTIF
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>>> Matrix regression with nuclear-norm regularization ACCELERATION VS IDENTIF

min
X∈R20×20

‖AX − B‖2
F + λ‖X‖∗

> S ∈ R20×20 is a rank 3 matrix;
> A ∈ R(16×16)×(20×20) is drawn from the normal distribution;
> B = AS + E with E drawn from the normal distribution with variance .01
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>>> Take-Home Message #1 ACCELERATION VS IDENTIF

> Acceleration can hurt identification for the proximal gradient algorithm

⇒ Faster convergence does not means faster structure identification

⇒ Accuracy vs. Structure tradeoff for the learning problem

> We propose a method with stable identification behavior, maintaining an
accelerated convergence rate

> General ideas:

⇒ keep a list of the possible structures you are looking for sparsity patterns,

rank

⇒ look at their activity at the output of the proximity operator

. Bareilles & I.: On the Interplay between Acceleration and Identification for the
Proximal Gradient algorithm, Computational Optimization and Applications, 2020,
https://arxiv.org/abs/1909.08944. Try it in Julia on
https://github.com/GillesBareilles/Acceleration-Identification
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INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION

NEWTON ACCELERATION ON IDENTIFIED MANIFOLDS



>>> Using a Riemannian structure NEWTON ACCELERATION

Find x? ∈ argmin
x∈Rn

R (x; {ai, bi}m
i=1) + λ r(x)

Find x? ∈ argmin
x∈Rn

f(x) + g(x)

smooth non-smooth

Recall that when solving a Regularized ERM problem with proximal gradient

Observe Mk, then yk+1 = RiemannianStepf+g(xk,Mk)

uk+1 = xk − γ∇f(xk)
xk+1 = proxγg(uk+1)

the proximity operator outputs a current structure Mk ⊂ Rn (xk ∈ Mk) and
eventually Mk = M?.

Reminder: Think of Mk as a sparsity pattern or a rank in matrix regression.

Predictor-Corrector methods: perform a Riemannian step on Mk, then a
proximal step to correct the structure, and so on.

� Lemaréchal, Oustry, Sagastizábal: The U-Lagrangian of a convex function. Trans. of the AMS (2000)
� Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured

optimization problems. Optimization (2006)
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>>> Using a Riemannian structure NEWTON ACCELERATION

Find x? ∈ argmin
x∈Rn

R (x; {ai, bi}m
i=1) + λ r(x)

Find x? ∈ argmin
x∈Rn

f(x) + g(x)

smooth non-smooth
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>>> Riemannian optimization NEWTON ACCELERATION

> F = f + g is nonsmooth on Rn but smooth along M nonsmooth across

> Riemannian optimization method
eg. Riemannian gradient step:

M
•
xTxM

x − γ∂F(x)

×

x − γgradF(x)

•
Rx(−γgradF(x))

We start from a point on M
Computation of a subgradient of F, ∂F(x), in the full space
Projection on the tangent plane to get a Riemannian gradient
Retraction on the manifold to perform a Riemannian gradient step
(Test different γ to decrease F)

> 1st and 2nd order optimization methods can be implemented on
manifolds (see https://www.manopt.org/ in Matlab, Python, Julia)

> Tractable for linear spaces (sparsity), fixed rank, etc.
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>>> Newton acceleration NEWTON ACCELERATION

Find x? ∈ argmin
x∈Rn

R (x; {ai, bi}m
i=1) + λ r(x)

Find x? ∈ argmin
x∈Rn

f(x) + g(x)

smooth non-smooth


Observe Mk

yk+1 = RiemannianNewtonf+g(xk,Mk)
uk+1 = yk − γ∇f(yk)
xk+1 = proxγg(uk+1)

> Intuition from the sparse/`1 case:

We temporarly restrict to vectors with the same sparsity pattern as xk

Compute the gradient and Hessian for these coordinates

Perform a Newton step possible since it is locally smooth

The proximal gradient step after will ensure the structure validity
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>>> In theory NEWTON ACCELERATION

Theorem
Provided that the minimum x? lies on some manifold M and is qualified,
alternating:

i) a proximal gradient step with γ < 1/L

ii) a Riemannian Newton step on the identified manifold with backtracking line-search

generates iterates that

a) belong to M in finite time

b) converge quadratically to x?:

distM(xk+1, x
?) ≤ distM(xk, x

?)2

> Qualification is needed as before for identification...
(QC) + partial smoothness at x? for M

> ... and for quadratic convergence of Newton
Riemannian Hessian positive definite at x?
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>>> In practice I NEWTON ACCELERATION

`1-regularized logistic regression: 8000 examples, size 4000

Proximal Gradient
Accel. Proximal Gradient

Alt. Newton
Alt. Truncated Newton
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4,000

iterations

di
m
(M

:
)

Algorithm Tolerance F(xk)−min F #prox. grad. steps # Riemannian steps #HessF(·)[·] #f #g
Prox. Gradient 1 · 10−3 0.0009963198229036019 357 – – 779 358
Prox. Gradient 1 · 10−9 9.965078207052613e-10 2306 – – 4677 2307

Accel. Prox. Gradient 1 · 10−3 0.0009257766624239938 90 – – 246 91
Accel. Prox. Gradient 1 · 10−9 9.899422392933843e-10 953 – – 1972 954

Alt. Newton 1 · 10−3 0.0009759231753842523 62 61 6303 556 427
Alt. Newton 1 · 10−9 – – – – – –

Alt. Truncated Newton 1 · 10−3 0.0009557819627238895 51 50 2616 437 321
Alt. Truncated Newton 1 · 10−9 3.774758283725532e-15 105 105 5091 742 572

> Newton is too costly without a low dimensional structure

> Truncated Newton offers a good compromise approximate Newton equation
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>>> In practice II NEWTON ACCELERATION

low rank matrix regression: 60 matrices, size 10×12

Proximal Gradient
Accel. Proximal Gradient

Alt. Newton
Alt. Truncated Newton
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Algorithm Tolerance F(xk)−min F #prox. grad. steps # Riemannian steps #HessF(·)[·] #f #g
Prox. Gradient 1 · 10−3 – – – – – –
Prox. Gradient 1 · 10−9 – – – – – –

Accel. Prox. Gradient 1 · 10−3 0.00099894916795637 1489 – – 3073 1490
Accel. Prox. Gradient 1 · 10−9 9.858174276899945e-10 43283 – – 86661 43284

Alt. Newton 1 · 10−3 0.0009833250032105778 93 93 28063 873 687
Alt. Newton 1 · 10−9 – – – – – –

Alt. Truncated Newton 1 · 10−3 0.0009695009931029591 76 76 16342 738 568
Alt. Truncated Newton 1 · 10−9 2.2716245551279712e-11 128 128 27786 1101 879

> Stable structure identification & much less iterative algorithm
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>>> Take-Home Message #2 NEWTON ACCELERATION

> The structure of Regularizeds ERM can be harnessed by Riemannian
methods
Thanks to the local smooth along the structure manifold

> Proximal steps have to be intertwined to ensure identification
Prox. grad. = identification step – Riemannian Newton = efficent step

> Non-convex regularizations can work
you may use `0 semi norm, rank for a matrix

. Bareilles, I., Malick: Newton acceleration on manifolds identified by
proximal-gradient methods, https://arxiv.org/abs/2012.12936
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>>> Harnessing Structure in Optimization for ML CONCLUSION

> Machine Learning problems often have a noticeable structure;
sparsity, low rank

> This structure is identified progressively by proximal methods;
+ CD, Var. Red., Distributed methods, etc.

> For most problem, we do not know if the identified structure is optimal;
adaptivity is key

> Nevertheless, it can be used to boost numerical performance;
low complexity model

> Structure vs. Optimality tradeoff in Optimization for ML.
structure is better than overfitting

. I., Malick: Nonsmoothness in Machine Learning: specific structure, proximal identification, and
applications, Set Valued & Variational Analysis, 2020, https://arxiv.org/abs/2010.00848

. Bareilles, I.: On the Interplay between Acceleration and Identification for the Proximal Gradient
algorithm, Computation Optimization and Applications, 2020, https://arxiv.org/abs/1909.08944.

. Bareilles, I., Malick: Newton acceleration on manifolds identified by proximal-gradient methods,
https://arxiv.org/abs/2012.12936

Thanks to ANR JCJC STROLL

Thank you! – Franck IUTZELER http://www.iutzeler.org
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