Harnessing Structure in Regularized Empirical Risk Minimization

Franck Iutzeler LJK, Univ. Grenoble Alpes

CAp 2021

Regularized Empirical Risk Minimization problem:

Find
$$x^* \in \arg\min_{x \in \mathbb{R}^n}$$
 $\mathcal{R}(x; \{a_i, b_i\}_{i=1}^m)$ $+$ $\lambda r(x)$ obtained fromchosenstatistical modelingregularization

e.g. Lasso: Find
$$x^{\star} \in \arg\min_{x\in\mathbb{R}^n} \quad \sum_{i=1}^m \frac{1}{2}(a_i^{\top}x - b_i)^2 \quad + \quad \lambda \; \|x\|_1$$

Structure	Regularization
sparsity	$r = \ \cdot \ _1$
anti-sparsity	$r = \ \cdot \ _{\infty}$
low rank	$r = \ \cdot \ _{*}$
	:

Regularization can improve statistical properties (generalization, stability, ...).

♦ Tibshirani: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (1996)

◊ Tibshirani et al.: Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society (2004)

◊ Vaiter, Peyré, Fadili: Model consistency of partly smooth regularizers. IEEE Trans. on Information Theory (2017)

Composite minimization

Find
$$x^* \in \arg\min_{x \in \mathbb{R}^n}$$
 $\mathcal{R}(x; \{a_i, b_i\}_{i=1}^m)$ $+ \lambda r(x)$ Find $x^* \in \arg\min_{x \in \mathbb{R}^n}$ $f(x) + g(x)$ smoothnon-smooth

- > f: differentiable surrogate of the empirical risk ⇒ Gradient non-linear smooth function that depends on all the data
- > g: non-smooth but chosen regularization ⇒ Proximity operator non-differentiability on some manifolds implies structure on the solutions

closed form/easy for many regularizations:

$$\mathbf{prox}_{\gamma g}(u) = \arg\min_{y \in \mathbb{R}^n} \left\{ g(y) + \frac{1}{2\gamma} \|y - u\|_2^2 \right\} \qquad \begin{array}{l} -g(x) = \|x\|_1 \\ -g(x) = TV(x) \\ -g(x) = indicator_C(x) \end{array}$$

Natural optimization method: proximal gradient

$$\begin{cases} u_{k+1} = x_k - \gamma \nabla f(x_k) \\ x_{k+1} = \mathbf{prox}_{\gamma g}(u_{k+1}) \end{cases}$$

and its stochastic variants: proximal sgd, etc.

Example: LASSO

Find
$$x^* \in \arg\min_{x \in \mathbb{R}^n}$$
 $\mathcal{R}(x; \{a_i, b_i\}_{i=1}^m)$ $+ \lambda r(x)$ Find $x^* \in \arg\min_{x \in \mathbb{R}^n}$ $\frac{1}{2} ||Ax - b||_2^2$ $+ \lambda ||x||_1$ smoothnon-smooth

Coordinates	Structure	\leftrightarrow	Optimality conditions	
$\forall i$	$x_i^{\star} = 0$	\Leftrightarrow	$A_i^{\top}(Ax^{\star} - b) \in [-\lambda, \lambda]$	

 $\begin{array}{l} \mbox{Proximity Operator: per coordinate} \\ \left[\mbox{prox}_{\gamma\lambda \|\cdot\|_1}(u) \right]_i = \left\{ \begin{array}{l} u_i - \lambda\gamma & \mbox{if } u_i > \lambda\gamma \\ 0 & \mbox{if } u_i \in [-\lambda\gamma;\lambda\gamma] \\ u_i + \lambda\gamma & \mbox{if } u_i < -\lambda\gamma \end{array} \right. \end{array}$

Proximal Gradient (aka ISTA):

$$\begin{cases} u_{k+1} = x_k - \gamma A^\top (Ax_k - b) \\ x_{k+1} = \mathbf{prox}_{\gamma \lambda \parallel \cdot \parallel_1} (u_{k+1}) \end{cases}$$

Example: LASSO

Find
$$x^* \in \arg\min_{x \in \mathbb{R}^n} \mathcal{R}(x; \{a_i, b_i\}_{i=1}^m) + \lambda r(x)$$

Find $x^* \in \arg\min_{x \in \mathbb{R}^n} \frac{1}{2} ||Ax - b||_2^2 + \lambda ||x||_1$
smooth non-smooth

 $\begin{array}{rcl} \text{Coordinates} & \textbf{Structure} & \leftrightarrow & \textbf{Optimality conditions} & \leftrightarrow & \textbf{Proximity operation} \\ \forall i & x_i^* = \mathbf{0} & \Leftrightarrow & A_i^\top (Ax^* - b) \in [-\lambda, \lambda] & \Leftrightarrow & \begin{bmatrix} \textbf{prox}_{\gamma \lambda \| \cdot \|_1}(u^*) \end{bmatrix}_i = \mathbf{0} \\ & u^* = x^* - \gamma A^\top (Ax^* - b) \end{array}$

$$\begin{bmatrix} \mathbf{prox}_{\gamma \lambda \parallel \cdot \parallel 1}(u) \end{bmatrix}_i = \left\{ \begin{array}{ll} u_i - \lambda \gamma & \text{if } u_i > \lambda \gamma \\ 0 & \text{if } u_i \in [-\lambda \gamma; \lambda \gamma] \\ u_i + \lambda \gamma & \text{if } u_i < -\lambda \gamma \end{array} \right.$$

Proximal Gradient (aka ISTA):

$$\begin{cases} u_{k+1} = x_k - \gamma A^\top (Ax_k - b) \\ x_{k+1} = \mathbf{prox}_{\gamma \lambda \parallel \cdot \parallel_1} (u_{k+1}) \end{cases}$$

Iterates (x_k) reach the same structure as x^* in finite time!

>>> Mathematical properties of Proximal Algorithms

> project on manifolds

Let \mathcal{M} be a manifold and u^* such that

$$x^{\star} = \mathbf{prox}_{\gamma g}(u^{\star}) \in \mathcal{M}$$
 and $\frac{u^{\star} - x^{\star}}{\gamma} \in \operatorname{ri} \partial g(x^{\star})$

If g is partly smooth at x^* relative to \mathcal{M}^* locally smooth along \mathcal{M} and nonsmooth across, then

 $\mathbf{prox}_{\gamma g}(u) \in \mathcal{M}^{\star}$

for any u close to u^* .

- Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis (2004)
- Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems. Optimization (2006)

>>> Mathematical properties of Proximal Algorithms

> project on manifolds> identify the optimal structure

Let (x_k) and (u_k) be a pair of sequences such that

$$x_k = \mathbf{prox}_{\gamma g}(u^k) \to x^\star = \mathbf{prox}_{\gamma g}(u^\star)$$

and \mathcal{M} be a manifold. If $x^* \in \mathcal{M}$ and the *qualification condition*

 $\exists \varepsilon > 0 \text{ such that for all } u \in \mathcal{B}(u^{\star}, \varepsilon), \ \mathbf{prox}_{\gamma g}(u) \in \mathcal{M}$ (QC)

"structure is stable under small perturbation of the data"

holds, then, after some finite but unknown time, $x_k \in \mathcal{M}$.

♦ Lewis: Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization (2002)

 Fadili, Malick, Peyré: Sensitivity analysis for mirror-stratifiable convex functions. SIAM Journal on Optimization (2018)

> Nonsmoothness is actively studied in Numerical Optimization...

Subgradients, Partial Smoothness/prox-regularity, Bregman geometry, etc.

- ♦ Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. J. of Conv. Analysis (2004)
- ♦ Lemarechal, Oustry, Sagastizabal: The U-Lagrangian of a convex function. Trans. of the AMS (2000)
- Bolte, Daniilidis, Lewis: The ojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. on Optim. (2007)
- Chen, Teboulle: A proximal-based decomposition method for convex minimization problems. Math. Prog. (1994)

- > Nonsmoothness is actively studied in Numerical Optimization... Subgradients, Partial Smoothness/prox-regularity, Bregman geometry, etc.
- > ...but often suffered because of lack of structure/expression. Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.

- ♦ Nesterov: Smooth minimization of non-smooth functions. Mathematical Programming (2005)
- Burke, Lewis, Overton: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. on Optim. (2005)
- ◊ Solodov, Svaiter: A hybrid projection-proximal point algorithm. J. of Conv. Analysis (1999)
- de Oliveira, Sagastizábal: Bundle methods in the XXIst century: A bird's-eye view. Pesquisa Operacional (2014)

- > Nonsmoothness is actively studied in Numerical Optimization... Subgradients, Partial Smoothness/prox-regularity, Bregman geometry, etc.
- > ...but often suffered because of lack of structure/expression. Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.

> For Machine Learning objectives, it can often be harnessed Feature selection, Screening, Faster rates, etc.

- ♦ Bach, et al.: Optimization with sparsity-inducing penalties. FnT in Machine Learning (2012)
- ♦ Massias, Salmon, Gramfort: Celer: a fast solver for the lasso with dual extrapolation. ICML (2018)
- ♦ Liang, Fadili, Peyré: Local linear convergence of forwardbackward under partial smoothness. NeurIPS (2014)
- ♦ O'Donoghue, Candes: Adaptive restart for accelerated gradient schemes. Foundations of Comp. Math. (2015)

- > Nonsmoothness is actively studied in Numerical Optimization... Subgradients, Partial Smoothness/prox-regularity, Bregman geometry, etc.
- > ...but often suffered because of lack of structure/expression. Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.
- > For Machine Learning objectives, it can often be harnessed Feature selection, Screening, Faster rates, etc.
- > Why?
 - Explicit/"proximable" regularizations l1, nuclear norm
 - We know the expressions and activity of sought structures sparsity, rank
 - Any converging proximal algorithm will *identify* the *optimal structure* of the problem.

I. & Malick: Nonsmoothness in Machine Learning: specific structure, proximal identification, and applications, review/pedagogical paper, Set-Valued and Variational Analysis, 2020, https://arxiv.org/abs/2010.00848 Thanks to the Optimization for Machine Learning week at CIRM in March 2020! Let us solve a Regularized ERM problem with a proximal algorithm

$$\begin{cases} u_{k+1} &= \mathsf{Update}\left(f; \{x_{\ell}\}_{\ell \leq k}; \{u_{\ell}\}_{\ell \leq k}; \gamma\right) \\ x_{k+1} &= \mathbf{prox}_{\gamma g}(u_{k+1}) \end{cases}$$

with $x_k = \mathbf{prox}_{\gamma g}(u_k) \longrightarrow x^* = \mathbf{prox}_{\gamma g}(u^*)$

- > The proximity operator gives a current structure M_k ⊂ ℝⁿ partial identif/screening
- > We know that *eventually* $M_k = M^*$ after some finite time identification
- 1- Does faster minimization means faster identification ?
- 2– Can we efficiently restrict our update to M_k ?

Example: Sparse structure and $g = \| \cdot \|_1$.

 \mathcal{M}^* represents the points with the same support as x^* (ie. non-selected features are put to zero). $\mathcal{M}_k = \{x \in \mathbb{R}^n : \operatorname{supp}(x_i) = \operatorname{supp}(x_i)\}$ is the current structure.

■ INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION

NEWTON ACCELERATION ON IDENTIFIED MANIFOLDS

$$\begin{cases} u_{k+1} = y_k - \gamma \nabla f(y_k) \\ x_{k+1} = \mathbf{prox}_{\gamma g}(u_{k+1}) \\ y_{k+1} = x_{k+1} + \underbrace{\alpha_{k+1}(x_{k+1} - x_k)}_{\text{inertia/acceleration}} \end{cases}$$

- > $\alpha_{k+1} = 0$: vanilla Proximal Gradient
- > α_{k+1} = ^{k-1}/_{k+3} : accelerated Proximal Gradient (aka FISTA) Optimal rate for composite problems (coefficients may vary a little)

	PG	Accel. PG
$F(x_k) - F^{\star}$	$\mathcal{O}(1/k)$	$\mathcal{O}(1/k^2)$
iterates convergence	yes	yes
monotone functional decrease	yes	no
Fejér-monotone iterates	yes	no

- \diamond Nesterov: A method for solving the convex programming problem with convergence rate $O(1/k^2).$ Sov. Dok. (1983)
- Beck, Teboulle: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. on Imag. Sci. (2009)
- ♦ Chambolle, Dossal: On the convergence of the iterates of "FISTA". J. of Optim. Theory and App. (2015)
- ♦ I., Malick: On the Proximal Gradient Algorithm with Alternated Inertia. J. of Optim. Theory and App. (2018)

>>> Interplay between Acceleration and Identification

$$\min_{x \in \mathbb{R}^2} \|Ax - b\|_2^2 + \lambda r(x)$$

 $r(x) = ||x||_1$ 1-norm regularization

 $f(x) = \max(||x||_{1.3} - 1, 0)$ distance to 1.3-norm unit ball

>>> Interplay between Acceleration and Identification

$$\min_{x \in \mathbb{R}^2} \|Ax - b\|_2^2 + \lambda r(x)$$

- > PG identifies well;
- > Accelerated PG explores well, identifies eventually, but erratically.

Can we converge fast and identify well?

T is a boolean function of past iterates; decides whether to accelerate or not.

$$\begin{cases} u_{k+1} = y_k - \gamma \nabla f(y_k) \\ x_{k+1} = \mathbf{prox}_{\gamma g}(u_{k+1}) \\ y_{k+1} = \begin{cases} x_{k+1} + \alpha_{k+1}(x_{k+1} - x_k) & \text{if } \mathsf{T} = 1 \\ x_{k+1} & \text{if } \mathsf{T} = 0 \end{cases}$$

Proposed tests:

We pre-define a collection $C = \{M_1, .., M_p\}$ of sought structures

1. No Acceleration *i.e.* $T^1 = 0$ when a new pattern is reached:

 $x_{k+1} \in \mathcal{M} \text{ and } x_k \notin \mathcal{M}$

for some structure $\mathcal{M} \in C$.

2. No Acceleration *i.e.* $T^2 = 0$ if this means getting less structure: $\mathcal{T}_{\gamma}(x_{k+1}) \in \mathcal{M} \text{ and } \mathcal{T}_{\gamma}(x_{k+1} + \alpha_{k+1}(x_{k+1} - x_k)) \notin \mathcal{M}$ for some $\mathcal{M} \in C$.

where $\mathcal{T}_{\gamma} := \mathbf{prox}_{\gamma g}(\cdot - \gamma \nabla f(\cdot))$ is the proximal gradient operator.

Examples of sought structures: sparsity supports, rank.

Theorem

Let f, g be two convex functions such that f is L-smooth, g is lower semi-continuous, and f + g is semi-algebraic with a minimizer. Take $\gamma \in (0, 1/L]$. Then, the iterates of the proposed methods with test T^1 or T^2 satisfy

$$F(x_{k+1}) - F^{\star} = \mathcal{O}\left(\frac{1}{k}\right)$$

for some R > 0.

Furthermore, if the problem has a unique minimizer x^* and the qualifying constraint (QC) holds, then the iterates sequence (x_k) converges, finite-time identification happens and

$$F(x_{k+1}) - F(x^*) = \mathcal{O}\left(\frac{1}{k^2}\right).$$

L-smooth means that *f* is differentiable and ∇f is *L*-Lipschitz continuous.

 $\exists \varepsilon > 0 \text{ such that for all } u \in \mathcal{B}(x^* - \gamma \nabla f(x^*), \varepsilon), \text{ } \mathbf{prox}_{\gamma g}(u) \in \mathcal{M}^*$ (QC)

For the ℓ_1 norm, this means this means $-\nabla_i f(x^*) \in (-\lambda; \lambda)$.

>>> Back to initial problems: ℓ_1 norm

$$\min_{x\in\mathbb{R}^2} \|Ax - b\|_2^2 + \lambda \|x\|_2$$

>>> Back to initial problems: ℓ_1 norm

 $\min_{x \in \mathbb{R}^2} \|Ax - b\|_2^2 + \lambda \|x\|_1$

 \oplus marks identification time

$$\min_{x \in \mathbb{R}^2} \|Ax - b\|_2^2 + \lambda \max(|x\|_{1.3} - 1; 0)$$

$$\min_{x \in \mathbb{R}^2} \|Ax - b\|_2^2 + \lambda \max(|x\|_{1.3} - 1; 0)$$

 \oplus marks identification time

>>> Matrix regression with nuclear-norm regularization Acceleration vs Identif

 $\min_{X \in \mathbb{R}^{20 \times 20}} \|AX - B\|_F^2 + \lambda \|X\|_*$

- > $S \in R^{20 \times 20}$ is a **rank 3** matrix;
- > $A \in \mathbb{R}^{(16 \times 16) \times (20 \times 20)}$ is drawn from the normal distribution;
- > B = AS + E with *E* drawn from the normal distribution with variance .01

- > Acceleration can hurt identification for the proximal gradient algorithm
 - \Rightarrow Faster convergence does not means faster structure identification
 - \Rightarrow Accuracy vs. Structure tradeoff for the learning problem
- > We propose a method with stable identification behavior, maintaining an accelerated convergence rate
- > General ideas:
 - \Rightarrow keep a list of the possible structures you are looking for $\ensuremath{\mathsf{sparsity}}\xspace$ patterns, $\ensuremath{\mathsf{rank}}\xspace$
 - \Rightarrow look at their activity at the output of the proximity operator

Bareilles & I.: On the Interplay between Acceleration and Identification for the Proximal Gradient algorithm, Computational Optimization and Applications, 2020, https://arxiv.org/abs/1909.08944. Try it in Julia on https://github.com/GillesBareilles/Acceleration-Identification

INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION

■ NEWTON ACCELERATION ON IDENTIFIED MANIFOLDS

Find
$$x^* \in \arg\min_{x \in \mathbb{R}^n}$$
 $\mathcal{R}(x; \{a_i, b_i\}_{i=1}^m)$ $+ \lambda r(x)$ Find $x^* \in \arg\min_{x \in \mathbb{R}^n}$ $f(x) + g(x)$ smoothnon-smooth

Recall that when solving a Regularized ERM problem with proximal gradient

$$u_{k+1} = x_k - \gamma \nabla f(x_k)$$

 $x_{k+1} = \mathbf{prox}_{\gamma g}(u_{k+1})$

the proximity operator outputs a *current structure* $\mathcal{M}_k \subset \mathbb{R}^n$ ($x_k \in \mathcal{M}_k$) and *eventually* $\mathcal{M}_k = \mathcal{M}^*$.

<u>Reminder</u>: Think of M_k as a sparsity pattern or a rank in matrix regression.

Find
$$x^* \in \arg\min_{x \in \mathbb{R}^n}$$
 $\mathcal{R}(x; \{a_i, b_i\}_{i=1}^m)$ $+ \lambda r(x)$ Find $x^* \in \arg\min_{x \in \mathbb{R}^n}$ $f(x)$ $+ g(x)$ smoothnon-smooth

Recall that when solving a Regularized ERM problem with proximal gradient

$$\begin{array}{ll} \text{Observe } \mathcal{M}_k, \, \text{then } y_{k+1} &= \text{RiemannianStep}_{f+g}(x_k, \mathcal{M}_k) \\ u_{k+1} &= y_k - \gamma \nabla f(y_k) \\ x_{k+1} &= \mathbf{prox}_{\gamma g}(u_{k+1}) \end{array}$$

the proximity operator outputs a *current structure* $\mathcal{M}_k \subset \mathbb{R}^n$ ($x_k \in \mathcal{M}_k$) and *eventually* $\mathcal{M}_k = \mathcal{M}^*$.

<u>Reminder</u>: Think of M_k as a sparsity pattern or a rank in matrix regression.

Predictor-Corrector methods: perform a Riemannian step on M_k , then a proximal step to correct the structure, and so on.

◇ Lemaréchal, Oustry, Sagastizábal: The U-Lagrangian of a convex function. Trans. of the AMS (2000)

Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems. Optimization (2006)

>>> Riemannian optimization

- > F = f + g is nonsmooth on \mathbb{R}^n but smooth along \mathcal{M} nonsmooth across
- > Riemannian optimization method
 - eg. Riemannian gradient step:

>>> Riemannian optimization

- > F = f + g is nonsmooth on \mathbb{R}^n but smooth along \mathcal{M} nonsmooth across
- Riemannian optimization method
 Riemannian gradient step:
 - eg. Riemannian gradient step:

>>> Riemannian optimization

 \mathcal{M}

> F = f + g is nonsmooth on \mathbb{R}^n but smooth along \mathcal{M} nonsmooth across

 $x - \gamma \partial F(x)$

> Riemannian optimization method eg. Riemannian gradient step:

 $T_x\mathcal{M}$

We start from a point on \mathcal{M} Computation of a subgradient of *F*, $\partial F(x)$, in the full space

 $x - \gamma \operatorname{grad} F(x)$

 \mathcal{M}

> F = f + g is nonsmooth on \mathbb{R}^n but smooth along \mathcal{M} nonsmooth across

 $x - \gamma \partial F(x)$

> Riemannian optimization method eg. Riemannian gradient step:

 $T_x\mathcal{M}$

We start from a point on \mathcal{M} Computation of a subgradient of F, $\partial F(x)$, in the full space Projection on the tangent plane to get a Riemannian gradient

 $x - \gamma \operatorname{grad} F(x)$

 \mathcal{M}

 $R_x(-\gamma \operatorname{grad} F(x))$

- > F = f + g is nonsmooth on \mathbb{R}^n but smooth along \mathcal{M} nonsmooth across
- > Riemannian optimization method eg. Riemannian gradient step:

 $T_x \mathcal{M}$

Computation of a subgradient of *F*, $\partial F(x)$, in the full space Projection on the tangent plane to get a Riemannian *gradient* Retraction on the manifold to perform a Riemannian gradient step (Test different γ to decrease *F*)

 $x - \gamma \partial F(x)$

 $x - \gamma \operatorname{grad} F(x)$

 \mathcal{M}

 $R_x(-\gamma \operatorname{grad} F(x))$

- > F = f + g is nonsmooth on \mathbb{R}^n but smooth along \mathcal{M} nonsmooth across
- > Riemannian optimization method eg. Riemannian gradient step:

 $T_x \mathcal{M}$

We start from a point on \mathcal{M} Computation of a subgradient of F, $\partial F(x)$, in the full space Projection on the tangent plane to get a Riemannian *gradient* Retraction on the manifold to perform a Riemannian gradient step

 $x - \gamma \partial F(x)$

- > 1st and 2nd order optimization methods can be implemented on manifolds (see https://www.manopt.org/ in Matlab, Python, Julia)
- > Tractable for linear spaces (sparsity), fixed rank, etc.

Find
$$x^* \in \arg\min_{x \in \mathbb{R}^n} \mathcal{R}(x; \{a_i, b_i\}_{i=1}^m) + \lambda r(x)$$
Find $x^* \in \arg\min_{x \in \mathbb{R}^n} f(x) + g(x)$ smoothnon-smooth

$$\begin{cases} \text{Observe} & \mathcal{M}_k \\ y_{k+1} &= \text{RiemannianNewton}_{f+g}(x_k, \mathcal{M}_k) \\ u_{k+1} &= y_k - \gamma \nabla f(y_k) \\ x_{k+1} &= \mathbf{prox}_{\gamma g}(u_{k+1}) \end{cases}$$

> Intuition from the sparse/ ℓ_1 case:

We temporarly restrict to vectors with the same sparsity pattern as x_k Compute the gradient and Hessian *for these coordinates*

Perform a Newton step possible since it is locally smooth

The proximal gradient step after will ensure the structure validity

Theorem

Provided that the minimum x^* lies on some manifold M and is **qualified**, alternating:

i) a proximal gradient step with $\gamma < 1/L$

ii) a Riemannian Newton step on the identified manifold with backtracking line-search generates iterates that

- a) belong to ${\mathcal M}$ in finite time
- b) converge quadratically to x^* :

$$\operatorname{dist}_{\mathcal{M}}(x_{k+1}, x^{\star}) \leq \operatorname{dist}_{\mathcal{M}}(x_k, x^{\star})^2$$

- Qualification is needed as before for identification...
 (QC) + partial smoothness at x^{*} for M
- > ... and for quadratic convergence of Newton Riemannian Hessian positive definite at x*

NEWTON ACCELERATION

> Newton is too costly without a low dimensional structure

> Truncated Newton offers a good compromise approximate Newton equation

> Stable structure identification & much less iterative algorithm

> The structure of Regularizeds ERM can be harnessed by Riemannian methods

Thanks to the local smooth along the structure manifold

> Proximal steps have to be intertwined to ensure identification Prox. grad. = identification step – Riemannian Newton = efficent step

> Non-convex regularizations can work

you may use ℓ_0 semi norm, rank for a matrix

Bareilles, I., Malick: Newton acceleration on manifolds identified by proximal-gradient methods, https://arxiv.org/abs/2012.12936

- > Machine Learning problems often have a noticeable structure; sparsity, low rank
- > This structure is identified progressively by proximal methods; + CD, Var. Red., Distributed methods, etc.
- > For most problem, we do not know if the identified structure is optimal; adaptivity is key
- > Nevertheless, it can be used to boost numerical performance; low complexity model
- > Structure vs. Optimality tradeoff in Optimization for ML. structure is better than overfitting

I., Malick: Nonsmoothness in Machine Learning: specific structure, proximal identification, and applications, Set Valued & Variational Analysis, 2020, https://arxiv.org/abs/2010.00848

Bareilles, I.: On the Interplay between Acceleration and Identification for the Proximal Gradient algorithm, Computation Optimization and Applications, 2020, https://arxiv.org/abs/1909.08944.

Bareilles, I., Malick: Newton acceleration on manifolds identified by proximal-gradient methods, https://arxiv.org/abs/2012.12936

Thank you! - Franck IUTZELER http://www.iutzeler.org