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>>> Regularization in Learning

Struct.ure Regularization Linear inverse problems: for a chosen
Spal’Slty. r=1-lh regularization, we seek

anti-sparsity i = H . Hao *
- =1 X" € arg mxin r(x) such that Ax = b

Regularized Empirical Risk Minimization problem:

Find x*EarggEl%Rrr} R (x;{ai, bi}it,) + A r(x)

obtained from chosen
statistical modeling regularization

i

e.g. Lasso: Find X% € arg)l{relg} Shota x—b)® + A

Regularization can improve statistical properties (generalization, stability, ...).
¢ Tibshirani: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (1996)

¢ Tibshirani et al.: Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society (2004)
< Vaiter, Peyré, Fadili: Model consistency of partly smooth regularizers. IEEE Trans. on Information Theory (2017)
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>>> Optimization for Machine Learning

Composite minimization

Find x*eargm%Rn R (e {ai,bitit;) + Ar(x)
xeR?
Find x* € arg m]iRn fx) + gl
x€RM

smooth non-smooth

> f: differentiable surrogate of the empirical risk = Gradient
non-linear smooth function that depends on all the data
> g: non-smooth but chosen regularization = Proximity operator
non-differentiability on some manifolds implies structure on the solutions
closed form/easy for many regularizations:
-8(x) = [Ix|
-8(x) =TV(x)

- g(x) = indicatorc(x)

prox_, (u) = argminyexn {g(y) + 2 y — ul3}

Natural optimization method: proximal gradient

U1 = Xk — 7V (xx)
X1 = prox'yg(uk+1)

and its stochastic variants: proximal sgd, etc.
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>>> Structure, Non-differentiability, and Proximity operator

Example: LASSO

Find X" € arg m'%n R (x;{ai,bi}it,) + Ar(x)
x€R
. o . 1 _ 2
Find x € arg min s 1Ax —=bll; +  Allx|l:

smooth non-smooth

Coordinates ~ Structure <>  Optimality conditions
vi  xf=0 & Al (A" —b) e[\

Proximity Operator: per coordinate

u—Xy ifu> Xy 1.
[proxwwl(u)]i =< 0 %fui € [=Ay;A7] 2
ui+ Ay ifu <=My

Proximal Gradient (aka ISTA):

{ Uk+1 = Xk — ’YAT (Axk — b)
Xier1 = PrOX. 1, (Ui1)

t> {0} per coord.
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>>> Structure, Non-differentiability, and Proximity operator

Example: LASSO

Find x* € argmin R (x; {a;,bi},) + X r(x)
xeR
Find x* € argmin 1lAx —bl; + Alxlh
xXERN
smooth non-smooth
Coordinates ~ Structure <>  Optimality conditions Proximity operation

¢ 2

AT(Ax* —b) € [-A, )] [proxw,ul(u*)]i =0

u* =x* —HA" (Ax* —b)

vi xf=0 &

2 N ANEAN
)
1.5 < \
w-Xy  ifui> Ay ~
[pmxﬂu H‘(u)] :{ 0 ifu € [~A\y: M) kA
! w+ Xy ifu< =Xy 1 N|
Proximal Gradient (aka ISTA): 05 i N
{ Uis1 =X — YA (Axi — D) ®
Xier1 = Prox, ., (Ues1)
3,
—0.5+H9> < N
5 75 B -,
LR
1L 1 |
-1 0 1 2

ItEI ates Xk ]each the same structure as x™ 1n ﬁIllte tlllle'.
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>>> Mathematical properties of Proximal Algorithms

2 -
Proximal Algorithms: 1 =
U1 = Xk — 7V (k) o3 = v |
{ Xir1 = PrOX,(Ues1) . \ b )
_os|e &7 a i
-1 L L L
R D T B

> project on manifolds

Let M be a manifold and uy, such that
X = Prox. (ux) € M and @ € ri dg(xy)
If g is partly smooth at x; relative to M, then
prox . (u) € M
for any u close to uy.
3 I(leaorgaguewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis

¢ Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured
optimization problems. Optimization (2006)
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>>> Mathematical properties of Proximal Algorithms

Proximal Algorithms:

Ukt = Xk — ¥V (k)
Xicp1 = PrOX. o (U1)

> project on manifolds

> identify the optimal structure

Let (x;) and (uy) be a pair of sequences such that
X = prox,yg(uk) — X* = prox,(u*)
and M be a manifold. If x* € M and
Je > O such that for all u € B(u*,¢), prox,,(u) € M QO
holds, then, after some finite but unknown time, x; € M.
o Lewis: Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization (2002)

¢ Fadili, Malick, Peyré: Sensitivity analysis for mirror-stratifiable convex functions. SIAM Journal on Optimization
(2018)
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>>> “Nonsmoothness can help”

> Nonsmoothness is actively studied in Numerical Optimization...
Subgradients, Partial Smoothness/prox-regularity, Bregman metrics, Error
Bounds/Kurdyka-Lojasiewicz, etc.

& Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis
(2004)

& Lemarechal, Oustry, Sagastizabal: The U-Lagrangian of a convex function. Transactions of the AMS (2000)

¢ Bolte, Daniilidis, Lewis: The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to
subgradient dynamical systems. SIAM Journal on Optimization (2007)

¢ Chen, Teboulle: A proximal-based decomposition method for convex minimization problems. Mathematical
Programming (1994)
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>>> “Nonsmoothness can help”

> Nonsmoothness is actively studied in Numerical Optimization...
Subgradients, Partial Smoothness/prox-regularity, Bregman metrics, Error
Bounds/Kurdyka-Lojasiewicz, etc.

> ...but often suffered because of lack of structure/expression.

Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.

& Nesterov: Smooth minimization of non-smooth functions. Mathematical Programming (2005)

¢ Burke, Lewis, Overton: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM
Journal on Optimization (2005)

< Solodoyv, Svaiter: A hybrid projection-proximal point algorithm. Journal of convex analysis (1999)

¢ de Oliveira, Sagastizabal: Bundle methods in the XXIst century: A bird’s-eye view. Pesquisa Operacional (2014)
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>>> “Nonsmoothness can help”

O 000

> Nonsmoothness is actively studied in Numerical Optimization...
Subgradients, Partial Smoothness/prox-regularity, Bregman metrics, Error
Bounds/Kurdyka-tojasiewicz, etc.

> ...but often suffered because of lack of structure/expression.
Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.

> For Machine Learning objectives, it can often be harnessed

- Explicit/“proximable” regularizations ¢;, nuclear norm
- We know the expressions and activity of sought structures sparsity, rank

See the talks of ...

Bach, et al.: Optimization with sparsity-inducing penalties. Foundations and Trends in Machine Learning (2012)
Massias, Salmon, Gramfort: Celer: a fast solver for the lasso with dual extrapolation. ICML (2018)
Liang, Fadili, Peyré: Local linear convergence of forward-backward under partial smoothness. NeurIPS (2014)
O’Donoghue, Candes: Adaptive restart for accelerated gradient schemes. Foundations of computational
mathematic (2015)
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>>> Noticeable Structure

Find Xx* € arg m%Rn R(x;{ai, bitiy) + A r(x)
xERN
Find x* € arg m%@n fx) + gl
x€RM
smooth non-smooth

A reason why the nonsmoothness of ML problems can be leveraged is their
noticeable structure, that is:

We can design a lookout collection C = { M3, .., M, } of closed sets such that:
(i) we have a projection mapping proj M, onto M, for all i;

(i) prox ,(u) is a singleton and can be computed explicitly for any u and ;

(iii) upon computation of x = proxvg(u), we know if x € M; or not for all i.

= Identification can be directly harnessed.

Example: Sparse structure and g = || - [|1, || - I3:2, || - llos ---
C:{M1,...,Mn} WithMi:{XGRn:XiIO}
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>>> Question

lookout collection C = { M, .., Mp} of closed sets such that:

(i) we have a projection mapping proj Mm; Onto M, for all i;

(ii) Prox., (u) is a singleton and can be computed explicitly for any u and ~;
(iii) upon computation of x = prox.,(u), we know if x € M; or not for all i.

(QC) 3Je > Osuch that forallu € B(u*, ¢), prox_,(u) € M
Take any proximal algorithm

{ urr1 = Update (f; {5 Fo<i; {te o< )

—Updat
Xer1 = Prox_,(Uiy1) (prox —Update)

such that (ux) converges almost surely to a point u*

with x* = prox_,(u*) a solution of the problem.

Let’s use the structure
What can we do on the way to identification/when screening is inefficient?

not close to x*, no explicit or bad dual (non-convex), Prox., (Uy) difficult to evaluate
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>>> Question

lookout collection C = { M, .., M, } of closed sets such that:

(i) we have a projection mapping prole_ onto M; for all i;

(i) prox.,(u) is a singleton and can be computed explicitly for any u and ~;
(iii) upon computation of x = proxwg(u), we know if x € M; or not for all i.

(QC) 3e > Osuch thatforallu € B(u*,¢), prox.,(u) € M
Take any proximal algorithm

{ ur+1 = Update (f; {x¢ Fo<i; {te to<k; v)

—Updat
Xe41 = PrOX_,(js1) (prox —Update)

such that (ux) converges almost surely to a point u*

with x* = prox_,(u”) a solution of the problem.

Define My = R" N, e pq, Mi and M* := R (. c oy, Mi, then:
M, CR" partial identif/screening and M = M™ after some finite time identification

1- Observing M can help reduce the dimension of the problem on the way
Can we efficiently restrict Update using M;?

2— The uncovered structure along the way bears valuable information
Does accelerated proximal gradient identify as well as vanilla?
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B ADAPTIVE SUBSPACE DESCENT

INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION



>>> Adaptive Proximal Gradient ADAPTIVE DESCENT

Disclaimer: This part talk assumes that the identified manifolds are linear
subspaces eg: ||Dx]|1.

Yo =xx—yVf(x)
2 = Yk

Xky1 = Prox . (zx)

> Vanilla Proximal gradient identifies but does not use it

full gradient computed at each iteration

Example: Sparse structure and g = || - ||1

C={My,...,.Mp} with M; ={x€eR":x; =0}
M ={xeR" : x; =X }
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>>> Adaptive Proximal Gradient ADAPTIVE DESCENT

Disclaimer: This part talk assumes that the identified manifolds are linear
subspaces eg: ||Dx]|1.

Observe M = R" ﬂi:XkEMi M;
Yo =xx—yVf(x)
ze = Proju, (- Y&) + Projiy, (1)

Xky1 = Prox . (zx)

> Direct Use of Identification may not converge
eg: starting with 0

Example: Sparse structure and g = || - ||1

C={My,...,.Mp} with M; ={x€eR":x; =0}
M ={xeR" : x; =X }
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>>> Adaptive Proximal Gradient ADAPTIVE DESCENT

Disclaimer: This part talk assumes that the identified manifolds are linear
subspaces eg: ||Dx]|1.

Observe Mi = R" (), c a4, (GiMi + (1 — &i)R") for & ~ B(p)
Yo =X — vVf()
ze = Proju, (- Y&) + Projiy, (1)

Xky1 = Prox . (zx)

> Mixing Identification and Randomized coordinate descent biases gradient

convergence issues

Example: Sparse structure and g = || - ||1

C:{M17-~~7Mn} WithMi:{xeR”:xizo}
Mi = {x € R" : x; = x; i for some i}
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>>> Adaptive Proximal Gradient ADAPTIVE DESCENT

Disclaimer: This part talk assumes that the identified manifolds are linear
subspaces eg: ||Dx]|;.

Observe M = R" mi:xkeMi (§k,iMi S (]_ — §k,i)Rn) for Ek,i - B(p)
Yo =Xk —vVf(x)
2 = Q' (Proj, (Quvk) + Projiy, (zx-1))

Xpy1 = proxwg(zk)

> With Qi := (Eproj Mk)‘l/ 2 this works after identification

but before... no, which prevents identification...

TV-regularized logistic regression: ~~ = ™ " © U T e
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>>> Adaptive Proximal Gradient ADAPTIVE DESCENT

Disclaimer: This part talk assumes that the identified manifolds are linear
subspaces eg: ||Dx]|1.

Observe Mi = R" (.., c aq, (§kiMi + (1 — &)R") for & ~ B(p)
Ye =Xk —vVf(x)
5 = Q' (Proju, (Qk) + Projiy, (zi-1))

Xkr1 = Prox . (zx)

Check if an adaptation can be performed, if so £ + k + 1

> Generalized Support adaptation can be performed at some iterations
depends on the amount of change HQkQ;;_ll || and harshness of the sparsification Ain (Qk)

TV-regularized logistic regression: ~*~ = ™ " © 7 T e T
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>>> Adaptive Subspace descent ADAPTIVE DESCEN

TV-reg. logistic regression on ala (1605 x 143), 90% final jump sparsity

10' 10t
K

o 200 ARPSD 1072 107% 7

i 50% ARPSD.

Son50% ARPSD

s

Iterate density
Suboptimality
Suboptimality

10-° 10

T T T 1071 T T =
o 1,000 2,000 3,000 4,000 0 1,000 2,000 3.000 4,000 0

Iteration Iteration Number of Subspaces explored .10¢

> Iterate structure enforced by nonsmooth regularizers can be used to
adapt the selection probabilities of coordinate descent/sketching;

> Before identification, adaptation has to be moderate.
> Grishchenko, I., & Malick: Proximal Gradient Methods with Adaptive

Subspace Sampling, in revision for Mathematics of Operation Research
available on my webpage, more details at SMAI MODE
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ADAPTIVE SUBSPACE DESCENT

B  INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION



>>> Acceleration of the Proximal Gradient

U1 =Yk — YV (k)

Xi+1 = ProX. (1)

Vi1 = X1 + Qg1 (X1 — Xi)
—_—

inertia/acceleration

> ag41 = 0 : vanilla Proximal Gradient
> Qg1 = ’;jr—; : accelerated Proximal Gradient (aka FISTA)

Optimal rate for composite problems (coefficients may vary a little)

| PG Accel. PG
F(xx) —F* | O(1/k)  O(1/k?)

iterates convergence yes yes
monotone functional decrease yes no
Fejér-monotone iterates yes no

& Nesterov: A method for solving the convex programming problem with convergence rate O(l/k2 ). Dokladi A.N.
Sssr (1983)
© Beck, Teboulle: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on
Imaging Sciences (2009)
© Chambolle, Dossal: On the convergence of the iterates of “FISTA”. Journal of Optimization theory and
Applications (2015)
¢ L, Malick: On the Proximal Gradient Algorithm with Alternated Inertia. Journal of Optimization Theory and
Applications (2018)
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>>> Interplay between Acceleration and Identification

2 T 1NN 1.5

—e— Proximal Gradient |7

= ; )

3, o 02 A
08 ‘,9) 2 — 3.4 o L0 1g N\ g, 056\
‘; J 5 RN - 81 0.56 —|
1L ! I o5l DY) I T
=i 0 1 2 —-1.5 -1 —0.5 0 0.5
8(x) = [xllx 8(x) = max(ix[1.3 — 1;0)
1-norm regularization distance to 1.3-norm unit ball
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>>> Interplay between Acceleration and Identification

2 T T K 15 T V.96 7T 2 d
—— Proximal Gradient

] —s— Proximal Gradient
151 —+— Accelerated Proximal Gradient |, —— Accelerated Proximal Gradient

—0.5 £
52 \\ %91 o565
—05 T ! 1
—1.5 -1 —0.5 0 0.5
8(x) = [lxllx 8(x) = max(|lx[1.3 — 1;0)
1-norm regularization distance to 1.3-norm unit ball

> PG identifies well;
> Accelerated PG explores well, identifies eventually, but erratically.

Can we converge fast and identify well?
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>>> A test-based algorithm ACCELERATION?

T is a boolean function of past iterates; decides whether to accelerate or not.

Urt1 =Yk — YVf (k)
X1 = PrOX.  (Uk+1)
X1 + Qep1 (e —x) T =1

Y = xea if T=0

Proposed tests: We use our lookout collection C

1. No Accelerationie. T1 =0 2. No Acceleration i.e. T2 =0
when reaching a new one: if this means leaving:

Xi41 € M and x; ¢ M 7?,(xk+1) € M and 7;(xk+1 T ak+1(xk+1 —xk)) Z M

for some M € C. for some M € C.

where T, := prox_,(- — yVf(+)) is the proximal gradient operator.

For analysis reasons, we allow no acceleration only when
175 k) = yill* < 6 and F(T5 (k) < F(xo).
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>>> Convergence result ACCELERATION?

Theorem
Let f, g be two convex functions such that f is L-smooth, g is lower semi-continuous, and f + g is

semi-algebraic with a minimizer. Take v € (0, 1/L]. Then, the iterates of the proposed
methods with test T or T2 verify

. 9jxo — x*||? 9kR 1
_F* < _ =
Flar) =F" < 5 o7 Y 2z~ Ok

for some R > 0.

Furthermore, if the problem has a unique minimizer x* and the qualifying
constraint (QC) holds, then the iterates sequence (xi) converges, finite-time
identification happens and

oy _ 9flxo —x*|12 9KR b
_ < f— .
Flo) —FO) < 5000 T ooz ~ O e

for some finite K > 0.

L-smooth means that f is differentiable and Vf is L-Lipschitz continuous.
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>>> Back to initial problems: /; norm

min [|Ax — b||2 + Allx|h
xER2

1

T T | N

- y =
—e— Proximal Gradient

—=+— Accelerated Proximal Gradient ||

EN
L%
re—
wn -
0.5+ 3
. ‘}9 <5 — B
5
. L L L
-1 0 1 2 3 4
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>>> Back to initial problems

ACCELERATI

min [|Ax — b||2 + Allx|h
xER2

2 T T 7 1 —1
Proximal Gradient Proximal Gradient
—— 3 i
roxima macken ) 10 Accel. Proximal Gradient
—+— Accelerated Proximal Gradient |
1.5 - -~ Prov. Alg—-T
——T! N
Prov. Alg - T
3 ——T? 10-2 |
*
1 x x
129
|
5 = -7
0.5 “ 2 10
\ [
B v
0 — = o 10-12 |-
0.5+ 3
—0. ;&> N . .
" & 107 L L L
‘9 . ‘ ‘ ‘ 0 50 100 150 200
71—1 0 1 2 3 4 number of proximal gradient steps

@ marks identification time
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>>> Back to initial problems: distance to 1.3-norm ball

min [|[Ax — b||3 + Amax(|x||1.3 — 1;0)
XER2

15 T .56 T 179

—e— Proximal Gradient
—+— Accelerated Proximal Gradient
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>>> Back to initial problems: distance to 1.3-norm ball

min [|[Ax — b||3 + Amax(|x||1.3 — 1;0)
XER2

56 T Ve

; 10 T T =]
Proximal Gradient

—e— Proximal Gradient
—=+— Accelerated Proximal Gradient
e 1!

Accel. Proximal Gradient
~~ - Prov. Alg-T!
Prov. Alg - T?

T2 10-3 |-

10-8 |-

Flx) — F*

10-13 |

10-18 [ B

number of proximal gradient steps

@ marks identification time
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>>> Matrix regression with nuclear-norm regularization

min_||AX — B||2 + A||X]|

XG]RZOXZO
> S € R%*20 i a3 rank 3 matrix;
> A € R(16x16)x(20x20) 5 drawn from the normal distribution;
> B = AS + E with E drawn from the normal distribution with variance .01

<
R 100 4———— 5
g Proximal Gradient |- 10° 100
—~ 80 Accel. Proximal Gradient |-
£ 80
= =
M 60 -107° X
g 60 LT
) -
= ~ 10-6 40 &
S 10 =
T 20
< 20
E oLl I I | 10~
o 0-10° 1.10* 2. 10* 3.10* 0
I
i 100 ————— ) 100 +—— S
0
g 10 10°
&S & 50
5 :
M 60 -107° 60 103 B
g |
S w0 0 £
-6
g‘/ 10 106 =
=20
3 20
M
E 0 — o ‘ " ‘ " ‘ 107 01— - ; £ =
0-10 1-10 2.10 3.10 0.10° 1.10 2.10° 3.10°

iterations iterations 16/18



>>> On the Interplay between Acceleration and Identification ACCELERAT

> acceleration can hurt identification for the proximal gradient algorithm;

> we proposed a method with stable identification behavior, maintaining an
accelerated convergence rate.

> Bareilles & I.: On the Interplay between Acceleration and Identification for the
Proximal Gradient algorithm. arXiv:1909.08944
Try it in Julia on https://github.com/GillesBareilles/Acceleration-Identification
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https://github.com/GillesBareilles/Acceleration-Identification

>>> Harnessing Structure in Optimization for ML ACCELERATION?

> Machine Learning problems often have a noticeable structure;

> We can design a lookout collection C = { My, .., M,} of sets: (i) with easy
projections; (ii) identified by proximity operations; (iii) we know if these
sets are identified or not;

> This structure can/should be harnessed but may be tricky before
identification.

> Malick & I.: Nonsmoothness can help! on the Specific Structure of Machine
Learning problems, review/pedagogical paper coming hopefully soon
thanks to this week at CIRM but it also depends whether we go hiking/running in the calanques

which may very well be the case

Thanks to ANR JCJC STROLL 0 & IDEX UGA IRS DOLL

Thank you! - Franck IUTZELER http://www.iutzeler.org
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