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>>> Regularization in Learning

Structure Regularization
sparsity r = ‖ · ‖1

anti-sparsity r = ‖ · ‖∞
low rank r = ‖ · ‖∗...

...

Linear inverse problems: for a chosen
regularization, we seek

x? ∈ argmin
x

r(x) such that Ax = b

Regularized Empirical Risk Minimization problem:

Find x? ∈ argmin
x∈Rn

R (x; {ai, bi}m
i=1) + λ r(x)

obtained from chosen
statistical modeling regularization

e.g. Lasso: Find x? ∈ argmin
x∈Rn

∑m
i=1

1
2 (a
>
i x − bi)

2 + λ ‖x‖1

Regularization can improve statistical properties (generalization, stability, ...).

� Tibshirani: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (1996)
� Tibshirani et al.: Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society (2004)
� Vaiter, Peyré, Fadili: Model consistency of partly smooth regularizers. IEEE Trans. on Information Theory (2017)
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>>> Optimization for Machine Learning

Composite minimization

Find x? ∈ argmin
x∈Rn

R (x; {ai, bi}m
i=1) + λ r(x)

Find x? ∈ argmin
x∈Rn

f(x) + g(x)

smooth non-smooth

> f : differentiable surrogate of the empirical risk⇒ Gradient
non-linear smooth function that depends on all the data

> g: non-smooth but chosen regularization⇒ Proximity operator
non-differentiability on some manifolds implies structure on the solutions

proxγg(u) = argminy∈Rn

{
g(y) + 1

2γ ‖y− u‖2
2

} closed form/easy for many regularizations:

– g(x) = ‖x‖1

– g(x) = TV(x)

– g(x) = indicatorC(x)

Natural optimization method: proximal gradient

{
uk+1 = xk − γ∇f(xk)
xk+1 = proxγg(uk+1)

and its stochastic variants: proximal sgd, etc.
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>>> Structure, Non-differentiability, and Proximity operator

Example: LASSO

Find x? ∈ argmin
x∈Rn

R (x; {ai, bi}m
i=1) + λ r(x)

Find x? ∈ argmin
x∈Rn

1
2 ‖Ax − b‖2

2 + λ‖x‖1

smooth non-smooth

Coordinates Structure ↔ Optimality conditions

↔ Proximity operation

∀i x?i = 0 ⇔ A>i (Ax? − b) ∈ [−λ, λ]

⇔
[
proxγλ‖·‖1

(u?)
]

i
= 0

u? = x? − γA>(Ax? − b)

Proximity Operator: per coordinate[
proxγλ‖·‖1

(u)
]

i
=


ui − λγ if ui > λγ
0 if ui ∈ [−λγ;λγ]
ui + λγ if ui < −λγ

Proximal Gradient (aka ISTA):{
uk+1 = xk − γA>(Axk − b)
xk+1 = proxγλ‖·‖1

(uk+1)

−3 −2 −1 1 2 3

−1

1

2

| · |

SoftThresholding

[−1,1]→ {0} per coord.

Iterates (xk) reach the same structure as x? in finite time!
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>>> Mathematical properties of Proximal Algorithms

Proximal Algorithms:{
uk+1 = xk − γ∇f(xk)
xk+1 = proxγg(uk+1)
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x? SoftThresholding

> project on manifolds

> identify the optimal structure

LetM be a manifold and uk such that

xk = proxγg(uk) ∈M and
uk−xk
γ
∈ ri ∂g(xk)

If g is partly smooth at xk relative toM, then

proxγg(u) ∈M

for any u close to uk.

� Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis
(2004)

� Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured
optimization problems. Optimization (2006)
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x? SoftThresholding

> project on manifolds

> identify the optimal structure

Let (xk) and (uk) be a pair of sequences such that

xk = proxγg(u
k)→ x? = proxγg(u

?)

andM be a manifold. If x? ∈M and

∃ε > 0 such that for all u ∈ B(u?, ε), proxγg(u) ∈M (QC)

holds, then, after some finite but unknown time, xk ∈M.

� Lewis: Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization (2002)
� Fadili, Malick, Peyré: Sensitivity analysis for mirror-stratifiable convex functions. SIAM Journal on Optimization

(2018)
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>>> “Nonsmoothness can help”

> Nonsmoothness is actively studied in Numerical Optimization...
Subgradients, Partial Smoothness/prox-regularity, Bregman metrics, Error

Bounds/Kurdyka-Łojasiewicz, etc.

> ...but often suffered because of lack of structure/expression.
Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.

> For Machine Learning objectives, it can often be harnessed
- Explicit/“proximable” regularizations `1, nuclear norm

- We know the expressions and activity of sought structures sparsity, rank

See the talks of ...

� Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis
(2004)

� Lemarechal, Oustry, Sagastizabal: The U-Lagrangian of a convex function. Transactions of the AMS (2000)
� Bolte, Daniilidis, Lewis: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to

subgradient dynamical systems. SIAM Journal on Optimization (2007)
� Chen, Teboulle: A proximal-based decomposition method for convex minimization problems. Mathematical

Programming (1994)
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- Explicit/“proximable” regularizations `1, nuclear norm

- We know the expressions and activity of sought structures sparsity, rank

See the talks of ...

� Nesterov: Smooth minimization of non-smooth functions. Mathematical Programming (2005)
� Burke, Lewis, Overton: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM

Journal on Optimization (2005)
� Solodov, Svaiter: A hybrid projection-proximal point algorithm. Journal of convex analysis (1999)
� de Oliveira, Sagastizábal: Bundle methods in the XXIst century: A bird’s-eye view. Pesquisa Operacional (2014)

5 / 18



>>> “Nonsmoothness can help”

> Nonsmoothness is actively studied in Numerical Optimization...
Subgradients, Partial Smoothness/prox-regularity, Bregman metrics, Error

Bounds/Kurdyka-Łojasiewicz, etc.

> ...but often suffered because of lack of structure/expression.
Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.

> For Machine Learning objectives, it can often be harnessed
- Explicit/“proximable” regularizations `1, nuclear norm

- We know the expressions and activity of sought structures sparsity, rank

See the talks of ...

� Bach, et al.: Optimization with sparsity-inducing penalties. Foundations and Trends in Machine Learning (2012)
� Massias, Salmon, Gramfort: Celer: a fast solver for the lasso with dual extrapolation. ICML (2018)
� Liang, Fadili, Peyré: Local linear convergence of forward–backward under partial smoothness. NeurIPS (2014)
� O’Donoghue, Candes: Adaptive restart for accelerated gradient schemes. Foundations of computational

mathematic (2015)
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>>> Noticeable Structure

Find x? ∈ argmin
x∈Rn

R (x; {ai, bi}m
i=1) + λ r(x)

Find x? ∈ argmin
x∈Rn

f(x) + g(x)

smooth non-smooth

A reason why the nonsmoothness of ML problems can be leveraged is their
noticeable structure, that is:

We can design a lookout collection C = {M1, ..,Mp} of closed sets such that:
(i) we have a projection mapping projMi

ontoMi for all i;
(ii) proxγg(u) is a singleton and can be computed explicitly for any u and γ;

(iii) upon computation of x = proxγg(u), we know if x ∈Mi or not for all i.

⇒ Identification can be directly harnessed.

Example: Sparse structure and g = ‖ · ‖1, ‖ · ‖0.5
0.5, ‖ · ‖0, ...

C = {M1, . . . ,Mn} withMi = {x ∈ Rn : xi = 0}
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>>> Question

lookout collection C = {M1, ..,Mp} of closed sets such that:

(i) we have a projection mapping projMi
ontoMi for all i;

(ii) proxγg(u) is a singleton and can be computed explicitly for any u and γ;
(iii) upon computation of x = proxγg(u), we know if x ∈ Mi or not for all i.

(QC) ∃ε > 0 such that for all u ∈ B(u?, ε), proxγg(u) ∈ M

Take any proximal algorithm{
uk+1 = Update (f ; {x`}`≤k; {u`}`≤k; γ)
xk+1 = proxγg(uk+1)

(prox−Update)

such that (uk) converges almost surely to a point u?

with x? = proxγg(u
?) a solution of the problem.

Let’s use the structure
What can we do on the way to identification/when screening is inefficient?

not close to x?, no explicit or bad dual (non-convex), proxγg(Uk) difficult to evaluate
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(QC) ∃ε > 0 such that for all u ∈ B(u?, ε), proxγg(u) ∈ M

Take any proximal algorithm{
uk+1 = Update (f ; {x`}`≤k; {u`}`≤k; γ)
xk+1 = proxγg(uk+1)

(prox−Update)

such that (uk) converges almost surely to a point u?

with x? = proxγg(u
?) a solution of the problem.

DefineMk = Rn⋂
i:xk∈Mi

Mi andM? := Rn⋂
i:x?∈Mi

Mi, then:

Mk ⊂ Rn partial identif/screening andMk =M? after some finite time identification

1– ObservingMk can help reduce the dimension of the problem on the way
Can we efficiently restrict Update usingMk?

2– The uncovered structure along the way bears valuable information
Does accelerated proximal gradient identify as well as vanilla?
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ADAPTIVE SUBSPACE DESCENT

INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION



>>> Adaptive Proximal Gradient ADAPTIVE DESCENT

Disclaimer: This part talk assumes that the identified manifolds are linear
subspaces eg: ‖Dx‖1.



ObserveMk = Rn⋂
i:xk∈Mi

(ξk,i

Mi

+ (1− ξk,i)Rn) for ξk,i ∼ B(p)

yk = xk − γ∇f(xk)

zk =

Q−1
k (projMk

(

Qk

yk

) + proj⊥Mk
(zk−1))

xk+1 = proxγg(zk)

Check if an adaptation can be performed, if so `← k + 1

> Vanilla Proximal gradient identifies but does not use it
full gradient computed at each iteration

Example: Sparse structure and g = ‖ · ‖1

C = {M1, . . . ,Mn} withMi = {x ∈ Rn : xi = 0}
Mk = {x ∈ Rn : xi = xi,k

for some i

}
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> Mixing Identification and Randomized coordinate descent biases gradient
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but before... no, which prevents identification...
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>>> Adaptive Subspace descent ADAPTIVE DESCENT

TV-reg. logistic regression on a1a (1605× 143), 90% final jump sparsity
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> Iterate structure enforced by nonsmooth regularizers can be used to
adapt the selection probabilities of coordinate descent/sketching;

> Before identification, adaptation has to be moderate.

. Grishchenko, I., & Malick: Proximal Gradient Methods with Adaptive
Subspace Sampling, in revision for Mathematics of Operation Research
available on my webpage, more details at SMAI MODE
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ADAPTIVE SUBSPACE DESCENT

INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION



>>> Acceleration of the Proximal Gradient ACCELERATION?


uk+1 = yk − γ∇f(yk)
xk+1 = proxγg(uk+1)

yk+1 = xk+1 + αk+1(xk+1 − xk)︸ ︷︷ ︸
inertia/acceleration

> αk+1 ≡ 0 : vanilla Proximal Gradient
> αk+1 = k−1

k+3 : accelerated Proximal Gradient (aka FISTA)

Optimal rate for composite problems (coefficients may vary a little)

PG Accel. PG
F(xk)− F? O(1/k) O(1/k2)

iterates convergence yes yes
monotone functional decrease yes no

Fejér-monotone iterates yes no
� Nesterov: A method for solving the convex programming problem with convergence rate O(1/k2). Dokladi A.N.

Sssr (1983)
� Beck, Teboulle: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on

Imaging Sciences (2009)
� Chambolle, Dossal: On the convergence of the iterates of “FISTA”. Journal of Optimization theory and

Applications (2015)
� I., Malick: On the Proximal Gradient Algorithm with Alternated Inertia. Journal of Optimization Theory and

Applications (2018)
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>>> Interplay between Acceleration and Identification ACCELERATION?

min
x∈R2
‖Ax − b‖2

2 + λg(x)
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g(x) = ‖x‖1

1-norm regularization
g(x) = max(‖x‖1.3 − 1; 0)

distance to 1.3-norm unit ball

> PG identifies well;
> Accelerated PG explores well, identifies eventually, but erratically.

Can we converge fast and identify well?
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>>> A test-based algorithm ACCELERATION?

T is a boolean function of past iterates; decides whether to accelerate or not.
uk+1 = yk − γ∇f(yk)
xk+1 = proxγg(uk+1)

yk+1 =

{
xk+1 + αk+1(xk+1 − xk) if T = 1
xk+1 if T = 0

Proposed tests: We use our lookout collection C

1. No Acceleration i.e. T1 = 0
when reaching a new one:

xk+1 ∈M and xk 6∈ M

for someM∈ C.

2. No Acceleration i.e. T2 = 0
if this means leaving:

Tγ(xk+1) ∈M and Tγ(xk+1 + αk+1(xk+1 − xk)) 6∈ M

for someM∈ C.

where Tγ := proxγg(· − γ∇f(·)) is the proximal gradient operator.

For analysis reasons, we allow no acceleration only when

‖Tγ(yk)− yk‖2 ≤ δ and F(Tγ(yk)) ≤ F(x0).
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>>> Convergence result ACCELERATION?

Theorem
Let f , g be two convex functions such that f is L-smooth, g is lower semi-continuous, and f + g is

semi-algebraic with a minimizer. Take γ ∈ (0, 1/L]. Then, the iterates of the proposed
methods with test T1 or T2 verify

F (xk+1)− F? ≤ 9‖x0 − x?‖2

2γ(k + 2)2 +
9kR

2γ(k + 2)2 = O
(

1
k

)
for some R > 0.
Furthermore, if the problem has a unique minimizer x? and the qualifying
constraint (QC) holds, then the iterates sequence (xk) converges, finite-time
identification happens and

F (xk+1)− F(x?) ≤ 9‖x0 − x?‖2

2γ(k + 2)2 +
9KR

2γ(k + 2)2 = O
(

1
k2

)
.

for some finite K > 0.

L-smooth means that f is differentiable and∇f is L-Lipschitz continuous.
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>>> Back to initial problems: `1 norm ACCELERATION?

min
x∈R2
‖Ax − b‖2

2 + λ‖x‖1
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>>> Back to initial problems: distance to 1.3-norm ball ACCELERATION?

min
x∈R2
‖Ax − b‖2

2 + λmax(|x‖1.3 − 1; 0)
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>>> Matrix regression with nuclear-norm regularization ACCELERATION?

min
X∈R20×20

‖AX − B‖2
F + λ‖X‖∗

> S ∈ R20×20 is a rank 3 matrix;
> A ∈ R(16×16)×(20×20) is drawn from the normal distribution;
> B = AS + E with E drawn from the normal distribution with variance .01
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>>> On the Interplay between Acceleration and Identification ACCELERATION?

> acceleration can hurt identification for the proximal gradient algorithm;

> we proposed a method with stable identification behavior, maintaining an
accelerated convergence rate.

. Bareilles & I.: On the Interplay between Acceleration and Identification for the
Proximal Gradient algorithm. arXiv:1909.08944
Try it in Julia on https://github.com/GillesBareilles/Acceleration-Identification
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>>> Harnessing Structure in Optimization for ML ACCELERATION?

> Machine Learning problems often have a noticeable structure;

> We can design a lookout collection C = {M1, ..,Mp} of sets: (i) with easy
projections; (ii) identified by proximity operations; (iii) we know if these
sets are identified or not;

> This structure can/should be harnessed but may be tricky before
identification.

. Malick & I.: Nonsmoothness can help! on the Specific Structure of Machine
Learning problems, review/pedagogical paper coming hopefully soon
thanks to this week at CIRM but it also depends whether we go hiking/running in the calanques

which may very well be the case

Thanks to ANR JCJC STROLL & IDEX UGA IRS DOLL & PGMO

Thank you! – Franck IUTZELER http://www.iutzeler.org
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