Harnessing Structure in Optimization for Machine Learning

Franck Iutzeler LJK, Univ. Grenoble Alpes

Optimization for Machine Learning CIRM – 9-13 March 2020

Structure	Regularization
sparsity	$r = \ \cdot \ _1$
anti-sparsity	$r = \ \cdot\ _{\infty}$
low rank	$r = \cdot _*$
	:

Linear inverse problems: for a chosen regularization, we seek

$$x^* \in \arg\min_{x} r(x)$$
 such that $Ax = b$

Regularized Empirical Risk Minimization problem:

$$\begin{array}{llll} \text{Find} & & x^{\star} \in \arg\min_{x \in \mathbb{R}^n} & & \mathcal{R}\left(x; \{a_i, b_i\}_{i=1}^m\right) & + & \lambda \ r(x) \\ & & \text{obtained from} & \text{chosen} \\ & & \text{statistical modeling} & & \text{regularization} \end{array}$$

e.g. Lasso: Find
$$x^\star \in \arg\min_{\mathbf{x} \in \mathbb{R}^n} \sum_{i=1}^m \frac{1}{2} (a_i^\top \mathbf{x} - b_i)^2 + \lambda \ \|\mathbf{x}\|_1$$

Regularization can improve statistical properties (generalization, stability, ...).

- Tibshirani: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (1996)
- ♦ Tibshirani et al.: Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society (2004)
- Vaiter, Peyré, Fadili: Model consistency of partly smooth regularizers. IEEE Trans. on Information Theory (2017)

>>> Optimization for Machine Learning

Composite minimization

$$\begin{array}{llll} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

- > f: differentiable surrogate of the empirical risk ⇒ Gradient non-linear smooth function that depends on all the data
- > g: non-smooth but chosen regularization ⇒ Proximity operator non-differentiability on some manifolds implies structure on the solutions

closed form/easy for many regularizations:

$$\mathbf{prox}_{\gamma g}(u) = \arg\min_{y \in \mathbb{R}^n} \left\{ g(y) + \frac{1}{2\gamma} \|y - u\|_2^2 \right\} \qquad \begin{array}{l} -g(x) = \|x\|_1 \\ -g(x) = TV(x) \\ -g(x) = indicator_C(x) \end{array}$$

Natural optimization method: proximal gradient

$$\begin{cases} u_{k+1} = x_k - \gamma \nabla f(x_k) \\ x_{k+1} = \mathbf{prox}_{\gamma g}(u_{k+1}) \end{cases}$$

and its stochastic variants: proximal sgd, etc.

>>> Structure, Non-differentiability, and Proximity operator

Example: LASSO

$$\begin{array}{llll} & \text{Find} & x^{\star} \in \arg\min_{x \in \mathbb{R}^n} & \mathcal{R}\left(x; \{a_i, b_i\}_{i=1}^m\right) & + & \lambda \; r(x) \\ & \text{Find} & x^{\star} \in \arg\min_{x \in \mathbb{R}^n} & \frac{1}{2} \left\|Ax - b\right\|_2^2 & + & \lambda \|x\|_1 \\ & & \text{smooth} & \text{non-smooth} \end{array}$$

Coordinates Structure
$$\leftrightarrow$$
 Optimality conditions $\forall i \quad x_i^{\star} = 0 \quad \Leftrightarrow \quad A_i^{\top}(Ax^{\star} - b) \in [-\lambda, \lambda]$

$$\left[\mathbf{prox}_{\gamma\lambda\|\cdot\|_1}(u)\right]_i = \left\{ \begin{array}{ll} u_i - \lambda \gamma & \text{if } u_i > \lambda \gamma \\ 0 & \text{if } u_i \in [-\lambda \gamma; \lambda \gamma] \\ u_i + \lambda \gamma & \text{if } u_i < -\lambda \gamma \end{array} \right.$$

Proximal Gradient (aka ISTA):

$$\begin{cases} u_{k+1} = x_k - \gamma A^{\top} (Ax_k - b) \\ x_{k+1} = \mathbf{prox}_{\gamma \lambda \| \cdot \|_1} (u_{k+1}) \end{cases}$$

>>> Structure, Non-differentiability, and Proximity operator

Example: LASSO

$$\begin{array}{llll} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

$$\begin{bmatrix} \mathbf{prox}_{\gamma\lambda\|\cdot\|_1}(u) \end{bmatrix}_i = \left\{ \begin{array}{ll} u_i - \lambda \gamma & \text{if } u_i > \lambda \gamma \\ 0 & \text{if } u_i \in [-\lambda \gamma; \lambda \gamma] \\ u_i + \lambda \gamma & \text{if } u_i < -\lambda \gamma \end{array} \right.$$

Proximal Gradient (aka ISTA):

$$\begin{cases} u_{k+1} = x_k - \gamma A^{\top} (Ax_k - b) \\ x_{k+1} = \mathbf{prox}_{\gamma \lambda \| \cdot \|_1} (u_{k+1}) \end{cases}$$

Iterates (x_k) reach the same structure as x^* in finite time!

>>> Mathematical properties of Proximal Algorithms

Proximal Algorithms:

$$\begin{cases} u_{k+1} = x_k - \gamma \nabla f(x_k) \\ x_{k+1} = \mathbf{prox}_{\gamma g}(u_{k+1}) \end{cases}$$

> project on manifolds

Let \mathcal{M} be a manifold and u_k such that

$$x_k = \mathbf{prox}_{\gamma g}(u_k) \in \mathcal{M}$$
 and $\frac{u_k - x_k}{\gamma} \in \operatorname{ri} \partial g(x_k)$

If *g* is partly smooth at x_k relative to \mathcal{M} , then

$$\mathbf{prox}_{\gamma g}(u) \in \mathcal{M}$$

for any u close to u_k .

- Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis (2004)
- Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems. Optimization (2006)

Proximal Algorithms:

$$\begin{cases} u_{k+1} = x_k - \gamma \nabla f(x_k) \\ x_{k+1} = \mathbf{prox}_{\gamma g}(u_{k+1}) \end{cases}$$

- > project on manifolds
- > identify the optimal structure

Let (x_k) and (u_k) be a pair of sequences such that

$$x_k = \mathbf{prox}_{\gamma g}(u^k) \to x^* = \mathbf{prox}_{\gamma g}(u^*)$$

and \mathcal{M} be a manifold. If $x^* \in \mathcal{M}$ and

$$\exists \varepsilon > 0 \text{ such that for all } u \in \mathcal{B}(u^*, \varepsilon), \ \mathbf{prox}_{\gamma g}(u) \in \mathcal{M}$$
 (QC)

holds, then, after some finite but unknown time, $x_k \in \mathcal{M}$.

 $[\]diamond$ Lewis: Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization (2002)

Fadili, Malick, Peyré: Sensitivity analysis for mirror-stratifiable convex functions. SIAM Journal on Optimization (2018)

>>> "Nonsmoothness can help"

> Nonsmoothness is actively studied in Numerical Optimization...

Subgradients, Partial Smoothness/prox-regularity, Bregman metrics, Error Bounds/Kurdyka-Łoiasiewicz. etc.

Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis (2004)

[♦] Lemarechal, Oustry, Sagastizabal: The U-Lagrangian of a convex function. Transactions of the AMS (2000)

Bolte, Daniilidis, Lewis: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM Journal on Optimization (2007)

Chen, Teboulle: A proximal-based decomposition method for convex minimization problems. Mathematical Programming (1994)

>>> "Nonsmoothness can help"

> Nonsmoothness is actively studied in Numerical Optimization...

Subgradients, Partial Smoothness/prox-regularity, Bregman metrics, Error Bounds/Kurdyka-Łojasiewicz, etc.

> ...but often suffered because of lack of structure/expression.

Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.

[♦] Nesteroy: Smooth minimization of non-smooth functions, Mathematical Programming (2005)

Burke, Lewis, Overton: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM Journal on Optimization (2005)

[♦] Solodov, Svaiter: A hybrid projection-proximal point algorithm. Journal of convex analysis (1999)

 $[\]diamond \quad \text{de Oliveira, Sagastiz\'abal: Bundle methods in the XXIst century: A bird's-eye view. Pesquisa Operacional (2014)}$

>>> "Nonsmoothness can help"

- Nonsmoothness is actively studied in Numerical Optimization... Subgradients, Partial Smoothness/prox-regularity, Bregman metrics, Error Bounds/Kurdyka-Łojasiewicz, etc.
- ...but often suffered because of lack of structure/expression.
 Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.
- > For Machine Learning objectives, it can often be harnessed
 - Explicit/"proximable" regularizations ℓ1, nuclear norm
 - We know the expressions and activity of sought structures sparsity, rank

See the talks of ...

[♦] Bach, et al.: Optimization with sparsity-inducing penalties. Foundations and Trends in Machine Learning (2012)

[♦] Massias, Salmon, Gramfort: Celer: a fast solver for the lasso with dual extrapolation. ICML (2018)

Liang, Fadili, Peyré: Local linear convergence of forward-backward under partial smoothness. NeurIPS (2014)

O'Donoghue, Candes: Adaptive restart for accelerated gradient schemes. Foundations of computational mathematic (2015)

Find
$$x^* \in \arg\min_{x \in \mathbb{R}^n} \quad \mathcal{R}\left(x; \{a_i, b_i\}_{i=1}^m\right) + \lambda r(x)$$

Find $x^* \in \arg\min_{x \in \mathbb{R}^n} \quad f(x) + g(x)$
smooth non-smooth

A reason why the nonsmoothness of ML problems can be leveraged is their **noticeable structure**, that is:

We can design a *lookout collection* $C = \{M_1, ..., M_p\}$ of closed sets such that:

- (i) we have a projection mapping $\operatorname{proj}_{\mathcal{M}_i}$ onto \mathcal{M}_i for all i;
- (ii) $\mathbf{prox}_{\gamma g}(u)$ is a singleton and can be computed explicitly for any u and γ ;
- (iii) upon computation of $x = \mathbf{prox}_{\gamma g}(u)$, we know if $x \in \mathcal{M}_i$ or not for all i.
- ⇒ Identification can be directly harnessed.

Example: Sparse structure and $g = \|\cdot\|_1, \|\cdot\|_{0.5}^{0.5}, \|\cdot\|_0, ...$

$$C = \{\mathcal{M}_1, \dots, \mathcal{M}_n\} \quad \text{ with } \mathcal{M}_i = \{x \in \mathbb{R}^n : x_i = 0\}$$

lookout collection $C = \{\mathcal{M}_1, ..., \mathcal{M}_p\}$ of closed sets such that:

- (i) we have a projection mapping $\operatorname{proj}_{\mathcal{M}_i}$ onto \mathcal{M}_i for all i;
- (ii) $\mathbf{prox}_{\gamma g}(u)$ is a singleton and can be computed explicitly for any u and γ ;
- (iii) upon computation of $x = \mathbf{prox}_{\gamma g}(u)$, we know if $x \in \mathcal{M}_i$ or not for all i.

(QC)
$$\exists \varepsilon > 0$$
 such that for all $u \in \mathcal{B}(u^*, \varepsilon), \ \mathbf{prox}_{\gamma g}(u) \in \mathcal{M}$

Take any proximal algorithm

$$\left\{ \begin{array}{ll} u_{k+1} &= \mathsf{Update}\left(f; \{x_\ell\}_{\ell \leq k}; \{u_\ell\}_{\ell \leq k}; \gamma\right) \\ x_{k+1} &= \mathbf{prox}_{\gamma g}(u_{k+1}) \end{array} \right. \tag{prox} - \mathsf{Update})$$

such that (u_k) converges almost surely to a point u^* with $x^* = \operatorname{prox}_{\gamma g}(u^*)$ a solution of the problem.

Let's use the structure

What can we do on the way to identification/when screening is inefficient?

not close to x^* , no explicit or bad dual (non-convex), $\mathbf{prox}_{\gamma g}(\mathcal{U}_k)$ difficult to evaluate

lookout collection $C = \{\mathcal{M}_1, ..., \mathcal{M}_p\}$ of closed sets such that:

- (i) we have a projection mapping $\operatorname{proj}_{\mathcal{M}_i}$ onto \mathcal{M}_i for all i;
- (ii) $\mathbf{prox}_{\gamma g}(u)$ is a singleton and can be computed explicitly for any u and γ ;
- (iii) upon computation of $x = \mathbf{prox}_{\gamma g}(u)$, we know if $x \in \mathcal{M}_i$ or not for all i.

(QC)
$$\exists \varepsilon > 0$$
 such that for all $u \in \mathcal{B}(u^*, \varepsilon)$, $\mathbf{prox}_{\gamma g}(u) \in \mathcal{M}$

Take any proximal algorithm

$$\begin{cases} u_{k+1} &= \mathsf{Update}\left(f; \{x_\ell\}_{\ell \leq k}; \{u_\ell\}_{\ell \leq k}; \gamma\right) \\ x_{k+1} &= \mathbf{prox}_{\gamma g}(u_{k+1}) \end{cases}$$
 (prox –Update)

such that (u_k) converges almost surely to a point u^* with $x^* = \mathbf{prox}_{\gamma g}(u^*)$ a solution of the problem.

Define
$$\mathcal{M}_k = \mathbb{R}^n \bigcap_{i:x_k \in \mathcal{M}_i} \mathcal{M}_i$$
 and $\mathcal{M}^{\star} := \mathbb{R}^n \bigcap_{i:x^{\star} \in \mathcal{M}_i} \mathcal{M}_i$, then:

 $\mathcal{M}_k \subset \mathbb{R}^n$ partial identif/screening and $\mathcal{M}_k = \mathcal{M}^\star$ after some finite time identification

- 1– Observing \mathcal{M}_k can help reduce the dimension of the problem on the way Can we efficiently restrict Update using \mathcal{M}_k ?
- 2– The uncovered structure along the way bears valuable information Does accelerated proximal gradient identify as well as vanilla?

■ ADAPTIVE SUBSPACE DESCENT

INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION

$$\begin{cases} y_k &= x_k - \gamma \nabla f(x_k) \\ z_k &= y_k \\ x_{k+1} &= \mathbf{prox}_{\gamma g}(z_k) \end{cases}$$

> Vanilla Proximal gradient identifies but does not use it full gradient computed at each iteration

Example: Sparse structure and $g = \|\cdot\|_1$

$$C = \{\mathcal{M}_1, \dots, \mathcal{M}_n\} \quad \text{with } \mathcal{M}_i = \{x \in \mathbb{R}^n : x_i = 0\}$$
$$\mathcal{M}_k = \{x \in \mathbb{R}^n : x_i = x_{i,k} \}$$

$$\begin{cases} & \text{Observe } \mathcal{M}_k = \mathbb{R}^n \bigcap_{i:x_k \in \mathcal{M}_i} \quad \mathcal{M}_i \\ y_k & = x_k - \gamma \nabla f(x_k) \\ z_k & = \text{proj}_{\mathcal{M}_k}(\quad y_k) + \text{proj}_{\mathcal{M}_k}^{\perp}(z_{k-1}) \\ x_{k+1} & = \mathbf{prox}_{\gamma g}(z_k) \end{cases}$$

> Direct Use of Identification may not converge eg: starting with 0

Example: Sparse structure and $g = \|\cdot\|_1$

$$C = \{\mathcal{M}_1, \dots, \mathcal{M}_n\} \quad \text{with } \mathcal{M}_i = \{x \in \mathbb{R}^n : x_i = 0\}$$
$$\mathcal{M}_k = \{x \in \mathbb{R}^n : x_i = x_{i,k} \}$$

$$\begin{cases} &\text{Observe } \mathcal{M}_k = \mathbb{R}^n \bigcap_{i: x_k \in \mathcal{M}_i} (\xi_{k,i} \mathcal{M}_i + (1 - \xi_{k,i}) \mathbb{R}^n) \text{ for } \xi_{k,i} \sim \mathcal{B}(p) \\ &y_k = x_k - \gamma \nabla f(x_k) \\ &z_k = \operatorname{proj}_{\mathcal{M}_k}(& y_k) + \operatorname{proj}_{\mathcal{M}_k}^{\perp}(z_{k-1}) \\ &x_{k+1} = \operatorname{prox}_{\gamma_g}(z_k) \end{cases}$$

> Mixing Identification and Randomized coordinate descent biases gradient convergence issues

Example: Sparse structure and
$$g = \|\cdot\|_1$$

$$C = \{\mathcal{M}_1, \dots, \mathcal{M}_n\} \quad \text{with } \mathcal{M}_i = \{x \in \mathbb{R}^n : x_i = 0\}$$

$$\mathcal{M}_k = \{x \in \mathbb{R}^n : x_i = x_{i,k} \text{for some } i\}$$

$$\begin{cases} & \text{Observe } \mathcal{M}_k = \mathbb{R}^n \bigcap_{i:x_k \in \mathcal{M}_i} \left(\xi_{k,i} \mathcal{M}_i + (1 - \xi_{k,i}) \mathbb{R}^n \right) \text{ for } \xi_{k,i} \sim \mathcal{B}(p) \\ & y_k = x_k - \gamma \nabla f(x_k) \\ & z_k = Q_k^{-1} (\text{proj}_{\mathcal{M}_k}(Q_k y_k) + \text{proj}_{\mathcal{M}_k}^{\perp}(z_{k-1})) \\ & x_{k+1} = \mathbf{prox}_{\gamma g}(z_k) \end{cases}$$

> With $Q_k := (\mathbb{E}\mathrm{proj}_{\mathcal{M}_k})^{-1/2}$, this works after identification but before... no, which prevents identification...

TV-regularized logistic regression:

$$\begin{cases} & \text{Observe } \mathcal{M}_k = \mathbb{R}^n \bigcap_{i: x_\ell \in \mathcal{M}_i} \left(\xi_{k,i} \mathcal{M}_i + (1 - \xi_{k,i}) \mathbb{R}^n \right) \text{ for } \xi_{k,i} \sim \mathcal{B}(p) \\ y_k & = x_k - \gamma \nabla f(x_k) \\ z_k & = Q_k^{-1} (\text{proj}_{\mathcal{M}_k}(Q_k y_k) + \text{proj}_{\mathcal{M}_k}^{\perp}(z_{k-1})) \\ x_{k+1} & = \mathbf{prox}_{\gamma g}(z_k) \\ & \text{Check if an adaptation can be performed, if so } \ell \leftarrow k+1 \end{cases}$$

> Generalized Support adaptation can be performed at *some* iterations depends on the *amount of change* $||Q_kQ_{k+1}^{-1}||$ and *harshness* of the sparsification $\lambda_{\min}(Q_k)$

TV-regularized logistic regression:

TV-reg. logistic regression on a1a (1605 \times 143), 90% final *jump* sparsity

- > Iterate structure enforced by nonsmooth regularizers can be used to adapt the selection probabilities of coordinate descent/sketching;
- > Before identification, adaptation has to be moderate.
- ⊳ Grishchenko, I., & Malick: Proximal Gradient Methods with Adaptive Subspace Sampling, in revision for Mathematics of Operation Research available on my webpage, more details at SMAI MODE

■ INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION

ADAPTIVE SUBSPACE DESCENT

$$\begin{cases} u_{k+1} = y_k - \gamma \nabla f(y_k) \\ x_{k+1} = \mathbf{prox}_{\gamma g}(u_{k+1}) \\ y_{k+1} = x_{k+1} + \underbrace{\alpha_{k+1}(x_{k+1} - x_k)}_{\text{inertia/acceleration}} \end{cases}$$

- $> \alpha_{k+1} \equiv 0$: vanilla Proximal Gradient
- $> \alpha_{k+1} = \frac{k-1}{k+3}$: accelerated Proximal Gradient (aka FISTA)

Optimal rate for composite problems (coefficients may vary a little)

	PG	Accel. PG
$F(x_k) - F^*$	$\mathcal{O}(1/k)$	$\mathcal{O}(1/k^2)$
iterates convergence	yes	yes
monotone functional decrease	yes	no
Fejér-monotone iterates	yes	no

- ♦ Nesterov: A method for solving the convex programming problem with convergence rate O(1/k²). Dokladi A.N. Sssr (1983)
- Beck, Teboulle: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on Imaging Sciences (2009)
- Chambolle, Dossal: On the convergence of the iterates of "FISTA". Journal of Optimization theory and Applications (2015)
- I., Malick: On the Proximal Gradient Algorithm with Alternated Inertia. Journal of Optimization Theory and Applications (2018)

$$\min_{x \in \mathbb{R}^2} ||Ax - b||_2^2 + \lambda g(x)$$

 $g(x) = ||x||_1$ 1-norm regularization

 $g(x) = \max(||x||_{1.3} - 1; 0)$ distance to 1.3-norm unit ball

$$\min_{x \in \mathbb{R}^2} ||Ax - b||_2^2 + \lambda g(x)$$

- > PG identifies well;
- > Accelerated PG explores well, identifies eventually, but erratically.

Can we converge fast **and** identify well?

T is a boolean function of past iterates; decides whether to accelerate or not.

$$\begin{cases} u_{k+1} = y_k - \gamma \nabla f(y_k) \\ x_{k+1} = \mathbf{prox}_{\gamma g}(u_{k+1}) \\ y_{k+1} = \begin{cases} x_{k+1} + \alpha_{k+1}(x_{k+1} - x_k) & \text{if } T = 1 \\ x_{k+1} & \text{if } T = 0 \end{cases}$$

Proposed tests: We use our lookout collection C

$$x_{k+1} \in \mathcal{M} \text{ and } x_k \not\in \mathcal{M}$$

for some $\mathcal{M} \in C$.

en reaching a new one: If this means leaving:
$$x_{k+1} \in \mathcal{M} \text{ and } x_k \notin \mathcal{M} \qquad \mathcal{T}_{\gamma}(x_{k+1}) \in \mathcal{M} \text{ and } \mathcal{T}_{\gamma}(x_{k+1} + \alpha_{k+1}(x_{k+1} - x_k)) \notin \mathcal{M}$$
 some $\mathcal{M} \in \mathsf{C}$.

where $\mathcal{T}_{\gamma} := \mathbf{prox}_{\gamma \sigma}(\cdot - \gamma \nabla f(\cdot))$ is the proximal gradient operator.

For analysis reasons, we allow no acceleration only when

$$\|\mathcal{T}_{\gamma}(y_k) - y_k\|^2 \le \delta \text{ and } F(\mathcal{T}_{\gamma}(y_k)) \le F(x_0).$$

Theorem

Let f,g be two convex functions such that f is L-smooth, g is lower semi-continuous, and f+g is semi-algebraic with a minimizer. Take $\gamma \in (0,1/L]$. Then, the iterates of the proposed methods with test T^1 or T^2 verify

$$F(x_{k+1}) - F^* \le \frac{9\|x_0 - x^*\|^2}{2\gamma(k+2)^2} + \frac{9kR}{2\gamma(k+2)^2} = \mathcal{O}\left(\frac{1}{k}\right)$$

for some R > 0.

Furthermore, if the problem has a unique minimizer x^* and the qualifying constraint (QC) holds, then the iterates sequence (x_k) converges, finite-time identification happens and

$$F(x_{k+1}) - F(x^*) \le \frac{9\|x_0 - x^*\|^2}{2\gamma(k+2)^2} + \frac{9KR}{2\gamma(k+2)^2} = \mathcal{O}\left(\frac{1}{k^2}\right).$$

for some finite K > 0.

L-smooth means that f is differentiable and ∇f is *L*-Lipschitz continuous.

$$\min_{x \in \mathbb{R}^2} ||Ax - b||_2^2 + \lambda ||x||_1$$

$$\min_{x \in \mathbb{R}^2} ||Ax - b||_2^2 + \lambda ||x||_1$$

$$\min_{x \in \mathbb{R}^2} \|Ax - b\|_2^2 + \lambda \max(|x||_{1.3} - 1; 0)$$

$$\min_{x \in \mathbb{R}^2} \|Ax - b\|_2^2 + \lambda \max(|x||_{1.3} - 1; 0)$$

⊕ marks identification time

$$\min_{X \in \mathbb{R}^{20 \times 20}} \|AX - B\|_F^2 + \lambda \|X\|_*$$

- $> S \in R^{20 \times 20}$ is a rank 3 matrix;
- $A \in \mathbb{R}^{(16 \times 16) \times (20 \times 20)}$ is drawn from the normal distribution;
- > B = AS + E with E drawn from the normal distribution with variance .01

iterations

- > acceleration can hurt identification for the proximal gradient algorithm;
- > we proposed a method with stable identification behavior, maintaining an accelerated convergence rate.

▷ Bareilles & I.: On the Interplay between Acceleration and Identification for the Proximal Gradient algorithm. arXiv:1909.08944

Try it in Julia on https://github.com/GillesBareilles/Acceleration-Identification

- > Machine Learning problems often have a *noticeable structure*;
- > We can design a *lookout collection* C = {M₁, ..., M_p} of sets: (i) with easy projections; (ii) identified by proximity operations; (iii) we *know* if these sets are identified or not:
- > This structure can/should be harnessed but may be tricky before identification.

▶ Malick & I.: Nonsmoothness can help! on the Specific Structure of Machine Learning problems, review/pedagogical paper coming hopefully soon thanks to this week at CIRM but it also depends whether we go hiking/running in the calanques which may very well be the case

Thanks to ANR JCJC STROLL & & IDEX UGA IRS DOLL . & PGMO

Thank you! - Franck IUTZELER http://www.iutzeler.org