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>>> Regularization in Learning

Structure Regularization
sparsity r = ‖ · ‖1

anti-sparsity r = ‖ · ‖∞
low rank r = ‖ · ‖∗...

...

Linear inverse problems: for a chosen
regularization, we seek

x? ∈ argmin
x

r(x) such that Ax = b

Regularized Empirical Risk Minimization problem:

Find x? ∈ argmin
x∈Rn

R (x; {ai, bi}m
i=1) + λ r(x)

obtained from chosen
statistical modeling regularization

e.g. Lasso: Find x? ∈ argmin
x∈Rn

∑m
i=1

1
2 (a
>
i x − bi)

2 + λ ‖x‖1

Regularization can improve statistical properties (generalization, stability, ...).

� Tibshirani: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (1996)
� Tibshirani et al.: Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society (2004)
� Vaiter, Peyré, Fadili: Model consistency of partly smooth regularizers. IEEE Trans. on Information Theory (2017)
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>>> Optimization for Machine Learning

Composite minimization

Find x? ∈ argmin
x∈Rn

R (x; {ai, bi}m
i=1) + λ r(x)

Find x? ∈ argmin
x∈Rn

f(x) + g(x)

smooth non-smooth

> f : differentiable surrogate of the empirical risk⇒ Gradient
non-linear smooth function that depends on all the data

> g: non-smooth but chosen regularization⇒ Proximity operator
non-differentiability on some manifolds implies structure on the solutions

proxγg(u) = argminy∈Rn

{
g(y) + 1

2γ ‖y− u‖2
2

} closed form/easy for many regularizations:

– g(x) = ‖x‖1

– g(x) = TV(x)

– g(x) = indicatorC(x)

Natural optimization method: proximal gradient

{
uk+1 = xk − γ∇f(xk)
xk+1 = proxγg(uk+1)

and its stochastic variants: proximal sgd, etc.
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>>> Structure, Non-differentiability, and Proximity operator

Example: LASSO

Find x? ∈ argmin
x∈Rn

R (x; {ai, bi}m
i=1) + λ r(x)

Find x? ∈ argmin
x∈Rn

1
2 ‖Ax − b‖2

2 + λ‖x‖1

smooth non-smooth

Coordinates Structure ↔ Optimality conditions

↔ Proximity operation

∀i x?i = 0 ⇔ A>i (Ax? − b) ∈ [−λ, λ]

⇔
[
proxγλ‖·‖1

(u?)
]

i
= 0

u? = x? − γA>(Ax? − b)

Proximity Operator: per coordinate[
proxγλ‖·‖1

(u)
]

i
=


ui − λγ if ui > λγ
0 if ui ∈ [−λγ;λγ]
ui + λγ if ui < −λγ

Proximal Gradient (aka ISTA):{
uk+1 = xk − γA>(Axk − b)
xk+1 = proxγλ‖·‖1

(uk+1)

−3 −2 −1 1 2 3

−1

1

2

| · |

SoftThresholding

[−1,1]→ {0} per coord.

Iterates (xk) reach the same structure as x? in finite time!
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>>> Mathematical properties of Proximal Algorithms

Proximal Algorithms:{
uk+1 = xk − γ∇f(xk)
xk+1 = proxγg(uk+1)
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Proximal Gradient

g is partly smooth at x relative to
a manifoldM 3 x if:
- g is sharp acrossM
- g is smooth alongM

> project on manifolds

> identify the optimal structure

LetM be a manifold and uk such that

xk = proxγg(uk) ∈M and
uk−xk
γ
∈ ri ∂g(xk)

If g is partly smooth at xk relative toM, then

proxγg(u) ∈M

for any u close to uk.

� Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis
(2004)

� Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured
optimization problems. Optimization (2006)
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x? SoftThresholding

> project on manifolds
> identify the optimal structure

Let (xk) and (uk) be a pair of sequences such that

xk = proxγg(u
k)→ x? = proxγg(u

?)

andM be a manifold. If x? ∈M and

∃ε > 0 such that for all u ∈ B(u?, ε), proxγg(u) ∈M (QC)

holds, then, after some finite but unknown time, xk ∈M.

� Lewis: Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization (2002)
� Fadili, Malick, Peyré: Sensitivity analysis for mirror-stratifiable convex functions. SIAM Journal on Optimization

(2018)
� Bareilles, I.: On the Interplay between Acceleration and Identification for the Proximal Gradient algorithm.

Computational Optimization and Applications (2020)
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>>> “Nonsmoothness can help”

> Nonsmoothness is actively studied in Numerical Optimization...
Subgradients, Partial Smoothness/prox-regularity, Bregman metrics, Error

Bounds/Kurdyka-Łojasiewicz, etc.

> ...but often suffered because of lack of structure/expression.
Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.

> For Machine Learning objectives, it can often be harnessed
- Explicit/“proximable” regularizations `1, nuclear norm

- We know the expressions and activity of sought structures sparsity, rank

� Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis
(2004)

� Lemarechal, Oustry, Sagastizabal: The U-Lagrangian of a convex function. Transactions of the AMS (2000)
� Bolte, Daniilidis, Lewis: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to

subgradient dynamical systems. SIAM Journal on Optimization (2007)
� Chen, Teboulle: A proximal-based decomposition method for convex minimization problems. Mathematical

Programming (1994)
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� Burke, Lewis, Overton: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM

Journal on Optimization (2005)
� Solodov, Svaiter: A hybrid projection-proximal point algorithm. Journal of convex analysis (1999)
� de Oliveira, Sagastizábal: Bundle methods in the XXIst century: A bird’s-eye view. Pesquisa Operacional (2014)

5 / 14



>>> “Nonsmoothness can help”

> Nonsmoothness is actively studied in Numerical Optimization...
Subgradients, Partial Smoothness/prox-regularity, Bregman metrics, Error

Bounds/Kurdyka-Łojasiewicz, etc.

> ...but often suffered because of lack of structure/expression.
Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.

> For Machine Learning objectives, it can often be harnessed
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� Bach, et al.: Optimization with sparsity-inducing penalties. Foundations and Trends in Machine Learning (2012)
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� O’Donoghue, Candes: Adaptive restart for accelerated gradient schemes. Foundations of computational

mathematic (2015)
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>>> Noticeable Structure

Find x? ∈ argmin
x∈Rn

R (x; {ai, bi}m
i=1) + λ r(x)

Find x? ∈ argmin
x∈Rn

f(x) + g(x)

smooth non-smooth

A reason why the nonsmoothness of ML problems can be leveraged is that we
know the expressions and activity of sought structures.

Mathematically, we can design a lookout collection C = {M1, ..,Mp} of closed
sets such that:

(i) we have a projection mapping projMi
ontoMi for all i;

(ii) proxγg(u) is a singleton and can be computed explicitly for any u and γ;

(iii) upon computation of x = proxγg(u), we know if x ∈Mi or not for all i.

⇒ Structure can be directly observed.

Example: Sparse structure and g = ‖ · ‖1, ‖ · ‖0.5
0.5, ‖ · ‖0, ...

C = {M1, . . . ,Mn} withMi = {x ∈ Rn : xi = 0}
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>>> Identification + Structured problems

> Identification of proximal algorithms

⇒ After some finite time, the iterates reach the optimal structure.

> Problems with noticeable strucure

⇒ Structure can be directly observed.

Let’s use the structure progressively uncovered in proximal gradient!

not necessarily close to x?, no explicit or bad dual, when screening methods are difficult to implement

Idea: DefineMk = Rn⋂
i:xk∈Mi

Mi andM? := Rn⋂
i:x?∈Mi

Mi, then:

Mk ⊂ Rn partial identif/screening andMk =M? after some finite time identification

Can we reduce the dimension of the problem on the fly usingMk?
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Proximal Gradient methods with Adaptive Subspace Sampling

Dmitry Grishchenko F. I. Jerôme Malick

PhD student

Univ. Grenoble Alpes
CNRS and LJK

to appear in Mathematics of Operations Research

https://arxiv.org/abs/2004.13356
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>>> Adaptive Proximal Gradient

Disclaimer: We assume that the identified manifolds are linear subspaces eg:

‖Dx‖1 but not separability of g.



ObserveMk = Rn⋂
i:xk∈Mi

(ξk,i

Mi

+ (1− ξk,i)Rn) for ξk,i ∼ B(p)

and compute Pk = EprojMk
and Qk = (Pk)

−1/2sometimes, elseMk =Mk−1

yk =

Qk (

xk − γ∇f(xk)

)

zk =

projMk
(

yk

) + proj⊥Mk
(zk−1)

xk+1 = proxγg(

Q−1
k

zk)

> Vanilla Proximal gradient identifies but does not use it
full gradient computed at each iteration

Example: Sparse structure and g = ‖ · ‖1

C = {M1, . . . ,Mn} withMi = {x ∈ Rn : xi = 0}

Mk = {x ∈ Rn : xi = 0 if xi,k = 0}

for some i}
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> Mixing Identification and Randomized “coordinate” descent biases
convergence issues

Example: Sparse structure and g = ‖ · ‖1
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> Unbiasing with Qk = (EprojMk
)−1/2 works after identification

but before... no, which prevents identification...
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>>> Adaptive Proximal Gradient
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ObserveMk = Rn⋂
i:x`∈Mi

(ξk,iMi + (1− ξk,i)Rn) for ξk,i ∼ B(p)

and compute Pk = EprojMk
and Qk = (Pk)

−1/2sometimes, elseMk =Mk−1

yk = Qk (xk − γ∇f(xk))

zk = projMk
(yk) + proj⊥Mk

(zk−1)

xk+1 = proxγg(Q
−1
k zk)

> Structure adaptation can be performed at some iterations
depends on the amount of change ‖Qk−1Q−1

k ‖ and harshness of the sparsification λmin(Qk)
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>>> Theory I: Non-adaptive case



Mk = Rn⋂
i(ξk,iMi + (1− ξk,i)Rn) for ξk,i ∼ B(p)(iid)

Compute (once) P = EprojMk
and Q = (P)−1/2

yk = Q (xk − γ∇f(xk))

zk = projMk
(yk) + proj⊥Mk

(zk−1)

xk+1 = proxγg(Q
−1zk)

Theorem Let f be L-smooth and µ-strongly convex and g be convex, lsc. Take any
γ ∈ (0, 2/(µ+ L)]. Then, the sequence (xk) converges almost surely to the
minimizer x? of f + g and

E[‖xk − x?‖2] ≤
(

1− λmin(P)
2γµL
µ+ L

)k

C

Proof. Let z? = y? = Q(x? − γ∇f(x?)),

E[‖xk+1 − x?‖2|Fk−1] ≤ E[‖zk − z?‖2
P|Fk−1]

≤ E[‖zk − z?‖2|Fk−1]

≤ ‖zk−1 − z?‖2 + E[‖yk − y?‖2
P|Fk−1]− ‖zk−1 − z?‖2

P

≤
(

1− λmin(P)
2γµL
µ+ L

)
‖zk−1 − z?‖2
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>>> Theory II: Adaptive case



if adaptation, `← `+ 1, xbase ← xk−c`
(upd. space changes, Mk = Rn⋂

i:xbase
i =0(ξk,iMi + (1− ξk,i)Rn) for ξk,i ∼ B(p)(iid)

but same dist. whithin) Compute (at each adapt.) P` = EprojM`
and Q` = (P`)−1/2

yk = Q` (xk − γ∇f(xk))

zk = projMk
(yk) + proj⊥Mk

(zk−1)

xk+1 = proxγg(Q
−1
` zk)

Theorem Let f be L-smooth and µ-strongly convex and g be convex, lsc. Take any
γ ∈ (0, 2/(µ+ L)]. Consider the following adaptation strategy:

1) If the structure of xk changes, choose a new sampling xk → xbase, λmin(P`) ≥ λ

2) Compute c` so that ‖Q`Q−1
`−1‖

2
(

1− λmin(P`−1)
2γµL
µ+L

)c`
≤
(

1− λ γµL
µ+L

)
3) Apply the new sampling after c` iterations

Then, the sequence (xk) converges almost surely to the minimizer x? of f + g and

E[‖xk − x?‖2] ≤
(

1− λ γµL
µ+ L

)`
C

where ` is the number of adaptations before k.
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>>> Theory II+: Adaptive case w/ identification



if adaptation, `← `+ 1, xbase ← xk−c`
(upd. space changes, Mk = Rn⋂

i:xbase
i =0(ξk,iMi + (1− ξk,i)Rn) for ξk,i ∼ B(p)(iid)

but same dist. whithin) Compute (at each adapt.) P` = EprojM`
and Q` = (P`)−1/2

yk = Q` (xk − γ∇f(xk))

zk = projMk
(yk) + proj⊥Mk

(zk−1)

xk+1 = proxγg(Q
−1
` zk)

1) If the structure of xk changes, choose a new sampling xk → xbase, λmin(P`) ≥ λ
2) Compute c` so that ‖Q`Q−1

`−1‖
2
(

1− λmin(P`−1)
2γµL
µ+L

)c` ≤
(

1− λ γµL
µ+L

)
3) Apply the new sampling after c` iterations

We “compensate” as along as the structure changes

Theorem Under the same assumptions as before + (QC), the rate improves to

E[‖xk − x?‖2] ≤
(

1− λmin(P?)
2γµL
µ+ L

)k

C

linear in iterations (not adapt.) with a rate depending on the final structure.
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>>> Adaptive Subspace descent

TV-reg. logistic regression on a1a (1605× 143), 90% final jump sparsity
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> Iterate structure enforced by nonsmooth regularizers can be used to
adapt the selection probabilities of coordinate descent/sketching;

> Before identification, adaptation has to be moderate;

> The cost of adaption may be big (in iterations and computation) but this
can be mitigated in many practical cases.
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>>> Harnessing Structure in Optimization for ML

> Machine Learning problems often have a noticeable structure;

> We can design a lookout collection C = {M1, ..,Mp} of sets: (i) with easy
projections; (ii) identified by proximity operations; (iii) we know if these
sets are identified or not;

> This structure can/should be harnessed but may be tricky before
identification.

. Malick & I.: Nonsmoothness in Machine Learning: specific structure,proximal
identification, and applications, review/pedagogical paper coming hopefully soon

Thanks to ANR JCJC STROLL & IDEX UGA IRS DOLL & PGMO

Thank you! – Franck IUTZELER http://www.iutzeler.org
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