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>>> Regularization in Learning

Struct.ure Regularization Linear inverse problems: for a chosen
Spal’Slty. r=1-lh regularization, we seek

anti-sparsity i = H . Hao *
- =1 X" € arg mxin r(x) such that Ax = b

Regularized Empirical Risk Minimization problem:

Find x*EarggEl%Rrr} R (x;{ai, bi}it,) + A r(x)

obtained from chosen
statistical modeling regularization

i

e.g. Lasso: Find X% € arg)l{relg} Shota x—b)® + A

Regularization can improve statistical properties (generalization, stability, ...).
¢ Tibshirani: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (1996)

¢ Tibshirani et al.: Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society (2004)
< Vaiter, Peyré, Fadili: Model consistency of partly smooth regularizers. IEEE Trans. on Information Theory (2017)
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>>> Optimization for Machine Learning

Composite minimization

Find x*eargm%Rn R (e {ai,bitit;) + Ar(x)
xeR?
Find x* € arg m]iRn fx) + gl
x€RM

smooth non-smooth

> f: differentiable surrogate of the empirical risk = Gradient
non-linear smooth function that depends on all the data
> g: non-smooth but chosen regularization = Proximity operator
non-differentiability on some manifolds implies structure on the solutions
closed form/easy for many regularizations:
-8(x) = [Ix|
-8(x) =TV(x)

- g(x) = indicatorc(x)

prox_, (u) = argminyexn {g(y) + 2 y — ul3}

Natural optimization method: proximal gradient

U1 = Xk — 7V (xx)
X1 = prox'yg(uk+1)

and its stochastic variants: proximal sgd, etc.
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>>> Structure, Non-differentiability, and Proximity operator

Example: LASSO

Find X" € arg m'%n R (x;{ai,bi}it,) + Ar(x)
x€R
. o . 1 _ 2
Find x € arg min s 1Ax —=bll; +  Allx|l:

smooth non-smooth

Coordinates ~ Structure <>  Optimality conditions
vi  xf=0 & Al (A" —b) e[\

Proximity Operator: per coordinate

u—Xy ifu> Xy 1.
[proxwwl(u)]i =< 0 %fui € [=Ay;A7] 2
ui+ Ay ifu <=My

Proximal Gradient (aka ISTA):

{ Uk+1 = Xk — ’YAT (Axk — b)
Xier1 = PrOX. 1, (Ui1)

t> {0} per coord.
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>>> Structure, Non-differentiability, and Proximity operator

Example: LASSO

Find x* € argmin R (x; {a;,bi},) + X r(x)
xeR
Find x* € argmin 1lAx —bl; + Alxlh
xXERN
smooth non-smooth
Coordinates ~ Structure <>  Optimality conditions Proximity operation

¢ 2

AT(Ax* —b) € [-A, )] [proxw,ul(u*)]i =0

u* =x* —HA" (Ax* —b)

vi xf=0 &

2 N ANEAN
)
1.5 < \
w-Xy  ifui> Ay ~
[pmxﬂu H‘(u)] :{ 0 ifu € [~A\y: M) kA
! w+ Xy ifu< =Xy 1 N|
Proximal Gradient (aka ISTA): 05 i N
{ Uis1 =X — YA (Axi — D) ®
Xier1 = Prox, ., (Ues1)
3,
—0.5+H9> < N
5 75 B -,
LR
1L 1 |
-1 0 1 2

ItEI ates Xk ]each the same structure as x™ 1n ﬁIllte tlllle'.
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>>> Mathematical properties of Proximal Algorithms

Proximal Algorithms: g is partly smooth at x relative to

a manifold M > x if:
- g is sharp across M

{ U1 = Xk — ¥V (k)
- g is smooth along M

Xicp1 = PrOX.,(U1)

> project on manifolds

Let M be a manifold and uy, such that
X = ProxX..(ux) € M and @ € ri dg(xy)
If g is partly smooth at x; relative to M, then
prox . (u) € M
for any u close to uy.
o I(lezggagqewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis

¢ Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured
optimization problems. Optimization (2006)
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>>> Mathematical properties of Proximal Algorithms

ol R % x> : (f)

Proximal Algorithms: 1 & FRRY S /S S

Uepr = Xk — YVF(xe) 05 13 4 N :
{ oy =pkr0xwg(uk+f) 0\ 2 \

> project on manifolds

> identify the optimal structure
Let (x) and (ux) be a pair of sequences such that

gy = prox,yg(uk) — X* = prox,.(u*)
and M be a manifold. If x* € M and
Je > O such that for allu € B(u*,¢), prox,(u) € M (QQC)

holds, then, after some finite but unknown time, x; € M.

& Lewis: Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization (2002)
¢ Fadili, Malick, Peyré: Sensitivity analysis for mirror-stratifiable convex functions. SIAM Journal on Optimization
(2018)
¢ Bareilles, I.: On the Interplay between Acceleration and Identification for the Proximal Gradient algorithm.
Computational Optimization and Applications (2020)
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>>> “Nonsmoothness can help”

> Nonsmoothness is actively studied in Numerical Optimization...
Subgradients, Partial Smoothness/prox-regularity, Bregman metrics, Error

Bounds/Kurdyka-Lojasiewicz, etc.

& Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis
(2004)

& Lemarechal, Oustry, Sagastizabal: The U-Lagrangian of a convex function. Transactions of the AMS (2000)

¢ Bolte, Daniilidis, Lewis: The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to
subgradient dynamical systems. SIAM Journal on Optimization (2007)

¢ Chen, Teboulle: A proximal-based decomposition method for convex minimization problems. Mathematical
Programming (1994)
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>>> “Nonsmoothness can help”

> Nonsmoothness is actively studied in Numerical Optimization...
Subgradients, Partial Smoothness/prox-regularity, Bregman metrics, Error

Bounds/Kurdyka-Lojasiewicz, etc.

> ...but often suffered because of lack of structure/expression.
Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.

& Nesterov: Smooth minimization of non-smooth functions. Mathematical Programming (2005)

¢ Burke, Lewis, Overton: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM
Journal on Optimization (2005)

< Solodov, Svaiter: A hybrid projection-proximal point algorithm. Journal of convex analysis (1999)

¢ de Oliveira, Sagastizabal: Bundle methods in the XXIst century: A bird’s-eye view. Pesquisa Operacional (2014)
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>>> “Nonsmoothness can help”

> Nonsmoothness is actively studied in Numerical Optimization...
Subgradients, Partial Smoothness/prox-regularity, Bregman metrics, Error

Bounds/Kurdyka-Lojasiewicz, etc.

> ...but often suffered because of lack of structure/expression.
Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.
> For Machine Learning objectives, it can often be harnessed

- Explicit/“proximable” regularizations ¢;, nuclear norm
- We know the expressions and activity of sought structures sparsity, rank

< Bach, et al.: Optimization with sparsity-inducing penalties. Foundations and Trends in Machine Learning (2012)

& Massias, Salmon, Gramfort: Celer: a fast solver for the lasso with dual extrapolation. ICML (2018)

¢ Liang, Fadili, Peyré: Local linear convergence of forward-backward under partial smoothness. NeurIPS (2014)

& O’Donoghue, Candes: Adaptive restart for accelerated gradient schemes. Foundations of computational
mathematic (2015)
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>>> Noticeable Structure

Find X" € arg m%Rn R(x;{ai, bitiny) + A r(x)
xERM
Find x* € arg Hel%g flo) + g

smooth non-smooth

A reason why the nonsmoothness of ML problems can be leveraged is that we
know the expressions and activity of sought structures.

Mathematically, we can design a lookout collection C = { M, .., M, } of closed
sets such that:

(1) we have a projection mapping proj ,, onto M; for all i;

(i) prox ,(u) is a singleton and can be computed explicitly for any u and ;
(iii) upon computation of x = proxwg(u), we know if x € M; or not for all i.
= Structure can be directly observed.

Example: Sparse structure and g = || - [|1, || - I3:2, 1| - llo, ---

CI{Ml,...,Mn} WithMiZ{XGRn:XiZO}
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>>> Identification + Structured problems

> Identification of proximal algorithms

= After some finite time, the iterates reach the optimal structure.

> Problems with noticeable strucure
= Structure can be directly observed.

Let’s use the structure progressively uncovered in proximal gradient!

not necessarily close to x*, no explicit or bad dual, when screening methods are difficult to implement
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>>> Identification + Structured problems

> Identification of proximal algorithms

= After some finite time, the iterates reach the optimal structure.

> Problems with noticeable strucure
= Structure can be directly observed.

Let’s use the structure progressively uncovered in proximal gradient!

not necessarily close to x*, no explicit or bad dual, when screening methods are difficult to implement

Idea: Define My =R" (N, crq, Mi and M* := R (. ¢ o, M, then:

My C R" partial identif/screening and My = M™* after some finite time identification

Can we reduce the dimension of the problem on the fly using M;?
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Proximal Gradient methods with Adaptive Subspace Sampling
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https://arxiv.org/abs/2004.13356
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>>> Adaptive Proximal Gradient

Disclaimer: We assume that the identified manifolds are linear subspaces eg:
IDx||; but not separability of g.

Ye = X —7Vflx)
2 = Yk
Xer1 = Prox ()

> Vanilla Proximal gradient identifies but does not use it
full gradient computed at each iteration

Example: Sparse structure and g = || - ||1

C={My,...,. My} withM; ={xeR":x; =0}
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>>> Adaptive Proximal Gradient

Disclaimer: We assume that the identified manifolds are linear subspaces eg:
IDx||; but not separability of g.

Observe M =R"(; cn, M

Ye = Xe—7Vf()
% = Proj g, (V) + Projiy, (k1)
Xer1 = Prox ()

> Direct Use of Identification may not converge
eg: starting with 0

Example: Sparse structure and g = || - ||1

C={My,...,.Mp} with M; ={x e R":x; =0}
Mk:{XGRn:xiZOifxi,kZO}
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>>> Adaptive Proximal Gradient

Disclaimer: We assume that the identified manifolds are linear subspaces eg:
IDx||; but not separability of g.

Observe M; = R" ﬂi:xkeMi (&eiMi + (1 — &,)R") for & ~ B(p)

Yo = X —7Vf(x)
% = Proju, () + Projky, (z1)
Xer1 = Prox ()

> Mixing Identification and Randomized “coordinate” descent biases

convergenceissues

Example: Sparse structure and g = || - ||1

C={My,...,.Mp} with M; ={x e R":x; =0}
M ={xeR":x; =0ifx;, =0 for some i}
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>>> Adaptive Proximal Gradient

Disclaimer: We assume that the identified manifolds are linear subspaces eg:
|IDx||; but not separability of g.

Observe Mi = R" (N, c pq, (§kiMi + (1 — &,i)R") for &k ~ B(p)
and compute Py = Eproj,, and Qx = (Py)~1/2
Ve = QO — vVf ()

2 = Proj g, (k) + Projay, (2-1)

Xey1 = Prox ,(Q 'z

> Unbiasing with Q; = (Eproj Mk)‘l/ 2 works after identification
but before... no, which prevents identification...

Suboptimality

101
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Iteration e

0o 02 o4 o6 08 1
Iteration o
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>>> Adaptive Proximal Gradient

Disclaimer: We assume that the identified manifolds are linear subspaces eg:
|IDx||; but not separability of g.

Observe Mi = R" (., c aq, (§iMi + (1 — &,i)R") for & ~ B(p)

and compute P, = Eproj,, and Qc = (Pr) "/ 2sometimes, else My = Mjy_;
Y = Qi (a —yVf(x))
% = Proj, (k) + Projiy, (#x-1)

Xey1 = Prox ,(Q; Y20

> Structure adaptation can be performed at some iterations
depends on the amount of change ||Qx_1 Q;l || and harshness of the sparsification Amin (Qk)

Suboptimality

0 02 o4 06 08 1 12 14 0 0z 04 06 08 1 12 14
Iteration o Iteration 1
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>>> Theory I: Non-adaptive case

My =R (& iMi + (1 — &, )R?) for & ; ~ B(p)(iid)
Compute (once) P = Eproj,, and Q = (p)—1/2
Yk = Q0 —yVflx))
Z = Projrg, O) + Projiy, (k1)
Xep1 = Prox., (Q'z)
Theorem Let f be L-smooth and p-strongly convex and g be convex, Isc. Take any

v € (0,2/(u + L)]. Then, the sequence (xi) converges almost surely to the
minimizer x* of f + g and

(|2 2yuL \*
Ell— 1 < (1= dun(®) 225 ) €
Proof. Let z* =y* = Q(x* — vVf(x*)),
E[|x1 — x**[Fie—1] < Elllex — 2* 13| Fie—1]
< Ef||zx — 2*|1?|Fe—1]
< lzk—1 — 2* 1> + B[k — y* 131 Fi—1] — llze—1 — 2*1I3

2yl
< (1 - Ammw)j—“) [P
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>>> Theory II: Adaptive case

if adaptation, £« €+ 1,xb%¢ < x_,
(upd. space changes, Mj; =R" ﬂl xbase o(fk 1M1 (1 — &.)R) for & ; ~ B(p)(iid)

but same dist. whithin) ~ Compute (at each adapt.) P, = Eproj,, and Q; = (Py)~1/2
Y = Qe —vVf(xx))

Z = proju, (k) + Projh, (zk_1)

=il
Xkr1 = Prox.,(Q, “z)

Theorem Let f be L-smooth and p-strongly convex and g be convex, Isc. Take any
v € (0,2/(u + L)]. Consider the following adaptation strategy:

1) If the structure of ;. changes, choose a new sampling x; — X*®¢, Ain(Pz) > A
2) Compute c; so that |Q.Q; || (1 — Amin (Pe— 1)27fLL) < ( AZiLL)
3) Apply the new sampling after c, iterations

Then, the sequence (xy) converges almost surely to the minimizer x* of f + g and

¥4
L

Ef|jg — x*[|7] < 17/\%>C
o= < (1= A2

where £ is the number of adaptations before k.
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>>> Theory II'": Adaptive case w/ identification

if adaptation, £« €+ 1,x0%¢ < x_,
(upd. space changes, M; =R" ﬂl xbase — O(Ek lM + (1 — &)R") for & ; ~ B(p)(iid)

but same dist. whithin) ~Compute (at each adapt.) P, = Eproj,, and Q; = (P¢)~1/2
Yk = Qe (% —vVf(xx))
2 = Proj g, (Vk) + Projiy, (2-1)

1
Xkr1 = Prox..(Q, “z)

1) If the structure of x; changes, choose a new sampling x; — xP%¢, A0 (Pg) > A
— Ce

2) Compute c, so that ||Q1_;Q£_11||2 (1 = )\mm(Pg_l)ZJT“LL) < (1 = )\Z—fi)

3) Apply the new sampling after c, iterations

We “compensate” as along as the structure changes
Theorem Under the same assumptions as before + (QC), the rate improves to
2yuL \
Bl —x' I < (1= Amn(P) 222 ) ¢
u+L

linear in iterations (not adapt.) with a rate depending on the final structure.
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>>> Adaptive Subspace descent

TV-reg. logistic regression on ala (1605 x 143), 90%

Ierate density

final jump sparsity

-
—o— 20%w/o identif

e 100 RPSD

o 200 RESD
S 50% ARPSD.

Suboptimality

o

el

10-% 4

e 5005 RPSD

Suboptimality

10

e

—
o 1056 RPSD
2o 2056 RPSD

o 50% ARPSD

—e— 20% w0 dentit

0 1,000 2,000

Ireration

3,000 4,000

107!

1,000

2,000

Iteration

3,000

4,000

Number of Subspaces explored 10°

> Iterate structure enforced by nonsmooth regularizers can be used to
adapt the selection probabilities of coordinate descent/sketching;

> Before identification, adaptation has to be moderate;

> The cost of adaption may be big (in iterations and computation) but this

can be mitigated in many practical cases.
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>>> Harnessing Structure in Optimization for ML

> Machine Learning problems often have a noticeable structure;

> We can design a lookout collection C = { My, .., M,} of sets: (i) with easy
projections; (ii) identified by proximity operations; (iii) we know if these
sets are identified or not;

> This structure can/should be harnessed but may be tricky before
identification.

> Malick & I.: Nonsmoothness in Machine Learning: specific structure,proximal
identification, and applications, review/pedagogical paper coming hopefully soon

1o

Thanks to ANR JCJC STROLL @ & IDEX UGA IRS DOLL @%ﬂi{ﬁv‘i’ & PGMO ‘Fguo’

Thank you! - Franck IUTZELER http://www.iutzeler.org
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