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>>> Regularization in Learning

Struct.ure Regularization Linear inverse problems: for a chosen
Spal’Slty. r=1-lh regularization, we seek

anti-sparsity i = H . Hao *
- =1 X" € arg mxin r(x) such that Ax = b

Regularized Empirical Risk Minimization problem:

Find x*EarggEl%Rrr} R (x;{ai, bi}it,) + A r(x)

obtained from chosen
statistical modeling regularization

i

e.g. Lasso: Find X% € arg)l{relg} Shota x—b)® + A

Regularization can improve statistical properties (generalization, stability, ...).
¢ Tibshirani: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (1996)

¢ Tibshirani et al.: Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society (2004)
< Vaiter, Peyré, Fadili: Model consistency of partly smooth regularizers. IEEE Trans. on Information Theory (2017)
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>>> Optimization for Machine Learning

Composite minimization

Find x*eargm%Rn R (e {ai,bitit;) + Ar(x)
xeR?
Find x* € arg m]iRn fx) + gl
x€RM

smooth non-smooth

> f: differentiable surrogate of the empirical risk = Gradient
non-linear smooth function that depends on all the data
> g: non-smooth but chosen regularization = Proximity operator
non-differentiability on some manifolds implies structure on the solutions
closed form/easy for many regularizations:
-8(x) = [Ix|
-8(x) =TV(x)

- g(x) = indicatorc(x)

prox_, (u) = argminyexn {g(y) + 2 y — ul3}

Natural optimization method: proximal gradient

U1 = Xk — 7V (xx)
X1 = prox'yg(uk+1)

and its stochastic variants: proximal sgd, etc.
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>>> Structure, Non-differentiability, and Proximity operator

Example: LASSO

Find X" € arg m'%n R (x;{ai,bi}it,) + Ar(x)
x€ER
. o . 1 _ 2
Find x € arg min s 1Ax —=bll; +  Allx|l:

smooth non-smooth

Coordinates ~ Structure <>  Optimality conditions
vi  xf=0 & Al (A" —b) e[\

Proximity Operator: per coordinate

u—Xy ifu> Xy Il
[proxwwl(u)]i =< 0 %fui € [=Ay;A7] 2
ui+ Ay ifu <=My

Proximal Gradient (aka ISTA):

{ Uk+1 = Xk — ’YAT (Axk — b)
Xier1 = PrOX. 1, (Ui1)

t> {0} per coord.
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>>> Structure, Non-differentiability, and Proximity operator

Example: LASSO

Find x* € argmin R (x; {a;,bi},) + X r(x)
xeR
Find x* € argmin 1lAx —bl; + Alxlh
xXERN
smooth non-smooth
Coordinates ~ Structure <>  Optimality conditions Proximity operation

¢ 2

AT(Ax* —b) € [-A, )] [proxw,ul(u*)]i =0

u* =x* —HA" (Ax* —b)

vi xf=0 &

2 N ANERN
oo
150 g \
WAy ifui> Ny ~
[pmxﬂu H‘(u)] :{ 0 ifu € [~A\y: M) kA
‘ wi+ Ay ifw < =Xy 10 -
Proximal Gradient (aka ISTA): 05 i N
{ Uy = X — AT (Axi — b) o
Xey1 = PIOX, y . (Uir1)
.?4
—0.519> N
5 75 B -,
L
1Ll | !
-1 0 1 2

ItEI ates Xk ]each the same structure as x™ 1n ﬁIllte tlllle'.
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>>> Mathematical properties of Proximal Algorithms

15 \, N\

T
B

Proximal Algorithms:

e

Upey1 = Xk — Y Vf(xk) I =
Xicp1 = ProX., (U+1) R

> project on manifolds

Let M be a manifold and u* such that
X* = prox.,(u*) € M and i ;x* € ri 0g(x*)

If g is partly smooth at x* relative to M*, then
prox . (u) € M*

for any u close to u*.

& Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis
(2004)

¢ Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured
optimization problems. Optimization (2006)
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>>> Mathematical properties of Proximal Algorithms

Proximal Algorithms:

Ukt = Xk — ¥V (k)
Xicp1 = PrOX. o (U1)

> project on manifolds

> identify the optimal structure

Let (x;) and (uy) be a pair of sequences such that
X = prox,yg(uk) — X* = prox,(u*)
and M be a manifold. If x* € M and “structure is stable under small perturbation of the data”
Je > O such that for allu € B(u*, ¢), prox,,(u) € M QO

holds, then, after some finite but unknown time, x; € M.

& Lewis: Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization (2002)
¢ Fadili, Malick, Peyré: Sensitivity analysis for mirror-stratifiable convex functions. SIAM Journal on Optimization
(2018)
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>>> “Nonsmoothness can help”

o>

> Nonsmoothness is actively studied in Numerical Optimization...

Subgradients, Partial Smoothness/prox-regularity, Bregman geometry, etc.

Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. J. of Conv. Analysis (2004)
Lemarechal, Oustry, Sagastizabal: The U-Lagrangian of a convex function. Trans. of the AMS (2000)

Bolte, Daniilidis, Lewis: The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to
subgradient dynamical systems. SIAM J. on Optim. (2007)

Chen, Teboulle: A proximal-based decomposition method for convex minimization problems. Math. Prog. (1994)
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>>> “Nonsmoothness can help”

> Nonsmoothness is actively studied in Numerical Optimization...

Subgradients, Partial Smoothness/prox-regularity, Bregman geometry, etc.

> ...but often suffered because of lack of structure/expression.

Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.

¢ Nesterov: Smooth minimization of non-smooth functions. Mathematical Programming (2005)

© Burke, Lewis, Overton: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. on
Optim. (2005)

¢ Solodoyv, Svaiter: A hybrid projection-proximal point algorithm. J. of Conv. Analysis (1999)

¢ de Oliveira, Sagastizabal: Bundle methods in the XXIst century: A bird’s-eye view. Pesquisa Operacional (2014)
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>>> “Nonsmoothness can help”

> Nonsmoothness is actively studied in Numerical Optimization...
Subgradients, Partial Smoothness/prox-regularity, Bregman geometry, etc.

> ...but often suffered because of lack of structure/expression.

Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.

> For Machine Learning objectives, it can often be harnessed

Feature selection, Screening, Faster rates, etc.

Bach, et al.: Optimization with sparsity-inducing penalties. FnT in Machine Learning (2012)

Massias, Salmon, Gramfort: Celer: a fast solver for the lasso with dual extrapolation. ICML (2018)

Liang, Fadili, Peyré: Local linear convergence of forward-backward under partial smoothness. NeurIPS (2014)
O’Donoghue, Candes: Adaptive restart for accelerated gradient schemes. Foundations of Comp. Math. (2015)
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>>> “Nonsmoothness can help”

> Nonsmoothness is actively studied in Numerical Optimization...
Subgradients, Partial Smoothness/prox-regularity, Bregman geometry, etc.
> ...but often suffered because of lack of structure/expression.
Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.
> For Machine Learning objectives, it can often be harnessed
Feature selection, Screening, Faster rates, etc.
> Why?
- Explicit/“proximable” regularizations ¢, nuclear norm
- We know the expressions and activity of sought structures sparsity, rank
- Any converging proximal algorithm will identify the optimal structure
of the problem.

> . & Malick: Nonsmoothness in Machine Learning: specific structure, proximal
identification, and applications, review/pedagogical paper to appear in Set-Valued
and Variational Analysis, https://arxiv.org/abs/2010.00848

Thanks to the Optimization for Machine Learning week at CIRM in March 2020!
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>>> Question

Let us solve a Regularized ERM problem with a proximal algorithm
U1 = Update (f; {x¢ bo<k; {te}e<i; )
Xet1 = ProX,g(uet1)

with x; = prox_,(ux) — x* = prox_,(u*)

> The proximity operator gives a current structure My C R"
partial identif/screening

> We know that eventually My = M™* after some finite time
identification

1- Does faster minimization means faster identification ?
2- Can we efficiently restrict our update to M;?

Example: Sparse structure and g = || - ||1.

M* represents the points with the same support as x* (ie. non-selected features are put to zero).

My = {x € R" : x; = x; x } is the current structure (same support as xi).
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B  INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION

ADAPTIVE COORDINATE DESCENT

QUICK PEEK 1: DISTRIBUTED LEARNING

QUICK PEEK 2: PREDICTOR-CORRECTOR METHODS



>>> Acceleration of the Proximal Gradient ACCELERATION VS IDENTIF

Urt1 =Yk — YVf (k)

X1 = PrOX_,(Uk+1)

Vi1 = X1 + Qi1 (er1 — Xx)
—————

inertia/acceleration

> agy+1 = 0 : vanilla Proximal Gradient
> g1 = ’;1—; : accelerated Proximal Gradient (aka FISTA)

Optimal rate for composite problems (coefficients may vary a little)

| PG Accel. PG

F(xx) —F* | O(1/k) 0O(1/k%)
iterates convergence yes yes
monotone functional decrease yes no
Fejér-monotone iterates yes no

& Nesterov: A method for solving the convex programming problem with convergence rate O(1/k?). Sov. Dok.
(1983)

& Beck, Teboulle: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. on Imag.
Sci. (2009)

& Chambolle, Dossal: On the convergence of the iterates of “FISTA”. J. of Optim. Theory and App. (2015)
¢ 1., Malick: On the Proximal Gradient Algorithm with Alternated Inertia. J. of Optim. Theory and App. (2018)

7/25



>>> Interplay between Acceleration and Identification = ACCELERATION VS IDENTIF

min [|Ax — b||3 + Ar(x)
x€R2

=

T K

—e— Proximal Gradient |7

<

—0.5 9>

7

0.28— 61 - .
\ —«— Proximal Gradient |-
0.2

Q%
125
34 0 . 028 A
i | I o5l g I i
0 1 2 —-1.5 -1 —0.5 0 0.5
r(x) = [lxlh r(x) = max(|lx|l1.3 — 1;0)

1-norm regularization

distance to 1.3-norm unit ball
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>>> Interplay between Acceleration and Identification = ACCELERATION VS IDENTIF

min [|Ax — b||3 + Ar(x)
x€R2

2 T T K 15 T V.96 7T 254
—— Proximal Gradient

] —s— Proximal Gradient
151 —+— Accelerated Proximal Gradient |, —— Accelerated Proximal Gradient

—0.5 :
52 o9 o056 |
Y Lo | !
—1.5 -1 —0.5 0 0.5
r(x) = lxllx r(x) = max(|lx|1.s — 1;0)
1-norm regularization distance to 1.3-norm unit ball

> PG identifies well;
> Accelerated PG explores well, identifies eventually, but erratically.

Can we converge fast and identify well?
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>>> A test-based algorithm ACCELERATION VS IDENTIF

T is a boolean function of past iterates; decides whether to accelerate or not.

Urt1 =Yk — YVf (k)
X1 = ProxX.  (Uk+1)

| X kO —x)  ifT=1
1= xe if T =0

Proposed tests:
We pre-define a collection C = {M, .., M, } of sought structures

1. No Acceleration i.e. T! =0 2. No Acceleration i.e. T2 =0
when a new pattern is reached: if this means getting less structure:

Xk+1 € M and x ¢ M Ty (xx1) € M and 75 (k1 + 1 (k1 — Xk)) € M

for some structure M € C. for some M € C.

where 7, := proxvg(- — v Vf(+)) is the proximal gradient operator.

Examples of sought structures: sparsity supports, rank.
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>>> Convergence result ACCELERATION VS IDENTIF

Theorem

Let f, g be two convex functions such that f is L-smooth, g is lower semi-continuous, and f + g is
semi-algebraic with a minimizer. Take v € (0,1/L]. Then, the iterates of the proposed
methods with test T* or T2 satisfy

F(xg1) —F =0 (%)

for some R > 0.

Furthermore, if the problem has a unique minimizer x* and the qualifying
constraint (QC) holds, then the iterates sequence (xi) converges, finite-time
identification happens and

F(Xep1) — F(x") = O (klz) .

L-smooth means that f is differentiable and Vf is L-Lipschitz continuous.
Je > O such that for allu € B(x* — yVf(x*), ), prox_,(u) € M* (QC)
For the ¢; norm, this means this means —V; f(x*) € (—X; ).
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>>> Back to initial problems: /; norm

min [|Ax — b||2 + Allx|h
xER2

1

T T | N

- y =
—e— Proximal Gradient

—+— Accelerated Proximal Gradient ||

—0.5

o

ACCELERATION VS IDENTIF

11/25



>>> Back to initial problems: /; norm

ACCELERATION VS IDENTIF

min [|Ax — b||2 + Allx|h
xER2

2 T T R 1 —1
Proximal Gradient Proximal Gradient
—.— 3 i
roxima macken ) 10 Accel. Proximal Gradient
—+— Accelerated Proximal Gradient |
LB - -~ Prov. Alg-T
——T! N
Prov. Alg - T
3 ——T 102
*
11 X x
129
I
5 = —7
0.5 i< £ 10
\ [
B v
0 A = o 10-12
0.5+ %
—0. ;&> N . .
| 5 10~ I I I I
N 1 ‘ ‘ 50 100 150 200
71—1 0 1 2 3 4 number of proximal gradient steps

@ marks identification time

11/25



>>> Back to initial problems: distance to 1.3-norm ball ACCELERATION VS IDENTIF

min [|[Ax — b||3 + Amax(|x||1.3 — 1;0)
XER2

15 T .56 T 129

—e— Proximal Gradient
—+— Accelerated Proximal Gradient
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>>> Back to initial problems: distance to 1.3-norm ball ACCELERATION VS IDENTIF

min [|[Ax — b||3 + Amax(|x||1.3 — 1;0)
XER2

56 T Ve

; 10 T T =]
Proximal Gradient

—e— Proximal Gradient
—=+— Accelerated Proximal Gradient
e !

Accel. Proximal Gradient
~~ - Prov. Alg-T!
Prov. Alg - T?

T2 10-3 |-

10-8 |-

Flx) — F*

10-13 |

10-18 [ B

number of proximal gradient steps

@ marks identification time
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>>> Matrix regression with nuclear-norm regularization ACCELERATION VS IDENTIF

min_||AX — B||2 + A||X]|

XG]RZOXZO
> S € R%*20 i a3 rank 3 matrix;
> A € R(16x16)x(20x20) 5 drawn from the normal distribution;
> B = AS + E with E drawn from the normal distribution with variance .01

<

R 100 47— 5

g Proximal Gradient |- 10° 100

—~ 80 Accel. Proximal Gradient |-

£ 80

5 =

M 60 -107° X

E 6 k
) -
= ~ 10-6 40 &
S 10 =
T 20

M 20

E oLl I I | 10~

o 0-10° 1.10* 2. 10* 3.10* 0

I

i 100 ————— A 100 51— S

) 10° 100

& 8 50

k] :

X 60 -107° 60 103 B
g |

= 40 =
1~ 107 10-6 =
T 20

3 20

M

E 0 - > ! L On 0 | | | L 099

e 0-10° 1-10° 2-10* 3.10* 0.10° 1.10° 2.10° 3.10°

iterations iterations 13/25



>>> Take-Home Message #1 ACCELERATION VS IDENTIF

> acceleration can hurt identification for the proximal gradient algorithm;
= Faster convergence does not means faster structure identification
= Accuracy vs. Structure tradeoff for the learning problem

> we proposed a method with stable identification behavior, maintaining an
accelerated convergence rate.

> Bareilles & I.: On the Interplay between Acceleration and Identification for the
Proximal Gradient algorithm, Computational Optimization and Applications, 2020,
https://arxiv.org/abs/1909.08944. Try it in Julia on
https://github.com/GillesBareilles/Acceleration-Identification
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INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION

B ADAPTIVE COORDINATE DESCENT

QUICK PEEK 1: DISTRIBUTED LEARNING

QUICK PEEK 2: PREDICTOR-CORRECTOR METHODS



>>> Numerical methods for the lasso ADAPTIVE DESCENT

d 209

. o1 AN
Find x* Cargmin = [Ax—bl3 + x|
xRt 2

Using a Quadratic Program (QP) solver in low dimension!

Works for _ qer regularizations eg. elastic net

Friedman, Hastie, Tibshirani: glmnet R package (2009)

— : Regularization paths for generalized linear models via coordinate descent. J. of Stat. Softw. (2010)
Ndiaye, Fercoq, Gramfort, Salmon: Gap-safe screening rules for sparsity enforcing penalties. JMLR (2017)
Massias, Gramfort, Salmon: Celer: a Fast Solver for the Lasso with Dual Extrapolation. ICML (2018)
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>>> Numerical methods for the lasso ADAPTIVE DESCENT

fx)

. . o1 2
Find x € arg min §||Ax—b||2 +  Allx|

e Grad. of f: per coordinate e Prox. of g: per coordinate

ui— Ay ifu > Ay
Vif(x) = A7 (Ax —b) [prox, .1, @] = SToa(w) = { 0 ifu; € [—5 \9]
ui+ Ay ifu < =Xy

—x . —~AT _
Proximal Gradient (aka ISTA): Uijks1 = Xik — VA; (A — D)
for all coordinates i Xijr1 = STya (Uigs1)

- most Generalized Linear models eg. logistic

Works for _ other regularizations eg. elastic net
Friedman, Hastie, Tibshirani: glmnet R package (2009)
— : Regularization paths for generalized linear models via coordinate descent. J. of Stat. Softw. (2010)
Ndiaye, Fercoq, Gramfort, Salmon: Gap-safe screening rules for sparsity enforcing penalties. JMLR (2017)
Massias, Gramfort, Salmon: Celer: a Fast Solver for the Lasso with Dual Extrapolation. ICML (2018)
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>>> Numerical methods for the lasso ADAPTIVE DESCENT

fx)

. . o1 2
Find x € arg min §||Ax—b||2 +  Allx|

e Grad. of f: per coordinate e Prox. of g: per coordinate

ui— Ay ifu > Ay
Vif(x) = A7 (Ax —b) [prox, .1, @] = SToa(w) = { 0 ifu; € [—5 \9]
ui+ Ay ifu < =Xy

=X — ~AT _
Coordinate Descent: Uik+1 = Xik = VA (Axe — D)
for one coordinate i Xijr1 = STya (Uigs1)
chosen at random, or by importance, or by screening, etc.

Works for most Generalized Linear models eg. logistic but screening rules are looser
OIXS 10T _ other regularizations eg. elastic net as long as the prox is separable

Friedman, Hastie, Tibshirani: glmnet R package (2009)

— : Regularization paths for generalized linear models via coordinate descent. J. of Stat. Softw. (2010)

Ndiaye, Fercoq, Gramfort, Salmon: Gap-safe screening rules for sparsity enforcing penalties. JMLR (2017)

Massias, Gramfort, Salmon: Celer: a Fast Solver for the Lasso with Dual Extrapolation. ICML (2018)
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>>> Using identified structure in CD ADAPTIVE DESCENT

Disclaimer: We assume that the identified structure is linear
eg: £1/¢>-group lasso, 1D TV-fused lasso but not separability of g.

Uy = X — ’}/Vf(xk)
Zr = Up
Xer1 = Prox ()

> Vanilla Proximal gradient identifies but does not use it
full gradient computed at each iteration

We again pre-define a collection C = { My, .., Mp} of sought structures (eg. sparsity
patterns M; = {x € R" : x; = 0} .
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>>> Using identified structure in CD ADAPTIVE DESCENT

Disclaimer: We assume that the identified structure is linear
eg: 01 /l5-group lasso, 1D TV-fused lasso but not separability of g.

Observe My =R" (N enq, M

w = xx—Vfla)
%k = Proj g (ux) + Projyy, (2c-1)
Xer1 = Prox ()

> Direct Use of Identification may not converge
eg: starting with 0

We again pre-define a collection C = { My, .., Mp} of sought structures (eg. sparsity
patterns M; = {x € R" : x; = 0} .

If we knew that M* € M; (eg. looking at the suboptimality gap), we could drop the
i-th coordinate update, ie. do screening.
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>>> Using identified structure in CD ADAPTIVE DESCENT

Disclaimer: We assume that the identified structure is linear
eg: 01 /l5-group lasso, 1D TV-fused lasso but not separability of g.

Observe Mx = R" (N, c pq, (§kiMi + (1 — &,i)R") for &k ~ B(p)

w = xx—Vfla)
%k = Proj g (ux) + Projyy, (2c-1)
Xer1 = Prox ()

> Mixing Identification and Randomized “coordinate” descent biases
convergence issues

We again pre-define a collection C = { My, .., Mp} of sought structures (eg. sparsity
patterns M; = {x € R" : x; = 0} .
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>>> Using identified structure in CD ADAPTIVE DESCENT

Disclaimer: We assume that the identified structure is linear
eg: £1/¢s-group lasso, 1D TV-fused lasso but not separability of g.

Observe My = R" (N, e 4, (GkiMi + (1 — & )R") for &; ~ B(p)
and compute P, = Eproj,, and Qx = (Py) /2

ur = Qx (o — YVf(xx))

Z = Proj g, (uk) + Projyy, (2k—1)

Xey1 = Prox . (Q 'z)

> Unbiasing with Qi works after identification
but before... no, which prevents identification...

TV-regularized logistic regression: teaton teraton
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>>> Using identified structure in CD ADAPTIVE DESCENT

Disclaimer: We assume that the identified structure is linear
eg: £1/¢-group lasso, 1D TV-fused lasso but not separability of g.

Observe Mi = R" (N, e pq, (§kiMi + (1 = & )R") for & ~ B(p)

and compute Py = Eproj My and Qx = (Pk)fl/ 2sometimes, else keep prev. dist.
ue = Qx (o — ¥YVf(xx))
% = Proj g, (uk) + Projyy, (2k—1)

Xep1 = proxwg(Qk’lzk)

> Structure adaptation can be performed at some iterations
1
\

depends on the amount of change HQk,lQ,: | and harshness of the sparsification Apin (Qk)

TV-regularized logistic regression:
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>>> Convergence result ADAPTIVE DESCENT

Theorem (informal)

Let f, g be two convex functions such that f is L-smooth, p-strongly convex, g is lower semi-continuous.
Take v € (0,2/(;« + L)]. Then, one can devise a adaptation strategy such that the
iterates of the previous method satisfy

) L
sa-c1-0((1-28))

where ay is the number of adaptations performed before k and
A = infx Amin (EProj v, ).

Furthermore, if the problem has a unique minimizer x* and the qualifying
constraint (QC) holds, then the iterates sequence (xy) converges, finite-time
identification happens and

. L
o — x ||=op<(1— 2) ViL) >

Je > Osuch that forallu € B(x* — yVf(x*), ), prox (u) € M* (QC)

For the ¢; norm, this means this means —V; f(x*) € (—X; ).
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>>> Numerical illustrations

Logistic regression on ala (1605 x 143),

Iterate density

Iterate sparsity

with ¢;-reg. 90% final coordinate sparsity

100
100 ] . %
—4— Ads. Ow/ 10%
80
102 o
2
60| =
£
2 10t
2
40| Z
a
e
20
107 |
° T T T T T T T T T T
o o5 1 15 2 25 3 o o5 1 15 2 25 3

Iteration )

Iteration 7

Suboptimality

o

e

T T T T
0 02 0.4 06 08 1
Number of Subspaces explored 107

with TV-reg. 90% final jump sparsity

Suboptimality

o

s

102

sl

10-¢ 1

Suboptimality

4

aad

10-8

o 1,000 2,000 3,000 4,000

Ireration

i

1,000 2,000 3,000 4,000
Iteration

1o-11

Number of Subspaces explored .1
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>>> Take-Home Message #2 ADAPTIVE DESCENT

> Iterate structure enforced by nonsmooth regularizers can be used to
adapt the selection probabilities of coordinate descent/sketching;

> Before identification, adaptation has to be moderate;

> Qualified minimizers once again grant better results in theory.

> Grishchenko, 1., & Malick: Proximal Gradient Methods with Adaptive
Subspace Sampling, Mathematics of Operation Research, 2020,
https://arxiv.org/abs/2004.13356

19/25


https://arxiv.org/abs/2004.13356

INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION

ADAPTIVE COORDINATE DESCENT

B  QUICK PEEK 1: DISTRIBUTED LEARNING

QUICK PEEK 2: PREDICTOR-CORRECTOR METHODS



>>> Distributed Proximal Gradient QUICK PEEK 1: DISTRIBUTED LEARNING

Master gathers the local variables

= .
Work dat local data (f; o
4"5 orker i updates w/ local data (f;) T — ZM . 7T1Xk+1/2
E= R A e v/ . .
! - YVIi Master performs a proximity operation
80 foralli=1,..,M
< T = :xZ’f,['*'1 = prox., ()—Ck+1)
=)
19
‘!-U‘ Reduce
-
=]
v
g
2 Worker M
="
&
—

Distributed Proximal Gradient

Master:

-0

Initialize X = X", Initialize x = x; = X,

while not converged do while not interrupted by master do
when all workers have finished: Receive the most recent x
Receive (x;) from each of them Xj = x — yVfi(x)
¥ M Send x; to the master
X Zi:l TX; i

X = ProX. g (x)

Ercﬁd;{aixlto all agents ﬁ( ) |8| ZJGS ( )

Interrupt all slaves

Output x Local risk at worker i
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>>> Sparse Asynchronous communications QUICK PEEK 1: DISTRIBUTED LEARNING

Communications may soon become the bottleneck in distributed learning,
hence the rise of asynchronous methods.

DAve-PG

WENGH

Initialize X

‘while not converged do
when a worker finishes:
Receive adjustment A from it
XX+ A

Initialize x = x; = X,

while not interrupted by master do
Receive the most recent x
Xj = x — yVfi(x)

rev rev
X ¢ prox.g (%) A ("i — xf ) ;}l’ —x
Send x to the agent in return Send adjustment A to master
k+k+1

76 = &1 Zyes, 600

Local risk at worker i

> With sparsity inducing regularizers (eg. ¢1 norm), master-to-worker
communications will eventually become sparse = Use it!
identification of proximal methods

> Unfortunately, worker-to-master communications stay dense...
Idea: sparsify adaptively!
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>>> Take-Home Message #3 QUICK PEEK 1: DISTRIBUTED LEARNING

> Whenever structure appears, it can often be used numerically
storage, communications

> Importance of qualified solutions and adaptation frequency
to achieve best theoretical performance

> Mishchenko, I., Malick, Amini: A Delay-tolerant Proximal-Gradient Algorithm
for Distributed Learning, ICML 2018
http://proceedings.mlr.press/v80/mishchenko18a.html

> Grishchenko, I., Malick, Amini: Distributed Learning with Sparse
Communications by Identification, 2020 https://arxiv.org/abs/1812.03871
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INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION

ADAPTIVE COORDINATE DESCENT

QUICK PEEK 1: DISTRIBUTED LEARNING
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>>> Using a Riemannian structure QUICK PEEK 2: PREDICTOR-CORRECTOR METHODS

Recall that when solving a Regularized ERM problem with proximal gradient

Uerr =Xk — 7Vf(xx)
Xk+1 = prox'yg(uk+1)

the proximity operator outputs a current structure My C R" (xx € Mj) and
eventually My = M*.
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>>> Using a Riemannian structure QUICK PEEK 2: PREDICTOR-CORRECTOR METHODS

Recall that when solving a Regularized ERM problem with proximal gradient

Observe My, thenyx,; = RiemannianStep; +g(xk, My)
Ukr1 =Yk — YV )
Xk+1 = prox'yg(uk+1)

the proximity operator outputs a current structure My C R" (xx € Mj) and
eventually My = M*.

Predictor-Corrector methods: perform a Riemannian step on My, then a
proximal step to correct the structure, and so on.

¢ Lemaréchal, Oustry, Sagastizébal: The U-Lagrangian of a convex function. Trans. of the AMS (2000)
¢ Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured
optimization problems. Optimization (2006)
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>>> Using a Riemannian structure QUICK PEEK 2: PREDICTOR-CORRECTOR METHODS

Recall that when solving a Regularized ERM problem with proximal gradient

Observe My, thenyx,; = RiemannianStep; +g(xk, My)
Ukr1 =Yk — YV )
Xk+1 = prox'yg(uk+1)

the proximity operator outputs a current structure My C R" (xx € Mj) and
eventually My = M*.

Predictor-Corrector methods: perform a Riemannian step on My, then a
proximal step to correct the structure, and so on.

Numerical boost: Riemannian (truncated) Newton methods can be orders of
magnitude faster than proximal gradient.
eg. cv. in & 1 iteration for the lasso if a (true) small enough support is detected; reduction to

smaller rank for matrix regression.

¢ Lemaréchal, Oustry, Sagastizébal: The U-Lagrangian of a convex function. Trans. of the AMS (2000)
¢ Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured
optimization problems. Optimization (2006)
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>>> Take-Home Message #4 QUICK PEEK 2: PREDICTOR-CORRECTOR METHODS

> Regularized ERM problems often have a particular proximal structure
current structure knowledge is often deemed impossible in nonsmooth optimization since eg.
numerically checking the rank of a matrix is hard; however, after a proximal step that

thresholds singular values, the numerical/theoretical rank is known!

> Non-convex regularizations can work

you may use £y semi norm, rank for a matrix

> Bareilles, 1., Malick: ???, to appear soonish!
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>>> Harnessing Structure in Optimization for ML CONCLUS

> Machine Learning problems often have a noticeable structure;
sparsity, low rank
> This structure is identified progressively by proximal methods;
+ CD, Var. Red., Distributed methods, etc.
> For most problem, we do not know if the identified structure is optimal,;
adaptivity is key
> Nevertheless, it can be used to boost numerical performance;
low complexity model
> Structure vs. Optimality tradeoff in Optimization for ML.
structure is better than overfitting

> I., Malick: Nonsmoothness in Machine Learning: specific structure, proximal identification, and
applications, review/pedagogical paper, SVVA, 2020, https://arxiv.org/abs/2010.00848

> Bareilles, I.: On the Interplay between Acceleration and Identification for the Proximal Gradient
algorithm, COAP, 2020, https://arxiv.org/abs/1909.08944.

> Grishchenko, I., Malick: Proximal Gradient Methods with Adaptive Subspace Sampling, MOR, 2020,
https://arxiv.org/abs/2004.13356

> Grishchenko, I., Malick, Amini: Distributed Learning with Sparse Communications by Identif.,2020
https://arxiv.org/abs/1812.03871

Thanks to ANR JCJC STROLL 0 & IDEX UGA IRS DOLL )¢

Thank you! - Franck IUTZELER http://www.iutzeler.org
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