Nonsmooth regularizations in Machine Learning: structure of the solutions, identification, and applications

Franck Iutzeler LJK, Univ. Grenoble Alpes

Montpellier (online), Nov. 2020

Structure	Regularization
sparsity	$r = \ \cdot \ _1$
anti-sparsity	$r = \ \cdot \ _{\infty}$
low rank	$r = \ \cdot \ _{*}$
•	•
•	•
•	•

Linear inverse problems: for a chosen regularization, we seek

 $x^* \in \arg\min_x r(x)$ such that Ax = b

Regularized Empirical Risk Minimization problem:

Find	$x^{\star} \in rg\min_{x \in \mathbb{R}^n}$	$\mathcal{R}\left(x; \{a_i, b_i\}_{i=1}^m\right)$	+	$\lambda r(x)$
		obtained from		chosen
		statistical modeling		regularization

e.g. Lasso: Find $x^{\star} \in rgmin_{x \in \mathbb{R}^n}$ $\sum_{i=1}^m rac{1}{2} (a_i^{ op} x - b_i)^2$ + $\lambda \parallel x \parallel_1$

Regularization can improve statistical properties (generalization, stability, ...).

♦ Tibshirani: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (1996)

♦ Tibshirani *et al.*: Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society (2004)

Vaiter, Peyré, Fadili: Model consistency of partly smooth regularizers. IEEE Trans. on Information Theory (2017)

Composite minimization

$$\begin{array}{lll} \text{Find} & x^{\star} \in \arg\min_{x \in \mathbb{R}^n} & \mathcal{R}\left(x; \{a_i, b_i\}_{i=1}^m\right) & + & \lambda \ r(x) \\ \text{Find} & x^{\star} \in \arg\min_{x \in \mathbb{R}^n} & f(x) & + & g(x) \\ & & & & \text{smooth} & & \text{non-smooth} \end{array}$$

- > f: differentiable surrogate of the empirical risk ⇒ Gradient non-linear smooth function that depends on all the data
- > g: non-smooth but chosen regularization ⇒ Proximity operator non-differentiability on some manifolds implies structure on the solutions

closed form/easy for many regularizations:

$$\mathbf{prox}_{\gamma g}(u) = \arg\min_{y \in \mathbb{R}^n} \left\{ g(y) + \frac{1}{2\gamma} \|y - u\|_2^2 \right\} \qquad \begin{array}{l} -g(x) = \|x\|_1 \\ -g(x) = TV(x) \\ -g(x) = indicator_C(x) \end{array}$$

Natural optimization method: proximal gradient

$$\begin{cases} u_{k+1} = x_k - \gamma \nabla f(x_k) \\ x_{k+1} = \mathbf{prox}_{\gamma g}(u_{k+1}) \end{cases}$$

and its stochastic variants: proximal sgd, etc.

Example: LASSO

Find
$$x^* \in \arg\min_{x \in \mathbb{R}^n}$$
 $\mathcal{R}(x; \{a_i, b_i\}_{i=1}^m)$ $+ \lambda r(x)$ Find $x^* \in \arg\min_{x \in \mathbb{R}^n}$ $\frac{1}{2} ||Ax - b||_2^2$ $+ \lambda ||x||_1$ smoothnon-smooth

Coordinates	Structure	\leftrightarrow	Optimality conditions	
$\forall i$	$x_i^{\star} = 0$	\Leftrightarrow	$A_i^{\top}(Ax^{\star} - b) \in [-\lambda, \lambda]$	

 $\begin{array}{l} \mbox{Proximity Operator: per coordinate} \\ \left[\mbox{prox}_{\gamma\lambda \|\cdot\|_1}(u) \right]_i = \left\{ \begin{array}{l} u_i - \lambda\gamma & \mbox{if } u_i > \lambda\gamma \\ 0 & \mbox{if } u_i \in [-\lambda\gamma;\lambda\gamma] \\ u_i + \lambda\gamma & \mbox{if } u_i < -\lambda\gamma \end{array} \right. \end{array}$

Proximal Gradient (aka ISTA):

$$\begin{cases} u_{k+1} = x_k - \gamma A^\top (Ax_k - b) \\ x_{k+1} = \mathbf{prox}_{\gamma \lambda \parallel \cdot \parallel_1} (u_{k+1}) \end{cases}$$

Example: LASSO

Find
$$x^* \in \arg\min_{x \in \mathbb{R}^n} \mathcal{R}(x; \{a_i, b_i\}_{i=1}^m) + \lambda r(x)$$

Find $x^* \in \arg\min_{x \in \mathbb{R}^n} \frac{1}{2} ||Ax - b||_2^2 + \lambda ||x||_1$
smooth non-smooth

 $\begin{array}{rcl} \text{Coordinates} & \textbf{Structure} & \leftrightarrow & \textbf{Optimality conditions} & \leftrightarrow & \textbf{Proximity operation} \\ \forall i & x_i^* = \mathbf{0} & \Leftrightarrow & A_i^\top (Ax^* - b) \in [-\lambda, \lambda] & \Leftrightarrow & \begin{bmatrix} \textbf{prox}_{\gamma \lambda \| \cdot \|_1}(u^*) \end{bmatrix}_i = \mathbf{0} \\ & u^* = x^* - \gamma A^\top (Ax^* - b) \end{array}$

Proximal Gradient (aka ISTA):

$$\begin{pmatrix} u_{k+1} = x_k - \gamma A^\top (Ax_k - b) \\ x_{k+1} = \mathbf{prox}_{\gamma \lambda \| \cdot \|_1} (u_{k+1}) \end{pmatrix}$$

Iterates (x_k) reach the same structure as x^* in finite time!

>>> Mathematical properties of Proximal Algorithms

> project on manifolds

Let \mathcal{M} be a manifold and u^* such that

$$x^{\star} = \mathbf{prox}_{\gamma g}(u^{\star}) \in \mathcal{M}$$
 and $\frac{u^{\star} - x^{\star}}{\gamma} \in \operatorname{ri} \partial g(x^{\star})$

If g is partly smooth at x^* relative to \mathcal{M}^* , then

 $\mathbf{prox}_{\gamma g}(u) \in \mathcal{M}^{\star}$

for any u close to u^* .

- Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis (2004)
- Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems. Optimization (2006)

>>> Mathematical properties of Proximal Algorithms

- > project on manifolds
- > identify the optimal structure

Let (x_k) and (u_k) be a pair of sequences such that

$$x_k = \mathbf{prox}_{\gamma g}(u^k) \to x^\star = \mathbf{prox}_{\gamma g}(u^\star)$$

and \mathcal{M} be a manifold. If $x^* \in \mathcal{M}$ and "structure is stable under small perturbation of the data"

$$\exists \varepsilon > 0 \text{ such that for all } u \in \mathcal{B}(u^*, \varepsilon), \ \mathbf{prox}_{\gamma g}(u) \in \mathcal{M}$$
 (QC)

holds, then, after some finite but unknown time, $x_k \in \mathcal{M}$.

♦ Lewis: Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization (2002)

 Fadili, Malick, Peyré: Sensitivity analysis for mirror-stratifiable convex functions. SIAM Journal on Optimization (2018)

> Nonsmoothness is actively studied in Numerical Optimization...

Subgradients, Partial Smoothness/prox-regularity, Bregman geometry, etc.

- ♦ Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. J. of Conv. Analysis (2004)
- ♦ Lemarechal, Oustry, Sagastizabal: The U-Lagrangian of a convex function. Trans. of the AMS (2000)
- Bolte, Daniilidis, Lewis: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. on Optim. (2007)
- Chen, Teboulle: A proximal-based decomposition method for convex minimization problems. Math. Prog. (1994)

- > Nonsmoothness is actively studied in Numerical Optimization... Subgradients, Partial Smoothness/prox-regularity, Bregman geometry, etc.
- > ...but often suffered because of lack of structure/expression. Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.

- ◊ Nesterov: Smooth minimization of non-smooth functions. Mathematical Programming (2005)
- Burke, Lewis, Overton: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. on Optim. (2005)
- ◊ Solodov, Svaiter: A hybrid projection-proximal point algorithm. J. of Conv. Analysis (1999)
- de Oliveira, Sagastizábal: Bundle methods in the XXIst century: A bird's-eye view. Pesquisa Operacional (2014)

- > Nonsmoothness is actively studied in Numerical Optimization... Subgradients, Partial Smoothness/prox-regularity, Bregman geometry, etc.
- > ...but often suffered because of lack of structure/expression. Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.

> For Machine Learning objectives, it can often be harnessed Feature selection, Screening, Faster rates, etc.

- ◊ Bach, et al.: Optimization with sparsity-inducing penalties. FnT in Machine Learning (2012)
- ♦ Massias, Salmon, Gramfort: Celer: a fast solver for the lasso with dual extrapolation. ICML (2018)
- ♦ Liang, Fadili, Peyré: Local linear convergence of forward–backward under partial smoothness. NeurIPS (2014)
- ♦ O'Donoghue, Candes: Adaptive restart for accelerated gradient schemes. Foundations of Comp. Math. (2015)

- > Nonsmoothness is actively studied in Numerical Optimization... Subgradients, Partial Smoothness/prox-regularity, Bregman geometry, etc.
- > ...but often suffered because of lack of structure/expression. Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.
- > For Machine Learning objectives, it can often be harnessed Feature selection, Screening, Faster rates, etc.
- > Why?
 - Explicit/"proximable" regularizations l1, nuclear norm
 - We know the expressions and activity of sought structures sparsity, rank
 - Any converging proximal algorithm will *identify* the *optimal structure* of the problem.

I. & Malick: Nonsmoothness in Machine Learning: specific structure, proximal identification, and applications, review/pedagogical paper to appear in Set-Valued and Variational Analysis, https://arxiv.org/abs/2010.00848

Thanks to the Optimization for Machine Learning week at CIRM in March 2020!

Let us solve a Regularized ERM problem with a proximal algorithm

$$\begin{cases} u_{k+1} &= \mathsf{Update}\left(f; \{x_{\ell}\}_{\ell \leq k}; \{u_{\ell}\}_{\ell \leq k}; \gamma\right) \\ x_{k+1} &= \mathbf{prox}_{\gamma g}(u_{k+1}) \end{cases}$$

with $x_k = \mathbf{prox}_{\gamma g}(u_k) \longrightarrow x^* = \mathbf{prox}_{\gamma g}(u^*)$

- > The proximity operator gives a current structure M_k ⊂ ℝⁿ partial identif/screening
- > We know that *eventually* $M_k = M^*$ after some finite time identification
- 1- Does faster minimization means faster identification ?
- 2– Can we efficiently restrict our update to M_k ?

Example: Sparse structure and $g = \| \cdot \|_1$.

 \mathcal{M}^* represents the points with the same support as x^* (ie. non-selected features are put to zero). $\mathcal{M}_k = \{x \in \mathbb{R}^n : x_i = x_{i,k}\}$ is the current structure (same support as x_k).

INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION

Adaptive Coordinate Descent

QUICK PEEK 1: DISTRIBUTED LEARNING

QUICK PEEK 2: PREDICTOR-CORRECTOR METHODS

$$\begin{cases} u_{k+1} = y_k - \gamma \nabla f(y_k) \\ x_{k+1} = \mathbf{prox}_{\gamma g}(u_{k+1}) \\ y_{k+1} = x_{k+1} + \underbrace{\alpha_{k+1}(x_{k+1} - x_k)}_{\text{inertia/acceleration}} \end{cases}$$

- > $\alpha_{k+1} = 0$: vanilla Proximal Gradient
- > α_{k+1} = k-1/k+3 : accelerated Proximal Gradient (aka FISTA) Optimal rate for composite problems (coefficients may vary a little)

	PG	Accel. PG
$F(x_k) - F^{\star}$	$\mathcal{O}(1/k)$	$\mathcal{O}(1/k^2)$
iterates convergence	yes	yes
monotone functional decrease	yes	no
Fejér-monotone iterates	yes	no

- ♦ Nesterov: A method for solving the convex programming problem with convergence rate $O(1/k^2)$. Sov. Dok. (1983)
- Beck, Teboulle: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. on Imag. Sci. (2009)
- ◇ Chambolle, Dossal: On the convergence of the iterates of "FISTA". J. of Optim. Theory and App. (2015)
- ♦ I., Malick: On the Proximal Gradient Algorithm with Alternated Inertia. J. of Optim. Theory and App. (2018)

>>> Interplay between Acceleration and Identification

$$\min_{x \in \mathbb{R}^2} \|Ax - b\|_2^2 + \lambda r(x)$$

 $r(x) = ||x||_1$ 1-norm regularization

 $r(x) = \max(||x||_{1.3} - 1; 0)$ distance to 1.3-norm unit ball

>>> Interplay between Acceleration and Identification

$$\min_{x \in \mathbb{R}^2} \|Ax - b\|_2^2 + \lambda r(x)$$

- > PG identifies well;
- > Accelerated PG explores well, identifies eventually, but erratically.

Can we converge fast **and** identify well?

T is a boolean function of past iterates; decides whether to accelerate or not.

$$\begin{cases} u_{k+1} = y_k - \gamma \nabla f(y_k) \\ x_{k+1} = \mathbf{prox}_{\gamma g}(u_{k+1}) \\ y_{k+1} = \begin{cases} x_{k+1} + \alpha_{k+1}(x_{k+1} - x_k) & \text{if } \mathsf{T} = 1 \\ x_{k+1} & \text{if } \mathsf{T} = 0 \end{cases}$$

Proposed tests:

We pre-define a collection $C = \{M_1, .., M_p\}$ of sought structures

1. No Acceleration *i.e.* $T^1 = 0$ when a new pattern is reached:

 $x_{k+1} \in \mathcal{M} \text{ and } x_k \notin \mathcal{M}$

for some structure $\mathcal{M} \in C$.

2. No Acceleration *i.e.* $\mathsf{T}^2 = 0$ if this means getting less structure: $\mathcal{T}_{\gamma}(x_{k+1}) \in \mathcal{M} \text{ and } \mathcal{T}_{\gamma}(x_{k+1} + \alpha_{k+1}(x_{k+1} - x_k)) \notin \mathcal{M}$ for some $\mathcal{M} \in \mathsf{C}$.

where $\mathcal{T}_{\gamma} := \mathbf{prox}_{\gamma g}(\cdot - \gamma \nabla f(\cdot))$ is the proximal gradient operator.

Examples of sought structures: sparsity supports, rank.

Theorem

Let f, g be two convex functions such that f is L-smooth, g is lower semi-continuous, and f + g is semi-algebraic with a minimizer. Take $\gamma \in (0, 1/L]$. Then, the iterates of the proposed methods with test T^1 or T^2 satisfy

$$F(x_{k+1}) - F^{\star} = \mathcal{O}\left(\frac{1}{k}\right)$$

for some R > 0.

Furthermore, if the problem has a unique minimizer x^* and the qualifying constraint (QC) holds, then the iterates sequence (x_k) converges, finite-time identification happens and

$$F(x_{k+1}) - F(x^*) = \mathcal{O}\left(\frac{1}{k^2}\right).$$

L-smooth means that *f* is differentiable and ∇f is *L*-Lipschitz continuous.

 $\exists \varepsilon > 0 \text{ such that for all } u \in \mathcal{B}(x^* - \gamma \nabla f(x^*), \varepsilon), \text{ } \mathbf{prox}_{\gamma g}(u) \in \mathcal{M}^*$ (QC)

For the ℓ_1 norm, this means this means $-\nabla_i f(x^*) \in (-\lambda; \lambda)$.

>>> Back to initial problems: ℓ_1 norm

$$\min_{x\in\mathbb{R}^2} \|Ax - b\|_2^2 + \lambda \|x\|_2$$

>>> Back to initial problems: ℓ_1 norm

 $\min_{x \in \mathbb{R}^2} \|Ax - b\|_2^2 + \lambda \|x\|_1$

 \oplus marks identification time

$$\min_{x \in \mathbb{R}^2} \|Ax - b\|_2^2 + \lambda \max(|x\|_{1.3} - 1; 0)$$

$$\min_{x \in \mathbb{R}^2} \|Ax - b\|_2^2 + \lambda \max(|x\|_{1.3} - 1; 0)$$

 \oplus marks identification time

>>> Matrix regression with nuclear-norm regularization Acceleration vs Identif

 $\min_{X \in \mathbb{R}^{20 \times 20}} \|AX - B\|_F^2 + \lambda \|X\|_*$

- > $S \in R^{20 \times 20}$ is a **rank 3** matrix;
- > $A \in \mathbb{R}^{(16 \times 16) \times (20 \times 20)}$ is drawn from the normal distribution;
- > B = AS + E with *E* drawn from the normal distribution with variance .01

- > acceleration can hurt identification for the proximal gradient algorithm;
 - \Rightarrow Faster convergence does not means faster structure identification
 - \Rightarrow Accuracy vs. Structure tradeoff for the learning problem
- > we proposed a method with stable identification behavior, maintaining an accelerated convergence rate.

Bareilles & I.: On the Interplay between Acceleration and Identification for the Proximal Gradient algorithm, Computational Optimization and Applications, 2020, https://arxiv.org/abs/1909.08944. Try it in Julia on https://github.com/GillesBareilles/Acceleration-Identification

INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION

ADAPTIVE COORDINATE DESCENT

QUICK PEEK 1: DISTRIBUTED LEARNING

QUICK PEEK 2: PREDICTOR-CORRECTOR METHODS

>>> Numerical methods for the lasso

Using a Quadratic Program (QP) solver in low dimension!

Works for - other regularizations eg. elastic net

- ◊ Friedman, Hastie, Tibshirani: glmnet R package (2009)
- ◇ : Regularization paths for generalized linear models via coordinate descent. J. of Stat. Softw. (2010)
- Ndiaye, Fercoq, Gramfort, Salmon: Gap-safe screening rules for sparsity enforcing penalties. JMLR (2017)
- ◊ Massias, Gramfort, Salmon: Celer: a Fast Solver for the Lasso with Dual Extrapolation. ICML (2018)

>>> Numerical methods for the lasso

Find
$$x^{\star} \in \arg\min_{x \in \mathbb{R}^n} \frac{f(x)}{\frac{1}{2} \|Ax - b\|_2^2} + \frac{g(x)}{\lambda \|x\|_1}$$

• Grad. of *f*: per coordinate

• Prox. of g: per coordinate

$$\nabla_i f(x) = A_i^{\top} (Ax - b) \qquad \left[\mathbf{prox}_{\gamma \lambda \|\cdot\|_1} (u) \right]_i = \mathrm{ST}_{\gamma \lambda} (u_i) = \begin{cases} u_i - \lambda \gamma & \text{if } u_i > \lambda \gamma \\ 0 & \text{if } u_i \in [-\lambda \gamma; \lambda \gamma] \\ u_i + \lambda \gamma & \text{if } u_i < -\lambda \gamma \end{cases}$$

Proximal Gradient (aka ISTA):
for all coordinates *i*

$$\begin{cases}
u_{i,k+1} = x_{i,k} - \gamma A_i^{\top} (Ax_k - b) \\
x_{i,k+1} = ST_{\gamma\lambda}(u_{i,k+1})
\end{cases}$$

Works for - most Generalized Linear models eg. logistic - other regularizations eg. elastic net

- ◊ Friedman, Hastie, Tibshirani: glmnet R package (2009)
- ◇ : Regularization paths for generalized linear models via coordinate descent. J. of Stat. Softw. (2010)
- ♦ Ndiaye, Fercoq, Gramfort, Salmon: Gap-safe screening rules for sparsity enforcing penalties. JMLR (2017)
- ♦ Massias, Gramfort, Salmon: Celer: a Fast Solver for the Lasso with Dual Extrapolation. ICML (2018)

>>> Numerical methods for the lasso

(...) :f... >)

Find
$$x^{\star} \in \arg\min_{x \in \mathbb{R}^n} \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_1$$

• Grad. of f: per coordinate

• Prox. of g: per coordinate

$$\nabla_i f(x) = A_i^{\top} (Ax - b) \qquad \left[\mathbf{prox}_{\gamma \lambda \|\cdot\|_1} (u) \right]_i = \mathrm{ST}_{\gamma \lambda} (u_i) = \begin{cases} u_i - \lambda \gamma & \text{if } u_i > \lambda \gamma \\ 0 & \text{if } u_i \in [-\lambda \gamma; \lambda \gamma] \\ u_i + \lambda \gamma & \text{if } u_i < -\lambda \gamma \end{cases}$$

Coordinate Descent:
for *one* coordinate *i*

$$\begin{cases}
u_{i,k+1} = x_{i,k} - \gamma A_i^\top (Ax_k - b) \\
x_{i,k+1} = ST_{\gamma\lambda}(u_{i,k+1})
\end{cases}$$

chosen at random, or by importance, or by screening, etc.

Works for - most Generalized Linear models eg. logistic but screening rules are looser - other regularizations eg. elastic net as long as the prox is separable

- ◊ Friedman, Hastie, Tibshirani: glmnet R package (2009)
- ♦ —: Regularization paths for generalized linear models via coordinate descent. J. of Stat. Softw. (2010)
- ♦ Ndiaye, Fercoq, Gramfort, Salmon: Gap-safe screening rules for sparsity enforcing penalties. JMLR (2017)
- ♦ Massias, Gramfort, Salmon: Celer: a Fast Solver for the Lasso with Dual Extrapolation. ICML (2018)

$$u_k = x_k - \gamma \nabla f(x_k)$$
$$z_k = u_k$$
$$x_k = prov_k (-x_k)$$

> Vanilla Proximal gradient identifies but does not use it full gradient computed at each iteration

We again pre-define a collection $C = \{M_1, ..., M_p\}$ of sought structures (eg. sparsity patterns $M_i = \{x \in \mathbb{R}^n : x_i = 0\}$.

Observe
$$\mathcal{M}_k = \mathbb{R}^n \bigcap_{i:x_k \in \mathcal{M}_i} \mathcal{M}_i$$

 $u_k = x_k - \gamma \nabla f(x_k)$
 $z_k = \operatorname{proj}_{\mathcal{M}_k}(u_k) + \operatorname{proj}_{\mathcal{M}_k}^{\perp}(z_{k-1})$
 $x_{k+1} = \operatorname{prox}_{\gamma g}(z_k)$

> Direct Use of Identification may not converge eg: starting with 0

We again pre-define a collection $C = \{M_1, ..., M_p\}$ of *sought structures* (eg. sparsity patterns $M_i = \{x \in \mathbb{R}^n : x_i = 0\}$. If we *knew* that $M^* \in M_i$ (eg. looking at the suboptimality gap), we could *drop* the *i*-th coordinate update, ie. do *screening*.

Observe
$$\mathcal{M}_k = \mathbb{R}^n \bigcap_{i:x_k \in \mathcal{M}_i} (\xi_{k,i} \mathcal{M}_i + (1 - \xi_{k,i}) \mathbb{R}^n)$$
 for $\xi_{k,i} \sim \mathcal{B}(p)$
 $u_k = x_k - \gamma \nabla f(x_k)$
 $z_k = \operatorname{proj}_{\mathcal{M}_k}(u_k) + \operatorname{proj}_{\mathcal{M}_k}^{\perp}(z_{k-1})$
 $x_{k+1} = \operatorname{prox}_{\gamma g}(z_k)$

> Mixing Identification and Randomized "coordinate" descent biases convergence issues

We again pre-define a collection $C = \{M_1, ..., M_p\}$ of sought structures (eg. sparsity patterns $M_i = \{x \in \mathbb{R}^n : x_i = 0\}$.

Observe
$$\mathcal{M}_k = \mathbb{R}^n \bigcap_{i:x_k \in \mathcal{M}_i} (\xi_{k,i}\mathcal{M}_i + (1 - \xi_{k,i})\mathbb{R}^n)$$
 for $\xi_{k,i} \sim \mathcal{B}(p)$
and compute $\mathbf{P}_k = \mathbb{E} \operatorname{proj}_{\mathcal{M}_k}$ and $Q_k = (\mathbf{P}_k)^{-1/2}$
 $u_k = Q_k (x_k - \gamma \nabla f(x_k))$
 $z_k = \operatorname{proj}_{\mathcal{M}_k}(u_k) + \operatorname{proj}_{\mathcal{M}_k}^{\perp}(z_{k-1})$
 $x_{k+1} = \operatorname{prox}_{\gamma g}(Q_k^{-1} z_k)$

> Unbiasing with Q_k works after identification but before... no, which prevents identification...

TV-regularized logistic regression:

- Observe $\mathcal{M}_k = \mathbb{R}^n \bigcap_{i:x_\ell \in \mathcal{M}_i} (\xi_{k,i}\mathcal{M}_i + (1 \xi_{k,i})\mathbb{R}^n)$ for $\xi_{k,i} \sim \mathcal{B}(p)$ and compute $\mathbf{P}_k = \mathbb{E}\mathrm{proj}_{\mathcal{M}_k}$ and $Q_k = (\mathbf{P}_k)^{-1/2}$ sometimes, else keep prev. dist. $u_k = Q_k (x_k - \gamma \nabla f(x_k))$ $z_k = \mathrm{proj}_{\mathcal{M}_k}(u_k) + \mathrm{proj}_{\mathcal{M}_k}^{\perp}(z_{k-1})$ $x_{k+1} = \mathbf{prox}_{\gamma g}(Q_k^{-1}z_k)$
- > Structure adaptation can be performed at *some* iterations depends on the *amount of change* $||Q_{k-1}Q_k^{-1}||$ and *harshness* of the sparsification $\lambda_{\min}(Q_k)$

TV-regularized logistic regression:

Theorem (informal)

Let f, g be two convex functions such that f is L-smooth, μ -strongly convex, g is lower semi-continuous. Take $\gamma \in (0, 2/(\mu + L)]$. Then, one can devise a adaptation strategy such that the iterates of the previous method satisfy

$$\mathbb{E}\|x_k - x^\star\| = \mathcal{O}\left(\left(1 - \lambda rac{\gamma \mu L}{\mu + L}
ight)^{a_k}
ight)$$

where a_k is the number of adaptations performed before k and $\lambda = \inf_k \lambda_{\min}(\mathbb{E}proj_{\mathcal{M}_k}).$

Furthermore, if the problem has a unique minimizer x^* and the qualifying constraint (QC) holds, then the iterates sequence (x_k) converges, finite-time identification happens and

$$\|x_k - x^{\star}\| = \mathcal{O}_{\mathbb{P}}\left(\left(1 - 2\lambda \frac{\gamma \mu L}{\mu + L}\right)^k\right).$$

 $\exists \varepsilon > 0 \text{ such that for all } u \in \mathcal{B}(x^* - \gamma \nabla f(x^*), \varepsilon), \ \mathbf{prox}_{\gamma g}(u) \in \mathcal{M}^*$ (QC)

For the ℓ_1 norm, this means this means $-\nabla_i f(x^*) \in (-\lambda; \lambda)$.

Logistic regression on a1a (1605 \times 143),

with TV-reg. 90% final jump sparsity

- > Iterate structure enforced by nonsmooth regularizers can be used to adapt the selection probabilities of coordinate descent/sketching;
- > Before identification, adaptation *has to be moderate*;
- > Qualified minimizers once again grant better results in theory.

> Grishchenko, I., & Malick: Proximal Gradient Methods with Adaptive Subspace Sampling, Mathematics of Operation Research, 2020, https://arxiv.org/abs/2004.13356

INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION

ADAPTIVE COORDINATE DESCENT

QUICK PEEK 1: DISTRIBUTED LEARNING

QUICK PEEK 2: PREDICTOR-CORRECTOR METHODS

>>> Distributed Proximal Gradient

QUICK PEEK 1: DISTRIBUTED LEARNING

Implementation Algorithm

Worker i updates w/ local data (f_i) $x_i^{k+1/2} = x^k - \gamma \nabla f_i(x^k)$ for all i = 1, ..., M Master gathers the local variables

$$\overline{x}^{k+1} = \sum_{i=1}^{M} \pi_i x_i^{k+1/2}$$

Master performs a proximity operation

$$x_1^{k+1} = .. = x_M^{k+1} = \mathbf{prox}_{\gamma g} \left(\overline{x}^{k+1} \right)$$

Distributed Proximal Gradient

Master:

Worker i:

 $\begin{array}{ll} \mbox{Initialize } x = x_i = \bar{x}, \\ \mbox{while not interrupted by master do} \\ \mbox{Receive the most recent } x \\ x_i \leftarrow x - \gamma \, \nabla f_i(x) \\ \mbox{Send } x_i \mbox{ to the master} \end{array}$

 $f_i(x) = \frac{1}{|\mathcal{S}_i|} \sum_{j \in \mathcal{S}_i} \ell_j(x)$

Local risk at worker i

>>> Sparse Asynchronous communications QUICK PEEK 1: DISTRIBUTED LEARNING

Communications may soon become the bottleneck in distributed learning, hence the rise of asynchronous methods.

DAve-PG Master: Worker i: Initialize **r** Initialize $x = x_i = \overline{x}$, while not converged do while not interrupted by master do when a worker finishes: Receive the most recent x Receive adjustment Δ from it $x_i \leftarrow x - \gamma \nabla f_i(x)$ $\overline{x} \leftarrow \overline{x} + \Delta$ $\Delta \leftarrow \pi_i \left(x_i - x_i^{prev} \right) \quad x_i^{prev} \leftarrow x_i$ $x \leftarrow \mathbf{prox}_{\gamma\sigma}(\bar{x})$ Send adjustment Δ to master Send x to the agent in return $k \leftarrow k + 1$ Interrupt all slaves $f_i(x) = \frac{1}{|\mathcal{S}_i|} \sum_{j \in \mathcal{S}_i} \ell_j(x)$ Output x Local risk at worker *i*

- > With sparsity inducing regularizers (eg. ℓ₁ norm), master-to-worker communications will eventually become sparse ⇒ Use it! identification of proximal methods
- > Unfortunately, worker-to-master communications stay dense... Idea: sparsify adaptively!

- > Whenever structure appears, it can often be used numerically storage, communications
- > Importance of qualified solutions and adaptation frequency to achieve best theoretical performance

Mishchenko, I., Malick, Amini: A Delay-tolerant Proximal-Gradient Algorithm for Distributed Learning, ICML 2018 http://proceedings.mlr.press/v80/mishchenko18a.html

Grishchenko, I., Malick, Amini: Distributed Learning with Sparse Communications by Identification, 2020 https://arxiv.org/abs/1812.03871

INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION

Adaptive Coordinate Descent

QUICK PEEK 1: DISTRIBUTED LEARNING

QUICK PEEK 2: PREDICTOR-CORRECTOR METHODS

>>> Using a Riemannian structure QUICK PEEK 2: PREDICTOR-CORRECTOR METHODS

Recall that when solving a Regularized ERM problem with proximal gradient

$$u_{k+1} = x_k - \gamma \nabla f(x_k)$$

$$x_{k+1} = \mathbf{prox}_{\gamma g}(u_{k+1})$$

the proximity operator outputs a *current structure* $\mathcal{M}_k \subset \mathbb{R}^n$ ($x_k \in \mathcal{M}_k$) and *eventually* $\mathcal{M}_k = \mathcal{M}^*$.

Recall that when solving a Regularized ERM problem with proximal gradient

C Observe \mathcal{M}_k , then y_{k+1} = RiemannianStep_{*f*+g}(x_k , \mathcal{M}_k) $u_{k+1} = y_k - \gamma \nabla f(y_k)$ $x_{k+1} = \mathbf{prox}_{\gamma g}(u_{k+1})$

the proximity operator outputs a *current structure* $\mathcal{M}_k \subset \mathbb{R}^n$ ($x_k \in \mathcal{M}_k$) and *eventually* $\mathcal{M}_k = \mathcal{M}^*$.

Predictor-Corrector methods: perform a Riemannian step on M_k , then a proximal step to correct the structure, and so on.

[♦] Lemaréchal, Oustry, Sagastizábal: The U-Lagrangian of a convex function. Trans. of the AMS (2000)

Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems. Optimization (2006)

Recall that when solving a Regularized ERM problem with proximal gradient

C Observe \mathcal{M}_k , then y_{k+1} = RiemannianStep_{*f*+g}(x_k , \mathcal{M}_k) $u_{k+1} = y_k - \gamma \nabla f(y_k)$ $x_{k+1} = \mathbf{prox}_{\gamma g}(u_{k+1})$

the proximity operator outputs a *current structure* $\mathcal{M}_k \subset \mathbb{R}^n$ ($x_k \in \mathcal{M}_k$) and *eventually* $\mathcal{M}_k = \mathcal{M}^*$.

Predictor-Corrector methods: perform a Riemannian step on M_k , then a proximal step to correct the structure, and so on.

Numerical boost: Riemannian (truncated) Newton methods can be orders of magnitude faster than proximal gradient.

eg. cv. in ≈ 1 iteration for the lasso if a (true) small enough support is detected; reduction to smaller rank for matrix regression.

◇ Lemaréchal, Oustry, Sagastizábal: The U-Lagrangian of a convex function. Trans. of the AMS (2000)

 Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured optimization problems. Optimization (2006)

> Regularized ERM problems often have a *particular* proximal structure

current structure knowledge is often deemed impossible in nonsmooth optimization since eg. numerically checking the rank of a matrix is hard; however, after a proximal step that thresholds singular values, the numerical/theoretical rank is known!

> Non-convex regularizations can work

you may use ℓ_0 semi norm, rank for a matrix

▷ Bareilles, I., Malick: ???, to appear soonish!

- > Machine Learning problems often have a noticeable structure; sparsity, low rank
- > This structure is identified progressively by proximal methods; + CD, Var. Red., Distributed methods, etc.
- > For most problem, we do not know if the identified structure is optimal; adaptivity is key
- > Nevertheless, it can be used to boost numerical performance; low complexity model
- > Structure vs. Optimality tradeoff in Optimization for ML.

structure is better than overfitting

I., Malick: Nonsmoothness in Machine Learning: specific structure, proximal identification, and applications, review/pedagogical paper, SVVA, 2020, https://arxiv.org/abs/2010.00848

> Bareilles, I.: On the Interplay between Acceleration and Identification for the Proximal Gradient algorithm, COAP, 2020, https://arxiv.org/abs/1909.08944.

 \triangleright Grishchenko, I., Malick: Proximal Gradient Methods with Adaptive Subspace Sampling, MOR, 2020, <code>https://arxiv.org/abs/2004.13356</code>

▷ Grishchenko, I., Malick, Amini: Distributed Learning with Sparse Communications by Identif, 2020 https://arxiv.org/abs/1812.03871

Thanks to ANR JCJC STROLL 🚳 & IDEX UGA IRS DOLL O

Thank you! - Franck IUTZELER http://www.iutzeler.org