
Nonsmooth regularizations in Machine Learning:
structure of the solutions, identification, and applications

Franck Iutzeler LJK, Univ. Grenoble Alpes

Montpellier (online), Nov. 2020

>>> Regularization in Learning

Structure Regularization
sparsity r = ‖ · ‖1

anti-sparsity r = ‖ · ‖∞
low rank r = ‖ · ‖∗...

...

Linear inverse problems: for a chosen
regularization, we seek

x? ∈ argmin
x

r(x) such that Ax = b

Regularized Empirical Risk Minimization problem:

Find x? ∈ argmin
x∈Rn

R (x; {ai, bi}m
i=1) + λ r(x)

obtained from chosen
statistical modeling regularization

e.g. Lasso: Find x? ∈ argmin
x∈Rn

∑m
i=1

1
2 (a
>
i x − bi)

2 + λ ‖x‖1

Regularization can improve statistical properties (generalization, stability, ...).

� Tibshirani: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (1996)
� Tibshirani et al.: Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society (2004)
� Vaiter, Peyré, Fadili: Model consistency of partly smooth regularizers. IEEE Trans. on Information Theory (2017)

1 / 25

>>> Optimization for Machine Learning

Composite minimization

Find x? ∈ argmin
x∈Rn

R (x; {ai, bi}m
i=1) + λ r(x)

Find x? ∈ argmin
x∈Rn

f(x) + g(x)

smooth non-smooth

> f : differentiable surrogate of the empirical risk⇒ Gradient
non-linear smooth function that depends on all the data

> g: non-smooth but chosen regularization⇒ Proximity operator
non-differentiability on some manifolds implies structure on the solutions

proxγg(u) = argminy∈Rn

{
g(y) + 1

2γ ‖y− u‖2
2

}
closed form/easy for many regularizations:

– g(x) = ‖x‖1

– g(x) = TV(x)

– g(x) = indicatorC(x)

Natural optimization method: proximal gradient

{
uk+1 = xk − γ∇f(xk)
xk+1 = proxγg(uk+1)

and its stochastic variants: proximal sgd, etc.
2 / 25

>>> Structure, Non-differentiability, and Proximity operator

Example: LASSO

Find x? ∈ argmin
x∈Rn

R (x; {ai, bi}m
i=1) + λ r(x)

Find x? ∈ argmin
x∈Rn

1
2 ‖Ax − b‖2

2 + λ‖x‖1

smooth non-smooth

Coordinates Structure ↔ Optimality conditions

↔ Proximity operation

∀i x?i = 0 ⇔ A>i (Ax? − b) ∈ [−λ, λ]

⇔
[
proxγλ‖·‖1

(u?)
]

i
= 0

u? = x? − γA>(Ax? − b)

Proximity Operator: per coordinate
[
proxγλ‖·‖1

(u)
]

i
=





ui − λγ if ui > λγ
0 if ui ∈ [−λγ;λγ]
ui + λγ if ui < −λγ

Proximal Gradient (aka ISTA):
{

uk+1 = xk − γA>(Axk − b)
xk+1 = proxγλ‖·‖1

(uk+1)

−3 −2 −1 1 2 3

−1

1

2

| · |

SoftThresholding

[−1,1]→ {0} per coord.

Iterates (xk) reach the same structure as x? in finite time!

3 / 25

>>> Structure, Non-differentiability, and Proximity operator

Example: LASSO

Find x? ∈ argmin
x∈Rn

R (x; {ai, bi}m
i=1) + λ r(x)

Find x? ∈ argmin
x∈Rn

1
2 ‖Ax − b‖2

2 + λ‖x‖1

smooth non-smooth

Coordinates Structure ↔ Optimality conditions ↔ Proximity operation

∀i x?i = 0 ⇔ A>i (Ax? − b) ∈ [−λ, λ] ⇔
[
proxγλ‖·‖1

(u?)
]

i
= 0

u? = x? − γA>(Ax? − b)

[
proxγλ‖·‖1

(u)
]

i
=





ui − λγ if ui > λγ
0 if ui ∈ [−λγ;λγ]
ui + λγ if ui < −λγ

Proximal Gradient (aka ISTA):
{

uk+1 = xk − γA>(Axk − b)
xk+1 = proxγλ‖·‖1

(uk+1)

−1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

1.1

1
.1

2.3

2.
3

2.3

3.4

3.4

3
.4

3.4

4.5

4
.5

4.5

5.7

5
.7

5.7

6.8

6.8

8

8

9.1

10.2
11.4

x?

Proximal Gradient

Iterates (xk) reach the same structure as x? in finite time!
3 / 25

>>> Mathematical properties of Proximal Algorithms

Proximal Algorithms:
{

uk+1 = xk − γ∇f(xk)
xk+1 = proxγg(uk+1)

−1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

1.1

1
.1

2.3

2.
3

2.3

3.4

3.4

3
.4

3.4

4.5

4
.5

4.5

5.7

5
.7

5.7

6.8

6.8

8

8

9.1

10.2
11.4

x?

Proximal Gradient M⋆

x⋆

u⋆ = x⋆
− γ∇f(x⋆)

x⋆ + γ∂g(x⋆)
proxγg

> project on manifolds

> identify the optimal structure

LetM be a manifold and u? such that

x? = proxγg(u
?) ∈M and u?−x?

γ
∈ ri ∂g(x?)

If g is partly smooth at x? relative toM?, then

proxγg(u) ∈M?

for any u close to u?.

� Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. Journal of Convex Analysis
(2004)

� Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured
optimization problems. Optimization (2006)

4 / 25

>>> Mathematical properties of Proximal Algorithms

Proximal Algorithms:
{

uk+1 = xk − γ∇f(xk)
xk+1 = proxγg(uk+1)

−1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

1.1

1
.1

2.3

2.
3

2.3

3.4

3.4

3
.4

3.4

4.5

4
.5

4.5

5.7

5
.7

5.7

6.8

6.8

8

8

9.1

10.2
11.4

x?

Proximal Gradient
u?(= x? − γ∇f(x?))

x? SoftThresholding

> project on manifolds

> identify the optimal structure

Let (xk) and (uk) be a pair of sequences such that

xk = proxγg(u
k)→ x? = proxγg(u

?)

andM be a manifold. If x? ∈M and “structure is stable under small perturbation of the data”

∃ε > 0 such that for all u ∈ B(u?, ε), proxγg(u) ∈M (QC)

holds, then, after some finite but unknown time, xk ∈M.

� Lewis: Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization (2002)
� Fadili, Malick, Peyré: Sensitivity analysis for mirror-stratifiable convex functions. SIAM Journal on Optimization

(2018)

4 / 25

>>> “Nonsmoothness can help”

> Nonsmoothness is actively studied in Numerical Optimization...
Subgradients, Partial Smoothness/prox-regularity, Bregman geometry, etc.

> ...but often suffered because of lack of structure/expression.
Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.

> For Machine Learning objectives, it can often be harnessed
Feature selection, Screening, Faster rates, etc.

> Why?
- Explicit/“proximable” regularizations `1, nuclear norm

- We know the expressions and activity of sought structures sparsity, rank

- Any converging proximal algorithm will identify the optimal structure
of the problem.

� Hare, Lewis: Identifying active constraints via partial smoothness and prox-regularity. J. of Conv. Analysis (2004)
� Lemarechal, Oustry, Sagastizabal: The U-Lagrangian of a convex function. Trans. of the AMS (2000)
� Bolte, Daniilidis, Lewis: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to

subgradient dynamical systems. SIAM J. on Optim. (2007)
� Chen, Teboulle: A proximal-based decomposition method for convex minimization problems. Math. Prog. (1994)

5 / 25

>>> “Nonsmoothness can help”

> Nonsmoothness is actively studied in Numerical Optimization...
Subgradients, Partial Smoothness/prox-regularity, Bregman geometry, etc.

> ...but often suffered because of lack of structure/expression.
Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.

> For Machine Learning objectives, it can often be harnessed
Feature selection, Screening, Faster rates, etc.

> Why?
- Explicit/“proximable” regularizations `1, nuclear norm

- We know the expressions and activity of sought structures sparsity, rank

- Any converging proximal algorithm will identify the optimal structure
of the problem.

� Nesterov: Smooth minimization of non-smooth functions. Mathematical Programming (2005)
� Burke, Lewis, Overton: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. on

Optim. (2005)
� Solodov, Svaiter: A hybrid projection-proximal point algorithm. J. of Conv. Analysis (1999)
� de Oliveira, Sagastizábal: Bundle methods in the XXIst century: A bird’s-eye view. Pesquisa Operacional (2014)

5 / 25

>>> “Nonsmoothness can help”

> Nonsmoothness is actively studied in Numerical Optimization...
Subgradients, Partial Smoothness/prox-regularity, Bregman geometry, etc.

> ...but often suffered because of lack of structure/expression.
Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.

> For Machine Learning objectives, it can often be harnessed
Feature selection, Screening, Faster rates, etc.

> Why?
- Explicit/“proximable” regularizations `1, nuclear norm

- We know the expressions and activity of sought structures sparsity, rank

- Any converging proximal algorithm will identify the optimal structure
of the problem.

� Bach, et al.: Optimization with sparsity-inducing penalties. FnT in Machine Learning (2012)
� Massias, Salmon, Gramfort: Celer: a fast solver for the lasso with dual extrapolation. ICML (2018)
� Liang, Fadili, Peyré: Local linear convergence of forward–backward under partial smoothness. NeurIPS (2014)
� O’Donoghue, Candes: Adaptive restart for accelerated gradient schemes. Foundations of Comp. Math. (2015)

5 / 25

>>> “Nonsmoothness can help”

> Nonsmoothness is actively studied in Numerical Optimization...
Subgradients, Partial Smoothness/prox-regularity, Bregman geometry, etc.

> ...but often suffered because of lack of structure/expression.
Bundle methods, Gradient Sampling, Smoothing, Inexact proximal methods, etc.

> For Machine Learning objectives, it can often be harnessed
Feature selection, Screening, Faster rates, etc.

> Why?
- Explicit/“proximable” regularizations `1, nuclear norm

- We know the expressions and activity of sought structures sparsity, rank

- Any converging proximal algorithm will identify the optimal structure
of the problem.

. I. & Malick: Nonsmoothness in Machine Learning: specific structure, proximal
identification, and applications, review/pedagogical paper to appear in Set-Valued
and Variational Analysis, https://arxiv.org/abs/2010.00848
Thanks to the Optimization for Machine Learning week at CIRM in March 2020!

5 / 25

https://arxiv.org/abs/2010.00848

>>> Question

Let us solve a Regularized ERM problem with a proximal algorithm
{

uk+1 = Update (f ; {x`}`≤k; {u`}`≤k; γ)
xk+1 = proxγg(uk+1)

with xk = proxγg(uk) −→ x? = proxγg(u
?)

> The proximity operator gives a current structureMk ⊂ Rn

partial identif/screening

> We know that eventuallyMk =M? after some finite time
identification

1– Does faster minimization means faster identification ?

2– Can we efficiently restrict our update toMk?

Example: Sparse structure and g = ‖ · ‖1.

M? represents the points with the same support as x? (ie. non-selected features are put to zero).

Mk = {x ∈ Rn : xi = xi,k} is the current structure (same support as xk).

6 / 25

INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION

ADAPTIVE COORDINATE DESCENT

QUICK PEEK 1: DISTRIBUTED LEARNING

QUICK PEEK 2: PREDICTOR-CORRECTOR METHODS

>>> Acceleration of the Proximal Gradient ACCELERATION VS IDENTIF





uk+1 = yk − γ∇f(yk)
xk+1 = proxγg(uk+1)

yk+1 = xk+1 + αk+1(xk+1 − xk)︸ ︷︷ ︸
inertia/acceleration

> αk+1 = 0 : vanilla Proximal Gradient
> αk+1 = k−1

k+3 : accelerated Proximal Gradient (aka FISTA)

Optimal rate for composite problems (coefficients may vary a little)

PG Accel. PG
F(xk)− F? O(1/k) O(1/k2)

iterates convergence yes yes
monotone functional decrease yes no

Fejér-monotone iterates yes no

� Nesterov: A method for solving the convex programming problem with convergence rate O(1/k2). Sov. Dok.
(1983)

� Beck, Teboulle: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. on Imag.
Sci. (2009)

� Chambolle, Dossal: On the convergence of the iterates of “FISTA”. J. of Optim. Theory and App. (2015)
� I., Malick: On the Proximal Gradient Algorithm with Alternated Inertia. J. of Optim. Theory and App. (2018)

7 / 25

>>> Interplay between Acceleration and Identification ACCELERATION VS IDENTIF

min
x∈R2
‖Ax − b‖2

2 + λr(x)

−1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

1.1

1
.1

2.3

2.
3

2.3

3.4

3.4

3
.4

3.4

4.5

4
.5

4.5

5.7

5
.7

5.7

6.8

6.8

8

8

9.1

10.2
11.4

x?

Proximal Gradient

−1.5 −1 −0.5 0 0.5
−0.5

0

0.5

1

1.5

0.28

0.28

0.28

0.28

0.28

0.28

0.56

0.56

0.56

0.56

0.56

0.84

0.84

0.84

1.12

1.12

1.12

1.4

1.4

1.68

1.68

1.96

1.96

2.242.522.8

x?

Proximal Gradient

r(x) = ‖x‖1

1-norm regularization
r(x) = max(‖x‖1.3 − 1; 0)

distance to 1.3-norm unit ball

> PG identifies well;
> Accelerated PG explores well, identifies eventually, but erratically.

Can we converge fast and identify well?

8 / 25

>>> Interplay between Acceleration and Identification ACCELERATION VS IDENTIF

min
x∈R2
‖Ax − b‖2

2 + λr(x)

−1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

1.1

1
.1

2.3

2.
3

2.3

3.4

3.4

3
.4

3.4

4.5

4
.5

4.5

5.7

5
.7

5.7

6.8

6.8

8

8

9.1

10.2
11.4

x?

Proximal Gradient

Accelerated Proximal Gradient

−1.5 −1 −0.5 0 0.5
−0.5

0

0.5

1

1.5

0.28

0.28

0.28

0.28

0.28

0.28

0.56

0.56

0.56

0.56

0.56

0.84

0.84

0.84

1.12

1.12

1.12

1.4

1.4

1.68

1.68

1.96

1.96

2.242.522.8

M
x?

Proximal Gradient

Accelerated Proximal Gradient

r(x) = ‖x‖1

1-norm regularization
r(x) = max(‖x‖1.3 − 1; 0)

distance to 1.3-norm unit ball

> PG identifies well;
> Accelerated PG explores well, identifies eventually, but erratically.

Can we converge fast and identify well?
8 / 25

>>> A test-based algorithm ACCELERATION VS IDENTIF

T is a boolean function of past iterates; decides whether to accelerate or not.




uk+1 = yk − γ∇f(yk)
xk+1 = proxγg(uk+1)

yk+1 =

{
xk+1 + αk+1(xk+1 − xk) if T = 1
xk+1 if T = 0

Proposed tests:
We pre-define a collection C = {M1, ..,Mp} of sought structures

1. No Acceleration i.e. T1 = 0
when a new pattern is reached:

xk+1 ∈M and xk 6∈ M

for some structureM∈ C.

2. No Acceleration i.e. T2 = 0
if this means getting less structure:

Tγ(xk+1) ∈M and Tγ(xk+1 + αk+1(xk+1 − xk)) 6∈ M

for someM∈ C.

where Tγ := proxγg(· − γ∇f(·)) is the proximal gradient operator.

Examples of sought structures: sparsity supports, rank.

9 / 25

>>> Convergence result ACCELERATION VS IDENTIF

Theorem
Let f , g be two convex functions such that f is L-smooth, g is lower semi-continuous, and f + g is

semi-algebraic with a minimizer. Take γ ∈ (0, 1/L]. Then, the iterates of the proposed
methods with test T1 or T2 satisfy

F (xk+1)− F? = O
(

1
k

)

for some R > 0.
Furthermore, if the problem has a unique minimizer x? and the qualifying
constraint (QC) holds, then the iterates sequence (xk) converges, finite-time
identification happens and

F (xk+1)− F(x?) = O
(

1
k2

)
.

L-smooth means that f is differentiable and∇f is L-Lipschitz continuous.

∃ε > 0 such that for all u ∈ B(x? − γ∇f(x?), ε), proxγg(u) ∈ M? (QC)

For the `1 norm, this means this means −∇i f(x?) ∈ (−λ;λ).

10 / 25

>>> Back to initial problems: `1 norm ACCELERATION VS IDENTIF

min
x∈R2
‖Ax − b‖2

2 + λ‖x‖1

−1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

1.1

1
.1

2.3

2.
3

2.3

3.4

3.4

3
.4

3.4

4.5

4
.5

4.5

5.7

5
.7

5.7

6.8

6.8

8

8

9.1

10.2
11.4

x?

Proximal Gradient

Accelerated Proximal Gradient

0 50 100 150 200
10−17

10−12

10−7

10−2

103

number of proximal gradient steps

F(
x k
)
−

F?

Proximal Gradient

Accel. Proximal Gradient

Prov. Alg – T1

Prov. Alg – T2

⊕ marks identification time

l1

11 / 25

>>> Back to initial problems: `1 norm ACCELERATION VS IDENTIF

min
x∈R2
‖Ax − b‖2

2 + λ‖x‖1

−1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

1.1

1
.1

2.3

2.
3

2.3

3.4

3.4

3
.4

3.4

4.5

4
.5

4.5

5.7

5
.7

5.7

6.8

6.8

8

8

9.1

10.2
11.4

x?

Proximal Gradient

Accelerated Proximal Gradient

T1

T2

0 50 100 150 200
10−17

10−12

10−7

10−2

103

number of proximal gradient steps

F(
x k
)
−

F?

Proximal Gradient

Accel. Proximal Gradient

Prov. Alg – T1

Prov. Alg – T2

⊕ marks identification time

l1

11 / 25

>>> Back to initial problems: distance to 1.3-norm ball ACCELERATION VS IDENTIF

min
x∈R2
‖Ax − b‖2

2 + λmax(|x‖1.3 − 1; 0)

−1.5 −1 −0.5 0 0.5
−0.5

0

0.5

1

1.5

0.28

0.28

0.28

0.28

0.28

0.28

0.56

0.56

0.56

0.56

0.56

0.84

0.84

0.84

1.12

1.12

1.12

1.4

1.4

1.68

1.68

1.96

1.96

2.242.522.8

M
x?

Proximal Gradient

Accelerated Proximal Gradient

0 50 100 150

10−18

10−13

10−8

10−3

102

number of proximal gradient steps

F(
x k
)
−

F?

Proximal Gradient

Accel. Proximal Gradient

Prov. Alg – T1

Prov. Alg – T2

⊕ marks identification time

l1

12 / 25

>>> Back to initial problems: distance to 1.3-norm ball ACCELERATION VS IDENTIF

min
x∈R2
‖Ax − b‖2

2 + λmax(|x‖1.3 − 1; 0)

−1.5 −1 −0.5 0 0.5
−0.5

0

0.5

1

1.5

0.28

0.28

0.28

0.28

0.28

0.28

0.56

0.56

0.56

0.56

0.56

0.84

0.84

0.84

1.12

1.12

1.12

1.4

1.4

1.68

1.68

1.96

1.96

2.242.522.8

x?

Proximal Gradient

Accelerated Proximal Gradient

T1

T2

0 50 100 150

10−18

10−13

10−8

10−3

102

number of proximal gradient steps
F(

x k
)
−

F?

Proximal Gradient

Accel. Proximal Gradient

Prov. Alg – T1

Prov. Alg – T2

⊕ marks identification time

l1

12 / 25

>>> Matrix regression with nuclear-norm regularization ACCELERATION VS IDENTIF

min
X∈R20×20

‖AX − B‖2
F + λ‖X‖∗

> S ∈ R20×20 is a rank 3 matrix;
> A ∈ R(16×16)×(20×20) is drawn from the normal distribution;
> B = AS + E with E drawn from the normal distribution with variance .01

10−9

10−6

10−3

100

0 · 100 1 · 104 2 · 104 3 · 104
0

20

40

60

80

100

di
m

Ke
r(

X k
)/

di
m

Ke
r(

S)
(i

n
%

)

Proximal Gradient

10−9

10−6

10−3

100

0 · 100 1 · 104 2 · 104 3 · 104
0

20

40

60

80

100

iterations

di
m

Ke
r(

X k
)/

di
m

Ke
r(

S)
(i

n
%

)

T1

10−9

10−6

10−3

100

F(
x k
)
−

F?

0 · 100 1 · 104 2 · 104 3 · 104
0

20

40

60

80

100
Accel. Proximal Gradient

10−9

10−6

10−3

100

F(
x k
)
−

F?

0 · 100 1 · 104 2 · 104 3 · 104
0

20

40

60

80

100

iterations

T2

13 / 25

>>> Take-Home Message #1 ACCELERATION VS IDENTIF

> acceleration can hurt identification for the proximal gradient algorithm;

⇒ Faster convergence does not means faster structure identification

⇒ Accuracy vs. Structure tradeoff for the learning problem

> we proposed a method with stable identification behavior, maintaining an
accelerated convergence rate.

. Bareilles & I.: On the Interplay between Acceleration and Identification for the
Proximal Gradient algorithm, Computational Optimization and Applications, 2020,
https://arxiv.org/abs/1909.08944. Try it in Julia on
https://github.com/GillesBareilles/Acceleration-Identification

14 / 25

https://arxiv.org/abs/1909.08944
https://github.com/GillesBareilles/Acceleration-Identification

INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION

ADAPTIVE COORDINATE DESCENT

QUICK PEEK 1: DISTRIBUTED LEARNING

QUICK PEEK 2: PREDICTOR-CORRECTOR METHODS

>>> Numerical methods for the lasso ADAPTIVE DESCENT

Find x? ∈ argmin
x∈Rn

f(x)︷ ︸︸ ︷
1
2
‖Ax − b‖2

2 +

g(x)︷ ︸︸ ︷
λ‖x‖1

• Grad. of f : per coordinate

∇i f(x) = A>i (Ax − b)

• Prox. of g: per coordinate

[
proxγλ‖·‖1

(u)
]

i
= STγλ(ui) =





ui − λγ if ui > λγ
0 if ui ∈ [−λγ;λγ]
ui + λγ if ui < −λγ

Using a Quadratic Program (QP) solver in low dimension!

Works for

- most Generalized Linear models eg. logistic but screening rules are looser

- other regularizations eg. elastic net

as long as the prox is separable

� Friedman, Hastie, Tibshirani: glmnet R package (2009)
� — : Regularization paths for generalized linear models via coordinate descent. J. of Stat. Softw. (2010)
� Ndiaye, Fercoq, Gramfort, Salmon: Gap-safe screening rules for sparsity enforcing penalties. JMLR (2017)
� Massias, Gramfort, Salmon: Celer: a Fast Solver for the Lasso with Dual Extrapolation. ICML (2018)

15 / 25

>>> Numerical methods for the lasso ADAPTIVE DESCENT

Find x? ∈ argmin
x∈Rn

f(x)︷ ︸︸ ︷
1
2
‖Ax − b‖2

2 +

g(x)︷ ︸︸ ︷
λ‖x‖1

• Grad. of f : per coordinate

∇i f(x) = A>i (Ax − b)

• Prox. of g: per coordinate

[
proxγλ‖·‖1

(u)
]

i
= STγλ(ui) =





ui − λγ if ui > λγ
0 if ui ∈ [−λγ;λγ]
ui + λγ if ui < −λγ

Proximal Gradient (aka ISTA):
for all coordinates i

{
ui,k+1 = xi,k − γA>i (Axk − b)

xi,k+1 = STγλ(ui,k+1)

Works for
- most Generalized Linear models eg. logistic

but screening rules are looser

- other regularizations eg. elastic net

as long as the prox is separable

� Friedman, Hastie, Tibshirani: glmnet R package (2009)
� — : Regularization paths for generalized linear models via coordinate descent. J. of Stat. Softw. (2010)
� Ndiaye, Fercoq, Gramfort, Salmon: Gap-safe screening rules for sparsity enforcing penalties. JMLR (2017)
� Massias, Gramfort, Salmon: Celer: a Fast Solver for the Lasso with Dual Extrapolation. ICML (2018)

15 / 25

>>> Numerical methods for the lasso ADAPTIVE DESCENT

Find x? ∈ argmin
x∈Rn

f(x)︷ ︸︸ ︷
1
2
‖Ax − b‖2

2 +

g(x)︷ ︸︸ ︷
λ‖x‖1

• Grad. of f : per coordinate

∇i f(x) = A>i (Ax − b)

• Prox. of g: per coordinate

[
proxγλ‖·‖1

(u)
]

i
= STγλ(ui) =





ui − λγ if ui > λγ
0 if ui ∈ [−λγ;λγ]
ui + λγ if ui < −λγ

Coordinate Descent:
for one coordinate i

{
ui,k+1 = xi,k − γA>i (Axk − b)

xi,k+1 = STγλ(ui,k+1)
chosen at random, or by importance, or by screening, etc.

Works for
- most Generalized Linear models eg. logistic but screening rules are looser
- other regularizations eg. elastic net as long as the prox is separable

� Friedman, Hastie, Tibshirani: glmnet R package (2009)
� — : Regularization paths for generalized linear models via coordinate descent. J. of Stat. Softw. (2010)
� Ndiaye, Fercoq, Gramfort, Salmon: Gap-safe screening rules for sparsity enforcing penalties. JMLR (2017)
� Massias, Gramfort, Salmon: Celer: a Fast Solver for the Lasso with Dual Extrapolation. ICML (2018)

15 / 25

>>> Using identified structure in CD ADAPTIVE DESCENT

Disclaimer: We assume that the identified structure is linear
eg: `1/`2-group lasso, 1D TV-fused lasso but not separability of g.





ObserveMk = Rn⋂
i:xk∈Mi

(ξk,i

Mi

+ (1− ξk,i)Rn) for ξk,i ∼ B(p)

and compute Pk = EprojMk
and Qk = (Pk)

−1/2sometimes, else keep prev. dist.

uk =

Qk (

xk − γ∇f(xk)

)

zk =

projMk
(

uk

) + proj⊥Mk
(zk−1)

xk+1 = proxγg(

Q−1
k

zk)

> Vanilla Proximal gradient identifies but does not use it
full gradient computed at each iteration

We again pre-define a collection C = {M1, ..,Mp} of sought structures (eg. sparsity
patternsMi = {x ∈ Rn : xi = 0} .

If we knew thatM? ∈Mi (eg. looking at the suboptimality gap), we could drop the
i-th coordinate update, ie. do screening.

16 / 25

>>> Using identified structure in CD ADAPTIVE DESCENT

Disclaimer: We assume that the identified structure is linear
eg: `1/`2-group lasso, 1D TV-fused lasso but not separability of g.





ObserveMk = Rn⋂
i:xk∈Mi

(ξk,i

Mi

+ (1− ξk,i)Rn) for ξk,i ∼ B(p)
and compute Pk = EprojMk

and Qk = (Pk)
−1/2sometimes, else keep prev. dist.

uk =

Qk (

xk − γ∇f(xk)

)

zk = projMk
(uk) + proj⊥Mk

(zk−1)

xk+1 = proxγg(

Q−1
k

zk)

> Direct Use of Identification may not converge
eg: starting with 0

We again pre-define a collection C = {M1, ..,Mp} of sought structures (eg. sparsity
patternsMi = {x ∈ Rn : xi = 0} .
If we knew thatM? ∈Mi (eg. looking at the suboptimality gap), we could drop the
i-th coordinate update, ie. do screening.

16 / 25

>>> Using identified structure in CD ADAPTIVE DESCENT

Disclaimer: We assume that the identified structure is linear
eg: `1/`2-group lasso, 1D TV-fused lasso but not separability of g.





ObserveMk = Rn⋂
i:xk∈Mi

(ξk,iMi + (1− ξk,i)Rn) for ξk,i ∼ B(p)

and compute Pk = EprojMk
and Qk = (Pk)

−1/2sometimes, else keep prev. dist.

uk =

Qk (

xk − γ∇f(xk)

)

zk = projMk
(uk) + proj⊥Mk

(zk−1)

xk+1 = proxγg(

Q−1
k

zk)

> Mixing Identification and Randomized “coordinate” descent biases
convergence issues

We again pre-define a collection C = {M1, ..,Mp} of sought structures (eg. sparsity
patternsMi = {x ∈ Rn : xi = 0} .

If we knew thatM? ∈Mi (eg. looking at the suboptimality gap), we could drop the
i-th coordinate update, ie. do screening.

16 / 25

>>> Using identified structure in CD ADAPTIVE DESCENT

Disclaimer: We assume that the identified structure is linear
eg: `1/`2-group lasso, 1D TV-fused lasso but not separability of g.





ObserveMk = Rn⋂
i:xk∈Mi

(ξk,iMi + (1− ξk,i)Rn) for ξk,i ∼ B(p)
and compute Pk = EprojMk

and Qk = (Pk)
−1/2

sometimes, else keep prev. dist.

uk = Qk (xk − γ∇f(xk))

zk = projMk
(uk) + proj⊥Mk

(zk−1)

xk+1 = proxγg(Q
−1
k zk)

> Unbiasing with Qk works after identification
but before... no, which prevents identification...

TV-regularized logistic regression:
0 0.2 0.4 0.6 0.8 1 1.2 1.4

·105

10

15

20

25

30

Iteration

It
er

at
es

st
ru

ct
ur

al
sp

ar
si

ty

every iteration as in theory

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·105

10−10

10−7

10−4

10−1

102

Iteration

Su
bo

pt
im

al
it

y

every iteration as in theory

16 / 25

>>> Using identified structure in CD ADAPTIVE DESCENT

Disclaimer: We assume that the identified structure is linear
eg: `1/`2-group lasso, 1D TV-fused lasso but not separability of g.





ObserveMk = Rn⋂
i:x`∈Mi

(ξk,iMi + (1− ξk,i)Rn) for ξk,i ∼ B(p)
and compute Pk = EprojMk

and Qk = (Pk)
−1/2sometimes, else keep prev. dist.

uk = Qk (xk − γ∇f(xk))

zk = projMk
(uk) + proj⊥Mk

(zk−1)

xk+1 = proxγg(Q
−1
k zk)

> Structure adaptation can be performed at some iterations
depends on the amount of change ‖Qk−1Q−1

k ‖ and harshness of the sparsification λmin(Qk)

TV-regularized logistic regression:
0 0.2 0.4 0.6 0.8 1 1.2 1.4

·105

10

15

20

25

30

Iteration

It
er

at
es

st
ru

ct
ur

al
sp

ar
si

ty

every iteration as in theory

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·105

10−10

10−7

10−4

10−1

102

Iteration

Su
bo

pt
im

al
it

y

every iteration as in theory

16 / 25

>>> Convergence result ADAPTIVE DESCENT

Theorem (informal)
Let f , g be two convex functions such that f is L-smooth, µ-strongly convex, g is lower semi-continuous.

Take γ ∈ (0, 2/(µ+ L)]. Then, one can devise a adaptation strategy such that the
iterates of the previous method satisfy

E‖xk − x?‖ = O
((

1− λ γµL
µ+ L

)ak
)

where ak is the number of adaptations performed before k and
λ = infk λmin(EprojMk

).

Furthermore, if the problem has a unique minimizer x? and the qualifying
constraint (QC) holds, then the iterates sequence (xk) converges, finite-time
identification happens and

‖xk − x?‖ = OP

((
1− 2λ

γµL
µ+ L

)k
)
.

∃ε > 0 such that for all u ∈ B(x? − γ∇f(x?), ε), proxγg(u) ∈ M? (QC)

For the `1 norm, this means this means −∇i f(x?) ∈ (−λ;λ).
17 / 25

>>> Numerical illustrations ADAPTIVE DESCENT

Logistic regression on a1a (1605× 143),

with `1-reg. 90% final coordinate sparsity

0 0.5 1 1.5 2 2.5 3

·104

0

20

40

60

80

100

Iteration

It
er

at
e

sp
ar

si
ty

prox. grad.

CD w/ 10%

Ada. CD w/ 10%

0 0.5 1 1.5 2 2.5 3

·104

10−8

10−6

10−4

10−2

100

Iteration

Su
bo

pt
im

al
it

y

prox. grad.

CD w/ 10%

Ada. CD w/ 10%

0 0.2 0.4 0.6 0.8 1

·109

10−7

10−5

10−3

10−1

101

Number of Subspaces explored

Su
bo

pt
im

al
it

y

prox. grad.

CD w/ 10%

Ada. CD w/ 10%

with TV-reg. 90% final jump sparsity

0 1,000 2,000 3,000 4,000

20

40

60

80

10%

10% 10% 10%

20%

20% 20% 20%

50%

50% 50% 50%

Iteration

It
er

at
e

de
ns

it
y

prox. grad.

CD w/ 20%

Ada. CD w/ 1

10% Ada. CD w/ 10%

20% Ada. CD w/ 20%

50% Ada. CD w/ 50%

0 1,000 2,000 3,000 4,000
10−11

10−8

10−5

10−2

101

10%

10%

10%

10%

20%

20%

20%

20%

50%

50%

50%

50%

Iteration

Su
bo

pt
im

al
it

y

prox. grad.

CD w/ 20%

Ada. CD w/ 1

10% Ada. CD w/ 10%

20% Ada. CD w/ 20%

50% Ada. CD w/ 50%

0 1 2 3 4

·105

10−11

10−8

10−5

10−2

101

10%

10%

10%

10%

20%

20%

20%

20%

50%

50%

50%

50%

Number of Subspaces explored
Su

bo
pt

im
al

it
y

prox. grad.

CD w/ 20%

Ada. CD w/ 1

10% Ada. CD w/ 10%

20% Ada. CD w/ 20%

50% Ada. CD w/ 50%

18 / 25

>>> Take-Home Message #2 ADAPTIVE DESCENT

> Iterate structure enforced by nonsmooth regularizers can be used to
adapt the selection probabilities of coordinate descent/sketching;

> Before identification, adaptation has to be moderate;

> Qualified minimizers once again grant better results in theory.

. Grishchenko, I., & Malick: Proximal Gradient Methods with Adaptive
Subspace Sampling, Mathematics of Operation Research, 2020,
https://arxiv.org/abs/2004.13356

19 / 25

https://arxiv.org/abs/2004.13356

INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION

ADAPTIVE COORDINATE DESCENT

QUICK PEEK 1: DISTRIBUTED LEARNING

QUICK PEEK 2: PREDICTOR-CORRECTOR METHODS

>>> Distributed Proximal Gradient QUICK PEEK 1: DISTRIBUTED LEARNING

A
lg

or
it

hm Worker i updates w/ local data (fi)

xk+1/2
i = xk − γ∇fi(xk)

for all i = 1, ..,M

Master gathers the local variables

xk+1 =
∑M

i=1 πix
k+1/2
i

Master performs a proximity operation

xk+1
1 = .. = xk+1

M = proxγg

(
xk+1

)
Im

pl
em

en
ta

ti
on

Master

Worker 1
Worker 2

...

Worker M

∇f1
∇f2
...
∇fM

Map

Master

Worker 1
Worker 2

...

Worker M

∑M
i=1 πi·

proxγg

Reduce

Distributed Proximal Gradient
Master:

Initialize x = x0,
while not converged do

when all workers have finished:
Receive (xi) from each of them

x ← ∑M
i=1 πixi

x ← proxγg(x)
Broadcast x to all agents
k ← k + 1

Interrupt all slaves
Output x

Worker i:

Initialize x = xi = x,
while not interrupted by master do

Receive the most recent x
xi ← x − γ∇fi(x)
Send xi to the master

fi(x) = 1
|Si|

∑
j∈Si

`j(x)
Local risk at worker i

20 / 25

>>> Sparse Asynchronous communications QUICK PEEK 1: DISTRIBUTED LEARNING

Communications may soon become the bottleneck in distributed learning,
hence the rise of asynchronous methods.

DAve-PG
Master:

Initialize x
while not converged do

when a worker finishes:
Receive adjustment ∆ from it
x ← x + ∆
x ← proxγg(x)
Send x to the agent in return
k ← k + 1

Interrupt all slaves
Output x

Worker i:

Initialize x = xi = x,
while not interrupted by master do

Receive the most recent x
xi ← x − γ∇fi(x)

∆ ← πi
(

xi − xprev
i

)
xprev
i ← xi

Send adjustment ∆ to master

fi(x) = 1
|Si|

∑
j∈Si

`j(x)
Local risk at worker i

> With sparsity inducing regularizers (eg. `1 norm), master-to-worker
communications will eventually become sparse⇒ Use it!
identification of proximal methods

> Unfortunately, worker-to-master communications stay dense...
Idea: sparsify adaptively!

21 / 25

>>> Take-Home Message #3 QUICK PEEK 1: DISTRIBUTED LEARNING

> Whenever structure appears, it can often be used numerically
storage, communications

> Importance of qualified solutions and adaptation frequency
to achieve best theoretical performance

. Mishchenko, I., Malick, Amini: A Delay-tolerant Proximal-Gradient Algorithm
for Distributed Learning, ICML 2018
http://proceedings.mlr.press/v80/mishchenko18a.html

. Grishchenko, I., Malick, Amini: Distributed Learning with Sparse
Communications by Identification, 2020 https://arxiv.org/abs/1812.03871

22 / 25

http://proceedings.mlr.press/v80/mishchenko18a.html
https://arxiv.org/abs/1812.03871

INTERPLAY BETWEEN ACCELERATION AND IDENTIFICATION

ADAPTIVE COORDINATE DESCENT

QUICK PEEK 1: DISTRIBUTED LEARNING

QUICK PEEK 2: PREDICTOR-CORRECTOR METHODS

>>> Using a Riemannian structure QUICK PEEK 2: PREDICTOR-CORRECTOR METHODS

Recall that when solving a Regularized ERM problem with proximal gradient




ObserveMk, then yk+1 = RiemannianStepf+g(xk,Mk)

uk+1 = xk − γ∇f(xk)
xk+1 = proxγg(uk+1)

the proximity operator outputs a current structureMk ⊂ Rn (xk ∈Mk) and
eventuallyMk =M?.

Predictor-Corrector methods: perform a Riemannian step onMk, then a
proximal step to correct the structure, and so on.

Numerical boost: Riemannian (truncated) Newton methods can be orders of
magnitude faster than proximal gradient.
eg. cv. in ≈ 1 iteration for the lasso if a (true) small enough support is detected; reduction to

smaller rank for matrix regression.

� Lemaréchal, Oustry, Sagastizábal: The U-Lagrangian of a convex function. Trans. of the AMS (2000)
� Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured

optimization problems. Optimization (2006)

23 / 25

>>> Using a Riemannian structure QUICK PEEK 2: PREDICTOR-CORRECTOR METHODS

Recall that when solving a Regularized ERM problem with proximal gradient




ObserveMk, then yk+1 = RiemannianStepf+g(xk,Mk)

uk+1 = yk − γ∇f(yk)
xk+1 = proxγg(uk+1)

the proximity operator outputs a current structureMk ⊂ Rn (xk ∈Mk) and
eventuallyMk =M?.

Predictor-Corrector methods: perform a Riemannian step onMk, then a
proximal step to correct the structure, and so on.

Numerical boost: Riemannian (truncated) Newton methods can be orders of
magnitude faster than proximal gradient.
eg. cv. in ≈ 1 iteration for the lasso if a (true) small enough support is detected; reduction to

smaller rank for matrix regression.

� Lemaréchal, Oustry, Sagastizábal: The U-Lagrangian of a convex function. Trans. of the AMS (2000)
� Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured

optimization problems. Optimization (2006)

23 / 25

>>> Using a Riemannian structure QUICK PEEK 2: PREDICTOR-CORRECTOR METHODS

Recall that when solving a Regularized ERM problem with proximal gradient




ObserveMk, then yk+1 = RiemannianStepf+g(xk,Mk)

uk+1 = yk − γ∇f(yk)
xk+1 = proxγg(uk+1)

the proximity operator outputs a current structureMk ⊂ Rn (xk ∈Mk) and
eventuallyMk =M?.

Predictor-Corrector methods: perform a Riemannian step onMk, then a
proximal step to correct the structure, and so on.

Numerical boost: Riemannian (truncated) Newton methods can be orders of
magnitude faster than proximal gradient.
eg. cv. in ≈ 1 iteration for the lasso if a (true) small enough support is detected; reduction to

smaller rank for matrix regression.

� Lemaréchal, Oustry, Sagastizábal: The U-Lagrangian of a convex function. Trans. of the AMS (2000)
� Daniilidis, Hare, Malick: Geometrical interpretation of the predictor-corrector type algorithms in structured

optimization problems. Optimization (2006)

23 / 25

>>> Take-Home Message #4 QUICK PEEK 2: PREDICTOR-CORRECTOR METHODS

> Regularized ERM problems often have a particular proximal structure
current structure knowledge is often deemed impossible in nonsmooth optimization since eg.

numerically checking the rank of a matrix is hard; however, after a proximal step that

thresholds singular values, the numerical/theoretical rank is known!

> Non-convex regularizations can work
you may use `0 semi norm, rank for a matrix

. Bareilles, I., Malick: ???, to appear soonish!

24 / 25

>>> Harnessing Structure in Optimization for ML CONCLUSION

> Machine Learning problems often have a noticeable structure;
sparsity, low rank

> This structure is identified progressively by proximal methods;
+ CD, Var. Red., Distributed methods, etc.

> For most problem, we do not know if the identified structure is optimal;
adaptivity is key

> Nevertheless, it can be used to boost numerical performance;
low complexity model

> Structure vs. Optimality tradeoff in Optimization for ML.
structure is better than overfitting

. I., Malick: Nonsmoothness in Machine Learning: specific structure, proximal identification, and
applications, review/pedagogical paper, SVVA, 2020, https://arxiv.org/abs/2010.00848

. Bareilles, I.: On the Interplay between Acceleration and Identification for the Proximal Gradient
algorithm, COAP, 2020, https://arxiv.org/abs/1909.08944.

. Grishchenko, I., Malick: Proximal Gradient Methods with Adaptive Subspace Sampling, MOR, 2020,
https://arxiv.org/abs/2004.13356

. Grishchenko, I., Malick, Amini: Distributed Learning with Sparse Communications by Identif.,2020
https://arxiv.org/abs/1812.03871

Thanks to ANR JCJC STROLL & IDEX UGA IRS DOLL & PGMO

Thank you! – Franck IUTZELER http://www.iutzeler.org

25 / 25

https://arxiv.org/abs/2010.00848
https://arxiv.org/abs/1909.08944
https://arxiv.org/abs/2004.13356
https://arxiv.org/abs/1812.03871
http://www.iutzeler.org

	Interplay between Acceleration and Identification
	Adaptive Coordinate Descent
	Quick peek 1: Distributed learning
	Quick peek 2: Predictor-Corrector methods
	Conclusion

