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General Context: Distributed Optimization
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The goal is to distributively reach a consensus over a solution of a global
optimization problem using only local computations and communications.
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Introduction

Problem

Solving a distributed optimization problem based on the sum of the agents
private functions.

Problem:

min
x∈R

f(x) ,
∑
i∈V

fi(x)

f1 f2

f3

f4

f5

fi is a convex function local to agent i

f is nowhere available

Agents want to reach consensus over a
minimizer x? of f
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Reformulating our problem

A proper problem for distributed optimization

The original problem is not suited as it does take into account

the fact that each sensor only has access to its own cost function;

the fact that the agents have to exchange to reach the wanted optimum.

min
x∈R

∑
i∈V

fi(x)

Starting from the original problem

min
x∈RN

F(x) ,
∑
i∈V

fi(xi)

subject to x1=x2=...=xN

Adding the fact that the agents only
know their own functions

min
x∈RN

F(x) + ιSpan(1)(x)

We put the constraint into the function to
minimize

with the indicator function

ιC(x) =
{

0 if x ∈ C
+∞ elsewhere
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Reformulating our consensus constraint

We ensure consensus on L overlapping connected subsets [Schizas2008]

A1 = {1, 2} M1x =

[
x1

x2

]

A2 = {2, 3, 4} M2x =

 x2

x3

x4


A3 = {4, 5} M3x =

[
x4

x5

]

M ,

 M1

M2

M3

: size
∑L
`=1 |A`| , M × N

ιSpan(1)

([
x1

x2

])
+ ιSpan(1)

 x2

x3

x4

 + ιSpan(1)

([
x4

x5

])
= ιSpan(1) (x)

Equivalent problem

min
x∈RN

F(x) + G(Mx)

4 / 24
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Introducing the Alternating Direction Method of Multipliers

min
x∈RN

,z∈RM

F(x) + G(Mx)

A separable networked separated problem...

... that we can split by adding a constraint.

As it is constrained, we consider its

augmented

Lagrangian:

L

ρ

(x, z;λ) = F(x) + G(z) + 〈Mx − z;λ〉

+
ρ

2
‖Mx − z‖2

2
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min
x∈RN ,z∈RM

F(x) + G(z)

subject to Mx=z

A separable networked separated problem...

... that we can split by adding a constraint.

As it is constrained, we consider its augmented Lagrangian:

Lρ(x, z;λ) = F(x) + G(z) + 〈Mx − z;λ〉+ρ

2
‖Mx − z‖2

2
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The Alternating Direction Method of Multipliers

The ALTERNATING DIRECTION METHOD OF MULTIPLIERS consists in three steps:

I xk+1 = argmin
x
Lρ(x, zk;λk) − primal optimum computation w.r.t F

I zk+1 = argmin
z
Lρ(xk+1, z;λk) − primal optimum computation w.r.t. G

I λk+1 =λk + ρ
(

Mxk+1 − zk+1
)
− dual update

The hyper-parameter ρ is common to the 3 steps

6 / 24
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Distributed optimization with the ADMM [Schizas2008]

f1 f2

f3

f4

f5

Each step can be split by agent/block

· z|`: |A`|-sized block, corresponds to

subset `

· λi,|`: scalar, corresponds to agent i’s

entry in subset ` ∈ σi , {l : i ∈ Al}

DISTRIBUTED OPTIMIZATION WITH ADMM
At each clock tick k:

I Every sensor i performs a minimization:

xk+1
i = argmin

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2


I Every subset A` computes its average:

z̄k+1
|` =

1
|A`|

∑
i∈A`

xk+1
i

I Every sensor i updates:

∀` ∈ σi, λk+1
i,|` = λk

i,|` + ρ(xk+1
i − z̄k+1

` )

argmin: costs in computational time

averaging: costs in networking
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Distributed optimization with the ADMM [Schizas2008]
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Introducing Monotone Operators

Reasons

Unified mathematical theory for convex minimization

Simplicity and Elegance of the proofs

Intuitive vision that enables to derive new asynchronous algorithms
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Introducing Monotone Operators

Definition of a monotone operator

An operator T on RN is a set-valued mapping:

T : RN → 2R
N

x 7→ T(x) ⊂ RN.

T is said to be monotone if

∀(x, y), (x′, y′) ∈ T, 〈x − x′; y− y′〉 ≥ 0

and maximal if it is not strictly contained in any other monotone operator as a
subset of RN ×RN.

Extension of RN → RN monotone functions

(x, y) ∈ T iff y ∈ T(x)

Example: subdifferential of a convex function h

∂h is a maximally monotone operator.
We want to find a zero of ∂h.

8 / 24
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The resolvent of an operator

Resolvent of an operator T

The resolvent of T is the operator defined as:

JT , (I + T)−1.

I is the identity operator I(x) = x and (x, y) ∈ T iff (y, x) ∈ T−1.

Example: subdifferential of a convex function h

Finding a zero of ∂h⇔ Finding a fixed point of J∂h

Natural fixed-point algorithm:

ζk+1 = J∂h(ζk)

We want to know the contraction properties of J∂h.
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Contraction properties of resolvents

Lemma

J is the resolvent of a monotone operator iff it is Firmly Non-Expansive (FNE):

∀(x, x′), 〈x − x′; J(x)− J(x′)〉 ≥ ‖J(x)− J(x′)‖2.

J is not Banach contracting.

x − x′
J(x)− J(x′)

NE

FNE

contracting

10 / 24
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The Proximal point algorithm

Lemma [Rockafellar1976]

Let J be a FNE operator such that fix J 6= ∅, the sequence generated by

ζk+1 = J(ζk)

converges to a point of fix J.

Example: subdifferential of a convex function h

Iterating J∂h leads to the Proximal Point Algorithm:

xk+1 = J∂h(xk)⇔ xk+1 = argmin
x

{
h(x) +

1
2

∥∥∥x − xk
∥∥∥2
}

which converges to a zero of ∂h if any.
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Solving our problem

Equivalent problem

min
x∈RN

F(x) + G(Mx)

Dual problem

max
λ∈RM

D(λ) , −F∗(−MTλ)− G∗(λ)

Solving our problem with monotone operators

We want to find a zero of U + V

−∂D = −M∂F∗(−MT·)︸ ︷︷ ︸
U

+ ∂G∗︸︷︷︸
V

using the resolvents of U and V separately.

12 / 24
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Lions-Mercier operator and Douglas-Rachford splitting

Lemma [Lions1979]

The resolvent JLM of Lions-Mercier operator for splitting two operators U and V:

is defined as JLM , JρU ◦ (2JρV − I) + (I− JρV);

is FNE if U and V are monotone;

has a fixed point if zer(U + V) 6= ∅.
If ζ? ∈ fix JLM then λ? , JρV(ζ?) ∈ zer(U + V).

Solving our problem with monotone operators

Iterating JLM with U = −M∂F∗(−MT·) and V = ∂G∗ leads to the ADMM.

The iterations of JLM are performed on ζ ∈ RM , problem variables λ , JρV(ζ), z and x are
intermediate variables.
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About the linear convergence rate of Distributed ADMM

This formalism guided us onto the study of the linear rate

Assumptions

The functions fi ∈ Γ0(R). Furthermore, the infimum of our problem is
attained at a point x? such that the functions fi are twice differentiable at x?

and
N∑

i=1

∇2fi(x?) > 0.

Define Q = ρM


∇

2f1(x?)
. . .

∇2fN(x?)

+ ρMTM


−1

M?,

P =

J|A1|
. . .

J|AL|

 and R = (Πspan(P+Q) − (P + Q))(I− 2P).

14 / 24
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About the linear convergence rate of Distributed ADMM

In the quadratic case, we have ζk+1 = Rζk+1 + d and thus
xk − x? ∝ Rk(ζ0 − ζ?) so the spectral radius of R controls the convergence
rate.

In the general case, we can prove that r(R) still controls the convergence
rate.

Theorem

Under the previous assumption, α = r(R) < 1 and for any initial value (z0, λ0)
of the ADMM algorithm,

lim sup
k→∞

1
k

log ‖xk − 1N ⊗ x?‖ ≤ logα.

F. Iutzeler, P. Bianchi, Ph. Ciblat, W. Hachem, “Explicit Convergence Rate of a Distributed Alternating
Direction Method of Multipliers,” http://arxiv.org/abs/1312.1085, Dec. 2013.
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Numerical illustrations

5-node graph separated as before, exponential functions
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Our rate is tight
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Numerical illustrations

Centralized 5-node graph, quadratic functions with identic second order
derivatives σ2 = 16
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Optimal rate is 1/2 obtained for ρ = σ2.
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Numerical illustrations

Centralized 5-node graph, quadratic functions with different second order
derivatives 4, 9, 16, 25 and 39
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Optimal rate is > 1/2.
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Numerical illustrations

Ring graph, quadratic functions with identic second order derivatives σ2 = 16

The optimal parameter ρ grows linearly with N
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Block-random updates and Asynchronous optimization

One can remark that updating the block ` in ζ is equivalent to update subset `.

Let us try to update only one block chosen at random.

ζk+1 =



ζk+1
1
...

ζk+1
`

...
ζk+1

L


=



JLM
|1 (ζk)

...
JLM
|` (ζk)

...
JLM
|L (ζk)


= JLM(ζk)

Problem: JLM is FNE but ĴLM
|` is not.

Theorem

Let J be a FNE operator and {ξk} be an i.i.d. process valued in {1,...,L} such that
P[ξ = `] > 0 ∀`. Then, the iterations

ζk+1 = Ĵ|ξk (ζk)

produce a sequence converging almost surely to a fixed point of J if any.

F. Iutzeler, P. Bianchi, Ph. Ciblat, W. Hachem, “Asynchronous Distributed Optimization using a
Randomized Alternating Direction Method of Multipliers,” CDC, Dec. 2013.
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Block-random updates and Asynchronous optimization

One can remark that updating the block ` in ζ is equivalent to update subset `.
Let us try to update only one block chosen at random.

ζk+1 =



ζk+1
|1
...

ζk+1
|`
...

ζk+1
|L


=



ζk
|1
...

JLM
|` (ζk)

...
ζk
|L


, ĴLM
|` (ζk)

Consequences

Our block-random fixed point converges almost surely.
But which are the iterations of this algorithm applied to JLM?
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Asynchronous optimization with a randomized ADMM

f1 f2

f3

f4

f5

ASYNCHRONOUS OPTIMIZATION W/ ADMM

At each clock tick k, let ξk+1 be the index of
the active block:

I Every sensor i ∈ Aξk+1 of the block
performs a proximal operation:

xk+1
i = argmin

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2


I The block computes its average:

z̄k+1
|ξk+1 =

1
|Aξk+1 |

∑
i∈A

ξk+1

xk+1
i

I Every sensor i ∈ Aξk+1 of the block
updates:

λk+1
i,|ξk+1 = λk

i,|ξk+1 + ρ(xk+1
i − z̄k+1

ξk+1 )
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Numerical illustrations
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Synchronous Distributed Optimization with the ADMM

Asynchronous Distributed Optimization with the ADMM

Synchronous ADMM: 1 iteration = N argmin + L block-averaging

Asynchronous ADMM: 1 iteration = |Aξk | argmin + 1 block-averaging
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About the linear convergence of this asynchronous optimization
algorithm

Theorem

Under the same assumptions as in the synchronous case and with i.i.d. choices of
the blocks, there is α < 1 such that for any initial value (z0, λ0) of the ADMM
algorithm,

lim sup
k→∞

1
k

log ‖xk − 1N ⊗ x?‖ ≤ logα with probability 1.

To appear, May 2014.

The asynchronous fashion does not change the convergence mode

The rate α is closely linked to the one in the synchronous case

22 / 24



Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Applications

Our asynchronous setup enables us to deal with a large variety of
situations

Distributed Optimization using local
coordinators

Distributed Optimization with One-Way
communications

Mini-batch optimization/learning
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General Conclusion & Perspectives

Conclusions

Bringing randomness enables to deal with a large variety of situations

Linear convergence and precise rates can be obtained

Perspectives

Deriving techniques to obtain good values of parameter ρ

Implementing asynchronous optimization for machine learning in a
practical big data network
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