
DISTRIBUTED ASYNCHRONOUS OPTIMIZATION WITH
THE ALTERNATING DIRECTION METHOD OF MULTIPLIERS

Franck IUTZELER

Alcatel-Lucent Chair on Flexible Radio – Supélec

Université Catholique de Louvain – April 28th, 2014

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

General Context: Distributed Optimization

OPTIMIZATION

ressource allocation, learning

AGENTS

local data, computational power

NETWORK

communication between agents

Goal

The goal is to distributively reach a consensus over a solution of a global
optimization problem using only local computations and communications.

1 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

General Context: Distributed Optimization

OPTIMIZATION

ressource allocation, learning

AGENTS

local data, computational power

NETWORK

communication between agents

Goal

The goal is to distributively reach a consensus over a solution of a global
optimization problem using only local computations and communications.

1 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

General Context: Distributed Optimization

OPTIMIZATION

ressource allocation, learning

AGENTS

local data, computational power

NETWORK

communication between agents

Goal

The goal is to distributively reach a consensus over a solution of a global
optimization problem using only local computations and communications.

1 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

General Context: Distributed Optimization

OPTIMIZATION

ressource allocation, learning

AGENTS

local data, computational power

NETWORK

communication between agents

Goal

The goal is to distributively reach a consensus over a solution of a global
optimization problem using only local computations and communications.

1 / 24

Outline

1 Presentation of the problem

2 Distributed Optimization with the ADMM

3 ADMM through Monotone operators

4 Asynchronous Distributed Optimization with the ADMM

5 Conclusion and Perspectives

Outline

1 Presentation of the problem

2 Distributed Optimization with the ADMM

3 ADMM through Monotone operators

4 Asynchronous Distributed Optimization with the ADMM

5 Conclusion and Perspectives

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Introduction

Problem

Solving a distributed optimization problem based on the sum of the agents
private functions.

Problem:

min
x∈R

f(x) ,
∑
i∈V

fi(x)

f1 f2

f3

f4

f5

fi is a convex function local to agent i

f is nowhere available

Agents want to reach consensus over a
minimizer x? of f

2 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Reformulating our problem

A proper problem for distributed optimization

The original problem is not suited as it does take into account

the fact that each sensor only has access to its own cost function;

the fact that the agents have to exchange to reach the wanted optimum.

min
x∈R

∑
i∈V

fi(x)

Starting from the original problem

min
x∈RN

F(x) ,
∑
i∈V

fi(xi)

subject to x1=x2=...=xN

Adding the fact that the agents only
know their own functions

min
x∈RN

F(x) + ιSpan(1)(x)

We put the constraint into the function to
minimize

with the indicator function

ιC(x) =
{

0 if x ∈ C
+∞ elsewhere

3 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Reformulating our problem

A proper problem for distributed optimization

The original problem is not suited as it does take into account

the fact that each sensor only has access to its own cost function;

the fact that the agents have to exchange to reach the wanted optimum.

min
x∈R

∑
i∈V

fi(x)

Starting from the original problem

min
x∈RN

F(x) ,
∑
i∈V

fi(xi)

subject to x1=x2=...=xN

Adding the fact that the agents only
know their own functions

min
x∈RN

F(x) + ιSpan(1)(x)

We put the constraint into the function to
minimize

with the indicator function

ιC(x) =
{

0 if x ∈ C
+∞ elsewhere

3 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Reformulating our problem

A proper problem for distributed optimization

The original problem is not suited as it does take into account

the fact that each sensor only has access to its own cost function;

the fact that the agents have to exchange to reach the wanted optimum.

min
x∈R

∑
i∈V

fi(x)

Starting from the original problem

min
x∈RN

F(x) ,
∑
i∈V

fi(xi)

subject to x1=x2=...=xN

Adding the fact that the agents only
know their own functions

min
x∈RN

F(x) + ιSpan(1)(x)

We put the constraint into the function to
minimize

with the indicator function

ιC(x) =
{

0 if x ∈ C
+∞ elsewhere

3 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Reformulating our problem

A proper problem for distributed optimization

The original problem is not suited as it does take into account

the fact that each sensor only has access to its own cost function;

the fact that the agents have to exchange to reach the wanted optimum.

min
x∈R

∑
i∈V

fi(x)

Starting from the original problem

min
x∈RN

F(x) ,
∑
i∈V

fi(xi)

subject to x1=x2=...=xN

Adding the fact that the agents only
know their own functions

min
x∈RN

F(x) + ιSpan(1)(x)

We put the constraint into the function to
minimize

with the indicator function

ιC(x) =
{

0 if x ∈ C
+∞ elsewhere

3 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Reformulating our consensus constraint

We ensure consensus on L overlapping connected subsets [Schizas2008]

A1 = {1, 2} M1x =

[
x1

x2

]

A2 = {2, 3, 4} M2x =

 x2

x3

x4

A3 = {4, 5} M3x =

[
x4

x5

]

M ,

 M1

M2

M3

: size
∑L
`=1 |A`| , M × N

ιSpan(1)

([
x1

x2

])
+ ιSpan(1)

 x2

x3

x4

 + ιSpan(1)

([
x4

x5

])
= ιSpan(1) (x)

Equivalent problem

min
x∈RN

F(x) + G(Mx)

4 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Reformulating our consensus constraint

We ensure consensus on L overlapping connected subsets [Schizas2008]

A1 = {1, 2} M1x =

[
x1

x2

]

A2 = {2, 3, 4} M2x =

 x2

x3

x4

A3 = {4, 5} M3x =

[
x4

x5

]

M ,

 M1

M2

M3

: size
∑L
`=1 |A`| , M × N

ιSpan(1)

([
x1

x2

])

+ ιSpan(1)

 x2

x3

x4

 + ιSpan(1)

([
x4

x5

])
= ιSpan(1) (x)

Equivalent problem

min
x∈RN

F(x) + G(Mx)

4 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Reformulating our consensus constraint

We ensure consensus on L overlapping connected subsets [Schizas2008]

A1 = {1, 2} M1x =

[
x1

x2

]

A2 = {2, 3, 4} M2x =

 x2

x3

x4

A3 = {4, 5} M3x =

[
x4

x5

]

M ,

 M1

M2

M3

: size
∑L
`=1 |A`| , M × N

ιSpan(1)

([
x1

x2

])
+ ιSpan(1)

 x2

x3

x4

+ ιSpan(1)

([
x4

x5

])
= ιSpan(1) (x)

Equivalent problem

min
x∈RN

F(x) + G(Mx)

4 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Reformulating our consensus constraint

We ensure consensus on L overlapping connected subsets [Schizas2008]

A1 = {1, 2} M1x =

[
x1

x2

]

A2 = {2, 3, 4} M2x =

 x2

x3

x4

A3 = {4, 5} M3x =

[
x4

x5

]

M ,

 M1

M2

M3

: size
∑L
`=1 |A`| , M × N

ιSpan(1)

([
x1

x2

])
+ ιSpan(1)

 x2

x3

x4

 + ιSpan(1)

([
x4

x5

])

= ιSpan(1) (x)

Equivalent problem

min
x∈RN

F(x) + G(Mx)

4 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Reformulating our consensus constraint

We ensure consensus on L overlapping connected subsets [Schizas2008]

A1 = {1, 2} M1x =

[
x1

x2

]

A2 = {2, 3, 4} M2x =

 x2

x3

x4

A3 = {4, 5} M3x =

[
x4

x5

]

M ,

 M1

M2

M3

: size
∑L
`=1 |A`| , M × N

ιSpan(1)

([
x1

x2

])
+ ιSpan(1)

 x2

x3

x4

 + ιSpan(1)

([
x4

x5

])
= ιSpan(1) (x)

Equivalent problem

min
x∈RN

F(x) + G(Mx)

4 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Reformulating our consensus constraint

We ensure consensus on L overlapping connected subsets [Schizas2008]

A1 = {1, 2} M1x =

[
x1

x2

]

A2 = {2, 3, 4} M2x =

 x2

x3

x4

A3 = {4, 5} M3x =

[
x4

x5

]

M ,

 M1

M2

M3

: size
∑L
`=1 |A`| , M × N

ιSpan(1) (M1x) + ιSpan(1) (M2x) + ιSpan(1) (M3x) , G (Mx)

Equivalent problem

min
x∈RN

F(x) + G(Mx)
4 / 24

Outline

1 Presentation of the problem

2 Distributed Optimization with the ADMM

3 ADMM through Monotone operators

4 Asynchronous Distributed Optimization with the ADMM

5 Conclusion and Perspectives

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Introducing the Alternating Direction Method of Multipliers

min
x∈RN

,z∈RM

F(x) + G(Mx)

A separable networked separated problem...

... that we can split by adding a constraint.

As it is constrained, we consider its

augmented

Lagrangian:

L

ρ

(x, z;λ) = F(x) + G(z) + 〈Mx − z;λ〉

+
ρ

2
‖Mx − z‖2

2

5 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Introducing the Alternating Direction Method of Multipliers

min
x∈RN ,z∈RM

F(x) + G(z)

subject to Mx=z

A separable networked separated problem...

... that we can split by adding a constraint.

As it is constrained, we consider its

augmented

Lagrangian:

L

ρ

(x, z;λ) = F(x) + G(z) + 〈Mx − z;λ〉

+
ρ

2
‖Mx − z‖2

2

5 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Introducing the Alternating Direction Method of Multipliers

min
x∈RN ,z∈RM

F(x) + G(z)

subject to Mx=z

A separable networked separated problem...

... that we can split by adding a constraint.

As it is constrained, we consider its

augmented

Lagrangian:

L

ρ

(x, z;λ) = F(x) + G(z) + 〈Mx − z;λ〉

+
ρ

2
‖Mx − z‖2

2

5 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Introducing the Alternating Direction Method of Multipliers

min
x∈RN ,z∈RM

F(x) + G(z)

subject to Mx=z

A separable networked separated problem...

... that we can split by adding a constraint.

As it is constrained, we consider its augmented Lagrangian:

Lρ(x, z;λ) = F(x) + G(z) + 〈Mx − z;λ〉+ρ

2
‖Mx − z‖2

2

5 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

The Alternating Direction Method of Multipliers

The ALTERNATING DIRECTION METHOD OF MULTIPLIERS consists in three steps:

I xk+1 = argmin
x
Lρ(x, zk;λk) − primal optimum computation w.r.t F

I zk+1 = argmin
z
Lρ(xk+1, z;λk) − primal optimum computation w.r.t. G

I λk+1 =λk + ρ
(

Mxk+1 − zk+1
)
− dual update

The hyper-parameter ρ is common to the 3 steps

6 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

The Alternating Direction Method of Multipliers

The ALTERNATING DIRECTION METHOD OF MULTIPLIERS consists in three steps:

I xk+1 = argmin
x
Lρ(x, zk;λk)

− primal optimum computation w.r.t F

I zk+1 = argmin
z
Lρ(xk+1, z;λk)

− primal optimum computation w.r.t. G

I λk+1 =λk + ρ
(

Mxk+1 − zk+1
)

− dual update

The hyper-parameter ρ is common to the 3 steps

6 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

The Alternating Direction Method of Multipliers

The ALTERNATING DIRECTION METHOD OF MULTIPLIERS consists in three steps:

I xk+1 = argmin
x

{
F(x) + G(zk) + 〈Mx − zk;λk〉+

ρ

2

∥∥∥Mx − zk
∥∥∥2

2

}

I zk+1 = argmin
z

{
F(xk+1) + G(z) + 〈Mxk+1 − z;λk〉+

ρ

2

∥∥∥Mxk+1 − z
∥∥∥2

2

}

I λk+1 =λk + ρ
(

Mxk+1 − zk+1
)

− dual update

The hyper-parameter ρ is common to the 3 steps

6 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Distributed optimization with the ADMM [Schizas2008]

f1 f2

f3

f4

f5

Each step can be split by agent/block

· z|`: |A`|-sized block, corresponds to

subset `

· λi,|`: scalar, corresponds to agent i’s

entry in subset ` ∈ σi , {l : i ∈ Al}

DISTRIBUTED OPTIMIZATION WITH ADMM
At each clock tick k:

I Every sensor i performs a minimization:

xk+1
i = argmin

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2

I Every subset A` computes its average:

z̄k+1
|` =

1
|A`|

∑
i∈A`

xk+1
i

I Every sensor i updates:

∀` ∈ σi, λk+1
i,|` = λk

i,|` + ρ(xk+1
i − z̄k+1

`)

argmin: costs in computational time

averaging: costs in networking

7 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Distributed optimization with the ADMM [Schizas2008]

argmin
f1

argmin
f2

argmin
f3

argmin
f4

argmin
f5

Each step can be split by agent/block

· z|`: |A`|-sized block, corresponds to

subset `

· λi,|`: scalar, corresponds to agent i’s

entry in subset ` ∈ σi , {l : i ∈ Al}

DISTRIBUTED OPTIMIZATION WITH ADMM
At each clock tick k:

I Every sensor i performs a minimization:

xk+1
i = argmin

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2

I Every subset A` computes its average:

z̄k+1
|` =

1
|A`|

∑
i∈A`

xk+1
i

I Every sensor i updates:

∀` ∈ σi, λk+1
i,|` = λk

i,|` + ρ(xk+1
i − z̄k+1

`)

argmin: costs in computational time

averaging: costs in networking

7 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Distributed optimization with the ADMM [Schizas2008]

z̄1

Each step can be split by agent/block

· z|`: |A`|-sized block, corresponds to

subset `

· λi,|`: scalar, corresponds to agent i’s

entry in subset ` ∈ σi , {l : i ∈ Al}

DISTRIBUTED OPTIMIZATION WITH ADMM
At each clock tick k:

I Every sensor i performs a minimization:

xk+1
i = argmin

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2

I Every subset A` computes its average:

z̄k+1
|` =

1
|A`|

∑
i∈A`

xk+1
i

I Every sensor i updates:

∀` ∈ σi, λk+1
i,|` = λk

i,|` + ρ(xk+1
i − z̄k+1

`)

argmin: costs in computational time

averaging: costs in networking

7 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Distributed optimization with the ADMM [Schizas2008]

z̄2 z̄2

z̄2

Each step can be split by agent/block

· z|`: |A`|-sized block, corresponds to

subset `

· λi,|`: scalar, corresponds to agent i’s

entry in subset ` ∈ σi , {l : i ∈ Al}

DISTRIBUTED OPTIMIZATION WITH ADMM
At each clock tick k:

I Every sensor i performs a minimization:

xk+1
i = argmin

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2

I Every subset A` computes its average:

z̄k+1
|` =

1
|A`|

∑
i∈A`

xk+1
i

I Every sensor i updates:

∀` ∈ σi, λk+1
i,|` = λk

i,|` + ρ(xk+1
i − z̄k+1

`)

argmin: costs in computational time

averaging: costs in networking

7 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Distributed optimization with the ADMM [Schizas2008]

z̄3

Each step can be split by agent/block

· z|`: |A`|-sized block, corresponds to

subset `

· λi,|`: scalar, corresponds to agent i’s

entry in subset ` ∈ σi , {l : i ∈ Al}

DISTRIBUTED OPTIMIZATION WITH ADMM
At each clock tick k:

I Every sensor i performs a minimization:

xk+1
i = argmin

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2

I Every subset A` computes its average:

z̄k+1
|` =

1
|A`|

∑
i∈A`

xk+1
i

I Every sensor i updates:

∀` ∈ σi, λk+1
i,|` = λk

i,|` + ρ(xk+1
i − z̄k+1

`)

argmin: costs in computational time

averaging: costs in networking

7 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Distributed optimization with the ADMM [Schizas2008]

λ1,|1
λ2,|1
λ2,|2

λ3,|2

λ4,|2
λ4,|3

λ5,|3

Each step can be split by agent/block

· z|`: |A`|-sized block, corresponds to

subset `

· λi,|`: scalar, corresponds to agent i’s

entry in subset ` ∈ σi , {l : i ∈ Al}

DISTRIBUTED OPTIMIZATION WITH ADMM
At each clock tick k:

I Every sensor i performs a minimization:

xk+1
i = argmin

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2

I Every subset A` computes its average:

z̄k+1
|` =

1
|A`|

∑
i∈A`

xk+1
i

I Every sensor i updates:

∀` ∈ σi, λk+1
i,|` = λk

i,|` + ρ(xk+1
i − z̄k+1

`)

argmin: costs in computational time

averaging: costs in networking
7 / 24

Outline

1 Presentation of the problem

2 Distributed Optimization with the ADMM

3 ADMM through Monotone operators

4 Asynchronous Distributed Optimization with the ADMM

5 Conclusion and Perspectives

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Introducing Monotone Operators

Reasons

Unified mathematical theory for convex minimization

Simplicity and Elegance of the proofs

Intuitive vision that enables to derive new asynchronous algorithms

8 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Introducing Monotone Operators

Definition of a monotone operator

An operator T on RN is a set-valued mapping:

T : RN → 2R
N

x 7→ T(x) ⊂ RN.

T is said to be monotone if

∀(x, y), (x′, y′) ∈ T, 〈x − x′; y− y′〉 ≥ 0

and maximal if it is not strictly contained in any other monotone operator as a
subset of RN ×RN.

Extension of RN → RN monotone functions

(x, y) ∈ T iff y ∈ T(x)

Example: subdifferential of a convex function h

∂h is a maximally monotone operator.
We want to find a zero of ∂h.

8 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

The resolvent of an operator

Resolvent of an operator T

The resolvent of T is the operator defined as:

JT , (I + T)−1.

I is the identity operator I(x) = x and (x, y) ∈ T iff (y, x) ∈ T−1.

Example: subdifferential of a convex function h

Finding a zero of ∂h⇔ Finding a fixed point of J∂h

Natural fixed-point algorithm:

ζk+1 = J∂h(ζk)

We want to know the contraction properties of J∂h.

9 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Contraction properties of resolvents

Lemma

J is the resolvent of a monotone operator iff it is Firmly Non-Expansive (FNE):

∀(x, x′), 〈x − x′; J(x)− J(x′)〉 ≥ ‖J(x)− J(x′)‖2.

J is not Banach contracting.

x − x′
J(x)− J(x′)

NE

FNE

contracting

10 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

The Proximal point algorithm

Lemma [Rockafellar1976]

Let J be a FNE operator such that fix J 6= ∅, the sequence generated by

ζk+1 = J(ζk)

converges to a point of fix J.

Example: subdifferential of a convex function h

Iterating J∂h leads to the Proximal Point Algorithm:

xk+1 = J∂h(xk)⇔ xk+1 = argmin
x

{
h(x) +

1
2

∥∥∥x − xk
∥∥∥2
}

which converges to a zero of ∂h if any.

11 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Solving our problem

Equivalent problem

min
x∈RN

F(x) + G(Mx)

Dual problem

max
λ∈RM

D(λ) , −F∗(−MTλ)− G∗(λ)

Solving our problem with monotone operators

We want to find a zero of U + V

−∂D = −M∂F∗(−MT·)︸ ︷︷ ︸
U

+ ∂G∗︸︷︷︸
V

using the resolvents of U and V separately.

12 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Lions-Mercier operator and Douglas-Rachford splitting

Lemma [Lions1979]

The resolvent JLM of Lions-Mercier operator for splitting two operators U and V:

is defined as JLM , JρU ◦ (2JρV − I) + (I− JρV);

is FNE if U and V are monotone;

has a fixed point if zer(U + V) 6= ∅.
If ζ? ∈ fix JLM then λ? , JρV(ζ?) ∈ zer(U + V).

Solving our problem with monotone operators

Iterating JLM with U = −M∂F∗(−MT·) and V = ∂G∗ leads to the ADMM.

The iterations of JLM are performed on ζ ∈ RM , problem variables λ , JρV(ζ), z and x are
intermediate variables.

13 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

About the linear convergence rate of Distributed ADMM

This formalism guided us onto the study of the linear rate

Assumptions

The functions fi ∈ Γ0(R). Furthermore, the infimum of our problem is
attained at a point x? such that the functions fi are twice differentiable at x?

and
N∑

i=1

∇2fi(x?) > 0.

Define Q = ρM

∇

2f1(x?)
. . .

∇2fN(x?)

+ ρMTM

−1

M?,

P =

J|A1|
. . .

J|AL|

 and R = (Πspan(P+Q) − (P + Q))(I− 2P).

14 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

About the linear convergence rate of Distributed ADMM

In the quadratic case, we have ζk+1 = Rζk+1 + d and thus
xk − x? ∝ Rk(ζ0 − ζ?) so the spectral radius of R controls the convergence
rate.

In the general case, we can prove that r(R) still controls the convergence
rate.

Theorem

Under the previous assumption, α = r(R) < 1 and for any initial value (z0, λ0)
of the ADMM algorithm,

lim sup
k→∞

1
k

log ‖xk − 1N ⊗ x?‖ ≤ logα.

F. Iutzeler, P. Bianchi, Ph. Ciblat, W. Hachem, “Explicit Convergence Rate of a Distributed Alternating
Direction Method of Multipliers,” http://arxiv.org/abs/1312.1085, Dec. 2013.

15 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Numerical illustrations

5-node graph separated as before, exponential functions

0 10 20 30 40 50 60 70 80 90 100

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Number of iterations

Simulation

log α

Our rate is tight

16 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Numerical illustrations

Centralized 5-node graph, quadratic functions with identic second order
derivatives σ2 = 16

0 10 20 30 40 50 60 70 80 90 100

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ρ

α

Optimal rate is 1/2 obtained for ρ = σ2.

17 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Numerical illustrations

Centralized 5-node graph, quadratic functions with different second order
derivatives 4, 9, 16, 25 and 39

0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ρ

α

Optimal rate is > 1/2.

17 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Numerical illustrations

Ring graph, quadratic functions with identic second order derivatives σ2 = 16

The optimal parameter ρ grows linearly with N

18 / 24

Outline

1 Presentation of the problem

2 Distributed Optimization with the ADMM

3 ADMM through Monotone operators

4 Asynchronous Distributed Optimization with the ADMM

5 Conclusion and Perspectives

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Block-random updates and Asynchronous optimization

One can remark that updating the block ` in ζ is equivalent to update subset `.

Let us try to update only one block chosen at random.

ζk+1 =

ζk+1
1
...

ζk+1
`

...
ζk+1

L

=

JLM
|1 (ζk)

...
JLM
|` (ζk)

...
JLM
|L (ζk)

= JLM(ζk)

Problem: JLM is FNE but ĴLM
|` is not.

Theorem

Let J be a FNE operator and {ξk} be an i.i.d. process valued in {1,...,L} such that
P[ξ = `] > 0 ∀`. Then, the iterations

ζk+1 = Ĵ|ξk (ζk)

produce a sequence converging almost surely to a fixed point of J if any.

F. Iutzeler, P. Bianchi, Ph. Ciblat, W. Hachem, “Asynchronous Distributed Optimization using a
Randomized Alternating Direction Method of Multipliers,” CDC, Dec. 2013.

19 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Block-random updates and Asynchronous optimization

One can remark that updating the block ` in ζ is equivalent to update subset `.
Let us try to update only one block chosen at random.

ζk+1 =

ζk+1
|1
...

ζk+1
|`
...

ζk+1
|L

=

ζk
|1
...

JLM
|` (ζk)

...
ζk
|L

, ĴLM
|` (ζk)

Problem: JLM is FNE but ĴLM
|` is not.

Theorem

Let J be a FNE operator and {ξk} be an i.i.d. process valued in {1,...,L} such that
P[ξ = `] > 0 ∀`. Then, the iterations

ζk+1 = Ĵ|ξk (ζk)

produce a sequence converging almost surely to a fixed point of J if any.

F. Iutzeler, P. Bianchi, Ph. Ciblat, W. Hachem, “Asynchronous Distributed Optimization using a
Randomized Alternating Direction Method of Multipliers,” CDC, Dec. 2013.

19 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Block-random updates and Asynchronous optimization

One can remark that updating the block ` in ζ is equivalent to update subset `.
Let us try to update only one block chosen at random.

ζk+1 =

ζk+1
|1
...

ζk+1
|`
...

ζk+1
|L

=

ζk
|1
...

JLM
|` (ζk)

...
ζk
|L

, ĴLM
|` (ζk)

Problem: JLM is FNE but ĴLM
|` is not.

Theorem

Let J be a FNE operator and {ξk} be an i.i.d. process valued in {1,...,L} such that
P[ξ = `] > 0 ∀`. Then, the iterations

ζk+1 = Ĵ|ξk (ζk)

produce a sequence converging almost surely to a fixed point of J if any.

F. Iutzeler, P. Bianchi, Ph. Ciblat, W. Hachem, “Asynchronous Distributed Optimization using a
Randomized Alternating Direction Method of Multipliers,” CDC, Dec. 2013.

19 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Block-random updates and Asynchronous optimization

One can remark that updating the block ` in ζ is equivalent to update subset `.
Let us try to update only one block chosen at random.

ζk+1 =

ζk+1
|1
...

ζk+1
|`
...

ζk+1
|L

=

ζk
|1
...

JLM
|` (ζk)

...
ζk
|L

, ĴLM
|` (ζk)

Problem: JLM is FNE but ĴLM
|` is not.

Theorem

Let J be a FNE operator and {ξk} be an i.i.d. process valued in {1,...,L} such that
P[ξ = `] > 0 ∀`. Then, the iterations

ζk+1 = Ĵ|ξk (ζk)

produce a sequence converging almost surely to a fixed point of J if any.

F. Iutzeler, P. Bianchi, Ph. Ciblat, W. Hachem, “Asynchronous Distributed Optimization using a
Randomized Alternating Direction Method of Multipliers,” CDC, Dec. 2013. 19 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Block-random updates and Asynchronous optimization

One can remark that updating the block ` in ζ is equivalent to update subset `.
Let us try to update only one block chosen at random.

ζk+1 =

ζk+1
|1
...

ζk+1
|`
...

ζk+1
|L

=

ζk
|1
...

JLM
|` (ζk)

...
ζk
|L

, ĴLM
|` (ζk)

Consequences

Our block-random fixed point converges almost surely.
But which are the iterations of this algorithm applied to JLM?

19 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Asynchronous optimization with a randomized ADMM

f1 f2

f3

f4

f5

ASYNCHRONOUS OPTIMIZATION W/ ADMM

At each clock tick k, let ξk+1 be the index of
the active block:

I Every sensor i ∈ Aξk+1 of the block
performs a proximal operation:

xk+1
i = argmin

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2

I The block computes its average:

z̄k+1
|ξk+1 =

1
|Aξk+1 |

∑
i∈A

ξk+1

xk+1
i

I Every sensor i ∈ Aξk+1 of the block
updates:

λk+1
i,|ξk+1 = λk

i,|ξk+1 + ρ(xk+1
i − z̄k+1

ξk+1)

20 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Asynchronous optimization with a randomized ADMM

argmin
f1

argmin
f2

ASYNCHRONOUS OPTIMIZATION W/ ADMM

At each clock tick k, let ξk+1 be the index of
the active block:

I Every sensor i ∈ Aξk+1 of the block
performs a proximal operation:

xk+1
i = argmin

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2

I The block computes its average:

z̄k+1
|ξk+1 =

1
|Aξk+1 |

∑
i∈A

ξk+1

xk+1
i

I Every sensor i ∈ Aξk+1 of the block
updates:

λk+1
i,|ξk+1 = λk

i,|ξk+1 + ρ(xk+1
i − z̄k+1

ξk+1)

20 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Asynchronous optimization with a randomized ADMM

z̄1

ASYNCHRONOUS OPTIMIZATION W/ ADMM

At each clock tick k, let ξk+1 be the index of
the active block:

I Every sensor i ∈ Aξk+1 of the block
performs a proximal operation:

xk+1
i = argmin

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2

I The block computes its average:

z̄k+1
|ξk+1 =

1
|Aξk+1 |

∑
i∈A

ξk+1

xk+1
i

I Every sensor i ∈ Aξk+1 of the block
updates:

λk+1
i,|ξk+1 = λk

i,|ξk+1 + ρ(xk+1
i − z̄k+1

ξk+1)

20 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Asynchronous optimization with a randomized ADMM

λ1,|1 λ2,|1

ASYNCHRONOUS OPTIMIZATION W/ ADMM

At each clock tick k, let ξk+1 be the index of
the active block:

I Every sensor i ∈ Aξk+1 of the block
performs a proximal operation:

xk+1
i = argmin

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2

I The block computes its average:

z̄k+1
|ξk+1 =

1
|Aξk+1 |

∑
i∈A

ξk+1

xk+1
i

I Every sensor i ∈ Aξk+1 of the block
updates:

λk+1
i,|ξk+1 = λk

i,|ξk+1 + ρ(xk+1
i − z̄k+1

ξk+1)

20 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Numerical illustrations

0 50 100 150 200 250 300

10−4

10−2

100

Number of argmin steps

Sq
ua

re
d

Er
ro

r

Synchronous Distributed Optimization with the ADMM

Asynchronous Distributed Optimization with the ADMM

Synchronous ADMM: 1 iteration = N argmin + L block-averaging

Asynchronous ADMM: 1 iteration = |Aξk | argmin + 1 block-averaging

21 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

About the linear convergence of this asynchronous optimization
algorithm

Theorem

Under the same assumptions as in the synchronous case and with i.i.d. choices of
the blocks, there is α < 1 such that for any initial value (z0, λ0) of the ADMM
algorithm,

lim sup
k→∞

1
k

log ‖xk − 1N ⊗ x?‖ ≤ logα with probability 1.

To appear, May 2014.

The asynchronous fashion does not change the convergence mode

The rate α is closely linked to the one in the synchronous case

22 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Applications

Our asynchronous setup enables us to deal with a large variety of
situations

Distributed Optimization using local
coordinators

Distributed Optimization with One-Way
communications

Mini-batch optimization/learning

23 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Applications

Our asynchronous setup enables us to deal with a large variety of
situations

Distributed Optimization using local
coordinators

Distributed Optimization with One-Way
communications

Mini-batch optimization/learning

23 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Applications

Our asynchronous setup enables us to deal with a large variety of
situations

−→
←−

Distributed Optimization using local
coordinators

Distributed Optimization with One-Way
communications

Mini-batch optimization/learning

23 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Applications

Our asynchronous setup enables us to deal with a large variety of
situations

By adding dummy nodes with constant

functions

This also enables us to deal with net-

work failures

Distributed Optimization using local
coordinators

Distributed Optimization with One-Way
communications

Mini-batch optimization/learning

23 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Applications

Our asynchronous setup enables us to deal with a large variety of
situations

−→

By adding dummy nodes with constant

functions

This also enables us to deal with net-

work failures

Distributed Optimization using local
coordinators

Distributed Optimization with One-Way
communications

Mini-batch optimization/learning

23 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Applications

Our asynchronous setup enables us to deal with a large variety of
situations

By adding dummy nodes with constant

functions

This also enables us to deal with net-

work failures

Distributed Optimization using local
coordinators

Distributed Optimization with One-Way
communications

Mini-batch optimization/learning

23 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Applications

Our asynchronous setup enables us to deal with a large variety of
situations

The network is then just an artifact

Distributed Optimization using local
coordinators

Distributed Optimization with One-Way
communications

Mini-batch optimization/learning

23 / 24

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

Applications

Our asynchronous setup enables us to deal with a large variety of
situations

The network is then just an artifact

Distributed Optimization using local
coordinators

Distributed Optimization with One-Way
communications

Mini-batch optimization/learning

23 / 24

Outline

1 Presentation of the problem

2 Distributed Optimization with the ADMM

3 ADMM through Monotone operators

4 Asynchronous Distributed Optimization with the ADMM

5 Conclusion and Perspectives

Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

General Conclusion & Perspectives

Conclusions

Bringing randomness enables to deal with a large variety of situations

Linear convergence and precise rates can be obtained

Perspectives

Deriving techniques to obtain good values of parameter ρ

Implementing asynchronous optimization for machine learning in a
practical big data network

24 / 24

	Presentation of the problem
	d

	Distributed Optimization with the ADMM
	11
	O4

	ADMM through Monotone operators
	00
	O4
	Speed
	simus

	Asynchronous Distributed Optimization with the ADMM
	44
	O6
	speed
	appli

	Conclusion and Perspectives
	e

