DISTRIBUTED ASYNCHRONOUS OPTIMIZATION WITH
THE ALTERNATING DIRECTION METHOD OF MULTIPLIERS

Franck IUTZELER

Alcatel-Lucent Chair on Flexible Radio — Supélec

Université Catholique de Louvain — April 28th, 2014

Ei Flexible Radio

Supélec Alcatel Lucent Chair on Flexible Radio



Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives
[e]e]e} [e]e]e} 00000000000 00000 [e]

m OPTIMIZATION
ressource allocation, learning

1/24



Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

[e]e]e} [e]e]e} 00000000000 00000 [e]

General Context: Distributed Optimization

m OPTIMIZATION
' ressource allocation, learning

m AGENTS

local data, computational power



Problem Distributed Optimization Monotone Operators Asynchronous Optimization
[e]e]e} [e]e]e} 00000000000 00000

General Context: Distributed Optimization

m OPTIMIZATION

Conclusion and Perspectives
[}

ressource allocation, learning

m AGENTS

local data, computational power

m NETWORK

communication between agents



Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives
[e]e]e} [e]e]e} 00000000000 00000 [e]

General Context: Distributed Optimization

m OPTIMIZATION

ressource allocation, learning
m AGENTS

local data, computational power
m NETWORK

communication between agents

The goal is to distributively reach a consensus over a solution of a global
optimization problem using only local computations and communications.
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Introduction

Solving a distributed optimization problem based on the sum of the agents
private functions.

Problem:
. A

min f(x) = i(x

min f() £ 3o
m f; is a convex function local to agent i

@ m f is nowhere available
m Agents want to reach consensus over a
e minimizer x* of f
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m Starting from the original problem

min Z fi(x)

xeR 4
eV

3/24



Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives

oeo [e]e]e} 00000000000 00000 [e]

Reformulating our problem

The original problem is not suited as it does take into account
m the fact that each sensor only has access to its own cost function;

m the fact that the agents have to exchange to reach the wanted optimum.

m Starting from the original problem

min i(x
mp 00
iev
m Adding the fact that the agents only
min F(x) £ Z fi(x) know their own functions
xERN icv
subjectto  x)=xy=...=XN



Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives
oeo [e]e]e} 00000000000 00000 [e]

Reformulating our problem

The original problem is not suited as it does take into account
m the fact that each sensor only has access to its own cost function;
m the fact that the agents have to exchange to reach the wanted optimum.

m Starting from the original problem

min i(x
mp 00
iev
m Adding the fact that the agents only
min F(x) £ Z fi(x) know their own functions
xERN icv
subjectto  x)=xy=...=XN

m We put the constraint into the function to
min F(x) + tspan(1) (X) minimize .
xeRN with the indicator function

)= 0 ifxecC
telx) = +oo elsewhere



Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives
oeo [e]e]e} 00000000000 00000 [e]

Reformulating our problem

The original problem is not suited as it does take into account
m the fact that each sensor only has access to its own cost function;
m the fact that the agents have to exchange to reach the wanted optimum.

m Starting from the original problem

min i(x
mp 00
iev
m Adding the fact that the agents only
min F(x) £ Z fi(x) know their own functions
xERN icv
subjectto  x)=xy=...=XN

m We put the constraint into the function to
min F(x) + tspan(1) (X) minimize .
xeRN with the indicator function

)= 0 ifxecC
telx) = +oo elsewhere



Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives
ooe [e]e]e} 00000000000 00000 [}

m We ensure consensus on L overlapping connected subsets [Schizas2008]
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Reformulating our consensus constraint

m We ensure consensus on L overlapping connected subsets [Schizas2008]

IA1:{].,2} M1X=[X1 :|
X2
X2

| | Az = {2,3,4} sz = X3

X4

m A; = {4,5} ng:{i‘s‘]

X1 X2 X4
Lspan(1) X2 + Lspan(1) X3 + LSpan(1) Xs
X4
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Reformulating our consensus constraint

m We ensure consensus on L overlapping connected subsets [Schizas2008]

mA ={1,2} Mx= [ 2 }

| Az = {2,3,4} sz = X3

mA;={45 Myx= { X ]

Xs
M;
mM2 | M |:sized  |JA|2MxN
M3

tspan(1) (M1x) + tspan(t) (Max) + tspan(r) (Msx) = G (Mx)

min F(x) + G(Mx)
xeRN

Conclusion and Perspectives
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x€RN

m A separable networked separated problem...
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Introducing the Alternating Direction Method of Multipliers

min F(x) + G(2)

xERN ,z€RM
subject to  Mx=z

m A separable networked separated problem...
m ... that we can split by adding a constraint.
m As it is constrained, we consider its Lagrangian:

L (x,2;A) = F(x) + G(2) + (Mx — z; \)
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Introducing the Alternating Direction Method of Multipliers

min F(x) + G(2)

xERN ,z€RM
subject to  Mx=z

m A separable networked separated problem...
m ... that we can split by adding a constraint.
m As it is constrained, we consider its augmented Lagrangian:

£,(x,53X) = F(x) + G(z) + (Mx — 5 \)-+ 5 [ Mx — 2]
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The Alternating Direction Method of Multipliers

The ALTERNATING DIRECTION METHOD OF MULTIPLIERS consists in three steps:

» X = argmin £, (x,25; A¥) — primal optimum computation w.r.t F
X

k+

» 2“t! = argmin Cp(xkﬂ,z; )\k) — primal optimum computation w.r.t. G
z

» N =) (Mxk*'1 — zk+1> — dual update
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The Alternating Direction Method of Multipliers

The ALTERNATING DIRECTION METHOD OF MULTIPLIERS consists in three steps:

» X = argmin £, (x, 2 \¥)
X

» 2 = argmin £, (", z; AF)
z

b AL ak p (Mxk+1 _ Zk+1)

m The hyper-parameter p is common to the 3 steps
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The Alternating Direction Method of Multipliers

The ALTERNATING DIRECTION METHOD OF MULTIPLIERS consists in three steps:

k1 . k k 2
» X = argmin { F(x) + G(z*) + (Mx — 255 \F) 2 Mx — 2*
X

2
» 2! — argmin {F( ) +Glz) + (M -z ) + 2 HMx"+1 - zH }
z 2

b AL Zak P (Mxk+1 -~ Zk+1>

m The hyper-parameter p is common to the 3 steps
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Distributed optimization with the ADMM [Schizas2008]

Each step can be split by agent/block

- )¢t |Ag|-sized block, corresponds to
subset ¢

- Aj,|e: scalar, corresponds to agent i’s
entry insubset £ € o; 2 {l:i € A}

Conclusion and Perspectives

[e]



Problem Distributed Optimization Monotone Operators Asynchronous Optimization Conclusion and Perspectives
[e]e]e} ooe 00000000000 00000 [e]

Distributed optimization with the ADMM [Schizas2008]

DISTRIBUTED OPTIMIZATION WITH ADMM
At each clock tick k:

» Every sensor i performs a minimization:

o\ 2
Aije

xf.‘+1 = argmin < f;(x) + g Z X; — El‘(g +
x LEo;

Each step can be split by agent/block

- )¢t |Ag|-sized block, corresponds to
subset ¢

- Aj,|e: scalar, corresponds to agent i’s
entry in subset £ € oy 2 {l:i € A}
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21 k 2

k+1 _ : P
x; 7" = argmin < fi(x E Xi
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Distributed optimization with the ADMM [Schizas2008]

DISTRIBUTED OPTIMIZATION WITH ADMM
At each clock tick k:

» Every sensor i performs a minimization:

X 2
k+1 . p
xl-+ = argmin < f;(x Z X
x I’EGl
» Every subset A, computes its average:
—k+1 k+1
Ze |A | Z
icA,
) » Every sensor i updates:
Each step can be split by agent/block

. . -si k+1 —k+1
2|¢: |Ag|-sized block, corresponds to Ve € oy, )\ |f _ )\l e 4 p( + Zé+ )

subset ¢
- Ai,|e: scalar, corresponds to agent {’s
entry in subset £ € o; £ {l:i € A}

m argmin: costs in computational time

m averaging: costs in networking
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m Extension of R¥ — R" monotone functions
m (x,y) € Tiffy € T(x)
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m | is the identity operator I(x) = x and (x,y) € Tiff (y,x) € T~'.
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m J is not Banach contracting.
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Solving our problem

min F(x) + G(Mx)
xeRN

max D(\) 2 —F*(—M"\) — G*()\)
AERM

We want to find a zero of U + V

—9D = —MOF*(—-M"") + 9G*
—_—
U \%

using the resolvents of U and V separately.
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m The iterations of J™™ are performed on ¢ € RY, problem variables A £ J,v(¢), z and x are
intermediate variables.
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About the linear convergence rate of Distributed ADMM

m This formalism guided us onto the study of the linear rate

The functions f; € I'o(RR). Furthermore, the infimum of our problem is
attained at a point x* such that the functions f; are twice differentiable at x*

and
N
Z Vfi(x*) > 0.
i=1
V() .
Define Q = pM +pM'M | M,
V2 (x.)
Jiay|
P= and R = (Ilpemep+q) — (P+Q))(I—2P).

Jjay)
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About the linear convergence rate of Distributed ADMM

m In the quadratic case, we have ¢! = R¢**! 4 d and thus
x* —x* o< R¥(¢® — ¢*) so the spectral radius of R controls the convergence
rate.

m In the general case, we can prove that r(R) still controls the convergence
rate.

Under the previous assumption, @ = r(R) < 1 and for any initial value (2o, Ao)
of the ADMM algorithm,

lim sup 1 log |Ixk — In @ x4|| < loga.
k— o0 k

F. lutzeler, P. Bianchi, Ph. Ciblat, W. Hachem, “Explicit Convergence Rate of a Distributed Alternating
Direction Method of Multipliers,” http://arxiv.org/abs/1312.1085, Dec. 2013.
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Numerical illustrations

Centralized 5-node graph, quadratic functions with different second order
derivatives 4,9, 16, 25 and 39

1
0.95- a
0.9 N
0.851 o
0.8 N

3 0.75F .
0.7 .
0.651 N
0.6 .

0.551 4

0.5 I I I I I I I I I

m Optimal rate is > 1/2.
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Numerical illustrations

Ring graph, quadratic functions with identic second order derivatives oo = 16

0957

09

i'ﬂ,i)" T

!

s | x.ﬂ

m The optimal parameter p grows linearly with N
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Block-random updates and Asynchronous optimization

One can remark that updating the block ¢ in ¢ is equivalent to update subset £.

{‘“ J(¢H)

=g = e [ =

el L
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Block-random updates and Asynchronous optimization

One can remark that updating the block ¢ in ¢ is equivalent to update subset £.

Let us try to update only one block chosen at random.

G ¢k
= G =] R | 2R
¢t ¢k
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Block-random updates and Asynchronous optimization

One can remark that updating the block ¢ in ¢ is equivalent to update subset £.

Let us try to update only one block chosen at random.

<k+1 C‘kl
¢t = <"“ = | I | 2R
<"“ czﬁ

Problem: J"" is FNE but Ji}" is not.
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Block-random updates and Asynchronous optimization

One can remark that updating the block ¢ in ( is equivalent to update subset ¢.
Let us try to update only one block chosen at random.

<k+l Cﬁ
¢ = c"“ = | ey | 2 ey
c"“ 4:"1

Problem: J"" is FNE but Ji}" is not.

Let J be a FNE operator and {¢*} be an i.i.d. process valued in {1,...,L} such that
P[¢ = £] > 0 VL. Then, the iterations

¢+l = j|gk(Ck)

produce a sequence converging almost surely to a fixed point of J if any.

F. lutzeler, P. Bianchi, Ph. Ciblat, W. Hachem, “Asynchronous Distributed Optimization using a
Randomized Alternating Direction Method of Multipliers.” CDC. Dec. 2013.
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Block-random updates and Asynchronous optimization

One can remark that updating the block ¢ in ( is equivalent to update subset ¢.
Let us try to update only one block chosen at random.

<k+l Cﬁ
¢ = c"“ = | ey | 2 ey
c"“ 4:"1

Our block-random fixed point converges almost surely.
But which are the iterations of this algorithm applied to J*¥?
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Asynchronous optimization with a randomized ADMM
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Asynchronous optimization with a randomized ADMM

ASYNCHRONOUS OPTIMIZATION W/ ADMM

At each clock tick k, let £&¥t1 be the index of
the active block:

» Every sensor i € Ag1 of the block
performs a proximal operation:

2
Al
xf.‘+1 = argmin < f;(x) + g E <xl- — 2"} + /,)M)

LEo;

20/24
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Asynchronous optimization with a randomized ADMM

ASYNCHRONOUS OPTIMIZATION W/ ADMM

At each clock tick k, let £&¥t1 be the index of
the active block:

» Every sensor i € Ag1 of the block
performs a proximal operation:

_ Al
Z1 xf-‘“ = argmin < f;(x p Z <xl — Z‘g + = |e>
X

ZEdl

» The block computes its average:

gl k+1
Blgkt = Agkia] k+1| i
3 icA eht1
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Asynchronous optimization with a randomized ADMM

ASYNCHRONOUS OPTIMIZATION W/ ADMM

At each clock tick k, let £&¥t1 be the index of
the active block:

» Every sensor i € Ag1 of the block
performs a proximal operation:

(0 .
‘ X! = argmin { fi(x) + £ Z <xl 2+ If)
x ZEdl

» The block computes its average:

—k+1 _ k+1
) 2 = D

|A£k+1| ica 1

» Every sensor i € Ag1 of the block
updates:

k+1 k k+1  —k+1
A ekt = /\Mgkﬂ +p0GT — Z§k+1)

20
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Numerical illustrations

—Q— Synchronous Distributed Optimization with the ADMM
—X/— Asynchronous Distributed Optimization with the ADMM ||

10°

Squared Error

| | | | |
0 50 100 150 200 250 300

Number of argmin steps

m Synchronous ADMM: 1 iteration = N argmin + L block-averaging
m Asynchronous ADMM: 1 iteration = |A.| argmin + 1 block-averaging
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To appear, May 2014.
m The asynchronous fashion does not change the convergence mode

m The rate « is closely linked to the one in the synchronous case
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m Our asynchronous setup enables us to deal with a large variety of
situations
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Applications

m Our asynchronous setup enables us to deal with a large variety of
situations

m Distributed Optimization using local
coordinators
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Applications

m Our asynchronous setup enables us to deal with a large variety of
situations

@ -0

coordinators
Cj m Distributed Optimization with One-Way
communications

m Distributed Optimization using local

By adding dummy nodes with constant
functions
This also enables us to deal with net-

work failures

N}
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General Conclusion & Perspectives

m Bringing randomness enables to deal with a large variety of situations
m Linear convergence and precise rates can be obtained

m Deriving techniques to obtain good values of parameter p

m Implementing asynchronous optimization for machine learning in a
practical big data network
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