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>>> Gossipping HISTORY & MOTIVATION
!;."7 @

We'e Not

3 g 3 2 CGossiping,
Gossipping is spreading a rumor by local chats Were Notworking

It is generally not centralized

Centralized Decentralized Distributed

The goal is to reach a consensus o
Often, it is not synchronized ﬁ




>>> Origins HISTORY & MOTIVA

» DeGroot Reaching a consensus
Journal of the American Statistical Association, 1974
Consensus as the result of a Markov chain

» Tsitsiklis & Bertsekas  Distributed asynchronous optimal routing in data networks
IEEE Transactions on Automatic Control, 1986
Decentralized gradient algorithm with mixing matrices

» Demers et al.  Epidemic algorithms for replicated database maintenance
ACM Principles of distributed computing & Xerox note, 1987
Epidemic algorithms for database maintenance

> Boyd etal. Randomized gossip algorithms

IEEE/ACM Transactions on Networking, 2006
Randomized Averaged Gossip
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>>> Current motivations HISTORY & MOTIVAT

v

Distributed computation, estimation
> Large-Scale optimization

v

Energy production
Fleet of UAVs, Drones, ...

» Cognitive radio

v

~

Number of Sensing steps:
Number of Gossip steps: []

(=]

Individual hypothesis testing then Gossip:
One warns others, Majority vote, Figure of merit?
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>>> General setup FOrRMUL

» DISTRIBUTED COMPUTATION

estimation/optimization
» AGENTS a.k.a. nodes

local data, measurements
> NETWORK

wired or wireless links

Goal: distributively reach a consensus over a global value of interest



>>> Communication Graph FORMULA

We define a graph as G = (V, E)
» V: set of N = |V| vertices/nodes/agents
ieVv=/{1,2,3,4,5} isanode

> E : set of edges/links
(i,j) € E={(1,2),(2,3), ...} isan edge

We denote:

» N; ={j: (i,j) € E} : neighbors of i
> d; = |N;| : degree of i
» A : adjacency matrix
N x N matrix s.t. A;; = 1 iff i and j are

neighbors
0 1 0 0 0
1 0 1 1 0
A=|0 1 0 1 o0
0 1 1 0 1
0 0 0 1 0

> L : Laplacian matrix
N x N matrixs.t. L=D — A

1 =1 0 0 0
=1l 3 -1 -1 0
A= 0 =il 2 =1 0
0 =1 =i 3 =1
0 0 0 =1l 1



>>> Communications between agents FORMULA

» AGENTS
At each (discrete) time k:
Sensor i has estimate xf‘
One or more perform an action

» COMMUNICATIONS
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>>> General goal

Goal: distributively reach a consensus over a global value of interest
> 1= () = (PO, f(10) = 1 (x°)
> = Fd, {x]l‘ j € NKY)

Problem 1

Spreading a rumor across
the network

Problem 2

Voting and spreading the
result

Problem 3

Reaching consensus on the
average of the initial values
of the agents

7/



HISTORY & MOTIVATION

MATHEMATICAL FORMULATION

PB. 1: RUMOR SPREADING

PB. 2: VOTING

PB. 3: AVERAGE CONSENSUS
THE SYNCHRONOUS CASE
THE ASYNCHRONOUS CASE
COMMUNICATIONS AND AVERAGING



>>> Problem PB. 1: RUMOR SPREADING

Problem: Each agent has a rumor a scalar
the goal is to spread the best one the maximum

Different setups:
» Does the agent know it has the best rumor?
> Are communications synchronous?
» Which is the communication scheme?

Applications:
Localization, Meteorology, Database management

» Overview of different algorithms with some basic results/theory and pointers
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>>> Random Walk PB. 1: RUMOR SPREADING

Random Walk
At time k, let i be the active node:

> isends xf.‘ to a neighbor j uniformly chosen in N;

> j updates: 3cJ’f+1 = max (xf,)g’-‘);

» j is then the active node for time k + 1.

Convergence:
Rumor aware (or not)

Synchronous
No Collisions
H and C are the maximal hitting time and cover times on the graph

r<H+C

References: Algebraic graph theory and Markov chains

Feige a tight upper bound on the cover time for random walks on graphs Random Structures and
Algorithms,1995

Aldous & Fill reversible Markov chains and random walks on graphs, book draft

Avin & Ercal one the cover time and mixing time of RGG Theoretical Computer Science, 2007
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>>> Pairwise communications PB. 1: RUMOR SPREADING

Random Pairwise
At time k, let i be the active node:

» i chooses a neighbor j uniformly chosen in A;
> iand j exchange their values

— ykt+1 k 4k
_xj _max(xl.,xj)

k+1

> iand j updates: x;

Convergence:

Rumor unaware IE[T] < Ndmax%

a. Asynchronous B
No Collisions T=0 (f)
Rumor aware oS g

b. Synchronous =0 (W)
Collisions

dmax is the maximal degree, Hy is the N-th harmonic number,
A2 (L) is the second smallest eig. of the Laplacian, « is the vertex expansion of the graph

References: Algebraic graph theory and Probabilities
1., Ciblat & Jakubowicz Analysis of max-consensus algorithms in wireless channels IEEE TSP, 2012
Giakkoupis & Sauerwald Rumor Spreading and Vertex expansion SODA, 2012
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>>> Broadcast communications PB. 1: RUMOR SPREADING

Random Broadcast
At time k, let i be the active node:

» i broadcasts xf‘ to all its neighbors

» Each neighbor j updates: xJIFH = max (xﬁf,x}‘>

Convergence:
Rumor unaware N—1
< _ N-1
a. Asynchronous 1o]) SRPSSERICA =195 (A—l)
No Collisions 7= O (Nlog(N)) complete graph
Rumor aware N
< N
b. Synchronous 1| = Ll A)
Collisions 7 = O (log(N)) complete graph

A is the diameter of the graph

References: Algebraic graph theory and Probabilities

1., Ciblat & Jakubowicz Analysis of max-consensus algorithms in wireless channels IEEE TSP, 2012
Feige et al. Randomized Broadcast in Networks Random Structures and Algorithms, 1990
Czumaj & Rytter Broadcasting algorithms in radio networks FOCS, 2003
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>>> Illustration in the Rumor unaware case PB. 1: RUMOR SPREADING

BEEDBENQE

RANDOM WALK

(6] (e

PAIRWISE BROADCAST
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>>> Summary PB. 1: RUMOR SPREADING

100

Percentage of sensors sharing the maximum

| | |
50 100 150 200 250 300 350
Number of iterations

> Factor N in convergence time if the nodes do not known which rumor to spread
» Broadcast communications are very efficient for spreading a rumor

» Tools and Analyses coming from various communities
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>>> Problem PB. 2: VOTING

Problem: Each agent has a vote binary 0/1
the goal is to spread the majority vote everyone is aware of the result

Difficult problem:
» impossible by keeping one bit per agent
> 2 bits ok

Extensions:
Quorum (e.g. 2/3 majority), multiple choices

» Original algorithm with a beautiful construction
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>>> Voting algorithm PB. 2: VOTING

Distributed Voting.
At time k, let i be the active node:

0.5

» i chooses a neighbor j uniformly chosen in A;

> i and j exchange their values 05"

» i and j update as given by the figure

Asynchronous finite time if the graph is connected

Pairwise 7
= O(N*log(N
No Collisions ™= O(N*log(N))

References: Conservation of sum and Geometry
Benezit, Thiran & Vetterli The Distributed Multiple Voting Problem IEEE JSTSP, 2013
Shang et al. An Upper Bound on the Convergence Time for Distributed Binary Consensus ArXiv, 2013

15/34



>>> Illustration & Summary PB. 2: VOTING

o W0 w0 e B0 1000 a0 1m0 100 200

(=] (4]

: 0.5+
60 agents on a RGG. 33 voted I - Red. : : g - }Vote 0 - Blue : : (1"5 }Vote 1-Red
» Original Algorithm with nice formulation
» Extensions to quorum and multiple votes
[T .
|

0

(¢) 2/3 quorum checker

images: Benezit et al.
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>>> Problem PB. 3: AVERAGE CONSENSUS

Problem: Each agent has a value real (to simplify)
the goal is to reach a consensus over the means value

Central problem:

» at the heart of “distributed data/common objective” pb.
Detection, LMS, Optimization

> most investigated

Linear updates conditioned by an underlying communication graph
for the graph above, it produces the following mask

k+1 _

=

|
cocodO
ocpjooad
ocpOoOdo
ooooo
Odocoo

=

wk

> First let us be synchronous (WX = W) and investigate desirable properties
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>>> Preliminaries on Matrices PB. 3: AVERAGE CONSENSUS

Property 1: Stochasticity
» non-negative coefficients

05 05 0 0 0
: 025 025 025 025 0
'S
sy L i L 0 033 033 033 0
Algo. interpretation: 0 025 025 025 0.25
0 0 0 05 05

. Each operation is a linear convex
combination of the neighbors values

Consequences:
» spectral radius p(W) =1
» 1 is an eigenvector for eigenvalue 1

> oo-norm is 1
in the ¢, -induced or operator norm

if column sum is 1 (instead of row):

— spectral radius p(W) = 1

— 1 is a left eigenvector for eigenvalue 1
—1-normis 1
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>>> Preliminaries on Matrices PB. 3: AVERAGE CONSENSUS

Property 2: Primitivity
> (W)™ has positive entries for some n > 0

Graph interpretation: @
i. Connected (Strongly)
ii. there is some n such that if we can go from X
i tojin n steps, we can go in n + 1 steps = 8 0 g
0 0 0
property i. KO
Consequences:

» spectral radius p(W) is an eigenvalue
> p(W) is the only eigenvalue with maximal modulus

— if the diagonal values are non-zero (or even just one): Connected (Strongly) < Primitive
— we do not care about the value of the entries as long as they are positive!

— if there is are cycles that contradict the reachability condition, there is as many maximal
eigenvalues as the size of the cycle!
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>>> Preliminaries on Matrices PB. 3: AVERAGE CONSENSUS

Property 2: Primitivity

> (W)™ has positive entries for some n > 0
Graph interpretation:

i. Connected (Strongly)

ii. there is some n such that if we can go from 2 1 1
i tojin n steps, we can go in n + 1 steps w=|2 2 1
11 1

primitive

Consequences:
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>>> Power method/Stationary Markov chain/Average consensus PB. 3: AVERAGE CONSENSUS

Assume that W is stochastic and primitive.
1 is the only eigenvalue of greatest modulus. Let X be the second eigenvalue in modulus, |A| < 1.

» let us iterate this matrix, looking at its Jordan normal form:
1
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>>> Power method/Stationary Markov chain/Average consensus PB. 3: AVERAGE CONSENSUS

Assume that W is stochastic and primitive.
1 is the only eigenvalue of greatest modulus. Let X be the second eigenvalue in modulus, |A| < 1.

» let us iterate this matrix, looking at its Jordan normal form:

k k—1 ky yk—
Ak s (DA
i . —1.0
PU S Prx
)\k

Convergence:

» Exponential in O (\k)
> to a rank-1 matrix uv’

u and v are the right and left eigenvectors associated with 1

True for row-sto. (u = 1) and col.-sto. (v = 1)
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>>> Power method/Stationary Markov chain/Average consensus PB. 3: AVERAGE CONSENSUS

Assume that W is row-stochastic and primitive.
1 is the only eigenvalue of greatest modulus. Let X be the second eigenvalue in modulus, |A| < 1.

> let us iterate this matrix, looking at its Jordan normal form:

= 1WTx°

as 1 is the eigenvector associated with eigenvalue 1
v is the corresponding left eigenvector; v'1 = 1
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>>> Power method/Stationary Markov chain/Average consensus PB. 3: AVERAGE CONSENSUS

Assume that W is column-stochastic and primitive.
1 is the only eigenvalue of greatest modulus. Let X be the second eigenvalue in modulus, |A| < 1.

> let us iterate this matrix, looking at its Jordan normal form:
x5 110

as 1 is the left eigenvector associated with eigenvalue 1
v is the corresponding (right) eigenvector; vi1 = 1

In PageRank, that is exactly what is done. v is the Perron Vector.
The use of R = (1 — a)W + «J enables to retrieve primitivity!

05 0 O 0.40 0.40 0.40

0 1 0
W= 05 0 1 0.40 0.40 0.40
20
w =
0.20 0.20 0.20

eig.: 1,0.5 + 0.5i
modulus: 1, 0.707
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>>> Power method/Stationary Markov chain/Average consensus PB. 3: AVERAGE CONSENSUS

Assume that W is doubly-stochastic and primitive.
1 is the only eigenvalue of greatest modulus. Let X be the second eigenvalue in modulus, |A| < 1.

> let us iterate this matrix, looking at its Jordan normal form:

1
& = 11Tﬁx0 = 1xXave

as 1 is an eigenvector associated with eigenvalue 1 at both sides
1/N comes from the joint normalization.

Synchronous Average Consensus:
» Doubly-Stochastic Primitive matrix
» Exponential rate depending on the second eigenvalue ~ the algebraic connectivity

o 1 .00 1 o 1 ie:
ex. 1: 1 ex. 2: Tra(@.4) ifj € N
full graph J= MR oo connected graph ~ W; ; = 1= Sjen, Wiy ifi=j
one step consensus 1.1 Metropolis-Hastings 0 else

> Let us get to randomized average gossip! (after a small parenthesis)
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>>> Link with differential equations PB. 3: AVERAGE CONSENSUS

Differential equations can be used to prove convergence and rates at large
gradient, accelerated gradient, FISTA

Define the |€| X N incidence matrix of a graph:
OMe =1ife = (v,j); —1if e = (i,v); 0 elsewhere.
O M is a square root of L: L = MTM !

Consider reaching consensus by minimizing f(x) = %||Mx||2 and observe the ODE:

x(t) = —=Vf(x(t)) = —M"Mx(t) = —Lx(t)

An Euler discretisation gives:
el — o8

= —L* & T = xk — Lk = (1 — 4L) X
Y —_——

w

It is easy to see that with step v < 1/dmax, W is non-negative, doubly stochastic,
primitive: it is an averaging algorithm.

References Pseudo-orbit of ODEs, Inertia, Krause model dynamical graph, multiple clusters
Attouch, Peypouquet, & Redont A dynamical approach to an inertial forward-backward algorithm for
convex minimization, SIOPT, 2014.

Blondel, Hendrickx, & Tsitsiklis On Krause’s multi-agent consensus model with state-dependent

connectivity, IEEE TAC, 2009.
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>>> Problem PB. 3: AVERAGE CONSENSUS

Problem: Each agent has a value real (to simplify)
the goal is to reach a consensus over the means value

Linear updates conditioned by an underlying communication graph
for the graph above, it produces the following mask

k+1 _

cooll

cocold

co~oo

omooo

—oooo
=

Changes compared to Synchronous case:
> At each iteration, a mixing matrix is randomly chosen in a set
» The objective is that only some nodes/links are involved at each iteration

22/34



>>> Randomized Gossip PB. 3: AVERAGE CONSENSUS

Standard Model:
> Set W = {Wq, ..., Wy} of M doubly-stochastic update matrices
> ii.d. process {¢};s( valued in {1, ..., M}
> E[W] is primitive

xk+1 — W€k+1xk = W§k+1 ng...W§1X0

Convergence:
> xk — 1xge almost surely
» The mean squared error vanishes exponentially

» Exact rate p (IE[W ® W]. ((I -tuMHgu- %11”))
outside a set of Lebesgue measure 0

References: Matrix Analysis and Probabilities

Boyd et al. Randomized gossip algorithms IEEE/ACM Transactions on Networking,2006

I. & Ciblat & Hachem Analysis of Sum-Weight-like algorithms for averaging in Wireless Sensor
Networks IEEE TSP,2013
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>>> Proof techniques PB. 3: AVERAGE CONSENSUS

Classic way quick but not tight
1T = D Z = | = J) W ( — J)o 3 (row-sto.)

= (= D) = W)™ = D) Wi (I — Ik

E[I¢ — I BIE] = (1 — D)L — W) (L — YW [l (I — T

< p (BN = DWera )0 = DWera 1) 10 = I)x*13

:=o<1

Alternative way tight
E([(I — )X ® [(I = | F] = E[( = D Wer] @ [ = )W ]| Fi]
X [(I =D @ [(T = )x]

k
x p (]E[[(I —NWea] @ [(I - J)ng-%—l”}-k})

=<l

- MSE converges exponentially to 0
- Markov + Borel-Cantelli = Almost-sure convergence
7—1/N11T 24/34



>>> Pairwise communications PB. 3: AVERAGE CONSENSUS

Random Gossip
At time k, let i be the active node:

Features:

— Two nodes and one link used at each iteration

— Introduced by Boyd et al. in 2004

— Converges as soon as the (undirected) graph is
connected

25/34



>>> Pairwise communications

S oo or
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>>> Pairwise communications PB. 3: AVERAGE CONSENSUS

Random Gossip
At time k, let i be the active node:

— » i chooses a neighbor j uniformly in N;

Features:

— Two nodes and one link used at each iteration

— Introduced by Boyd et al. in 2004

— Converges as soon as the (undirected) graph is
connected
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>>> Pairwise communications PB. 3: AVERAGE CONSENSUS

Random Gossip
At time k, let i be the active node:

» i chooses a neighbor j uniformly in N;

» they exchange their values

Features:

— Two nodes and one link used at each iteration

— Introduced by Boyd et al. in 2004

— Converges as soon as the (undirected) graph is
connected

[N NeoNeNe]
[l eNeoNoNo]
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0 O

[eNeN e Ne]



>>> Pairwise communications PB. 3: AVERAGE CONSENSUS

Random Gossip
At time k, let i be the active node:

» i chooses a neighbor j uniformly in N;
» they exchange their values

K xk
. . X; +x;
> Bothiandj update: xf*! :xj’.‘“ = 1

05 05 0 0 O Features:

05 05 0 0 O — Two nodes and one link used at each iteration
0 0 1 0 O — Introduced by Boyd et al. in 2004
0 0O 0 1 O — Converges as soon as the (undirected) graph is
0 0 0 0 1 connected



>>> Summary PB. 3: AVERAGE CONSENSUS

Under the standard assumptions, convergence to average consensus is easily obtained
» Primitivity in average is natural
» Double-stochasticity at each iteration is mandatory

Other formulation for asynchronous average gossip

» The product of any B < oo consecutive matrices is positive
sort of deterministic asynchrony
kind of asynchrony in [Tsitsiklis’84]

Double-stochasticity constrains the coefficients of the mixing matrix and thus the
communicated values

> Let us investigate different communications schemes
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HISTORY & MOTIVATION

MATHEMATICAL FORMULATION

PB. 1: RUMOR SPREADING

PB. 2: VOTING

B  PB. 3: AVERAGE CONSENSUS
THE SYNCHRONOUS CASE
THE ASYNCHRONOUS CASE
= COMMUNICATIONS AND AVERAGING



>>> Problem PB. 3: AVERAGE CONSENSUS

We saw earlier the good properties of broadcast communications

How to design a mixing matrix when agent 5 broadcasts to its neighbors 2, 3 and 4

1 0 0 0 0
» no feedback 0 wyo 0 0 Wwas
0 0 w3 3 0 w3 5
0 0 0 W4 4 Wy 5
0 0 0 0 Ws 5
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>>> Problem PB. 3: AVERAGE CONSENSUS

We saw earlier the good properties of broadcast communications

How to design a mixing matrix when agent 5 broadcasts to its neighbors 2, 3 and 4

1 0 0 0 0
» no feedback 0 wyo 0 0 Wwas
» Row-stochasticity is possible... 0 0 w33 0 w35
» ... but not double-stochastici 0 0 0 Wa4  Was
=-stochasticity 0 0 0 0 wss
» Column-stochasticity is possible

27/34



>>> Problem PB. 3: AVERAGE CONSENSUS

We saw earlier the good properties of broadcast communications

How to design a mixing matrix when agent 5 broadcasts to its neighbors 2, 3 and 4

1 0 0 0 O
» no feedback 0 1 0 0 wys
» Row-stochasticity is possible... 0 0 1 0 wss
. 0 0 0 1 wss
» ... but not double-stochasticity 0 0 0 O W5’5
» Column-stochasticity is possible ’

Was +Wss +Was +wss =1

v

We need to choose between row and column stochasticity

27/34



>>> Row vs. column stochasticity PB. 3: AVERAGE CONSENSUS

Model:
> Set W = {W;, ..., Wy} of M non-negative update matrices

> ii.d. process {¢};~ ¢ valued in {1, ..., M}
» E[W] is primitive

xk+1 = W§k+1xk = W§k+l ng.‘.Wélxo

row sto. column sto.
W§k+1 ng ...W£1 — IVT(w) W§k+1 ng ...W€1 ~ Vk (w) 1T%
X — 1T (w)x0) Xk~ vk (W) (1T %xo) = Vsear
Consensus No Convergence
Wrong Value Good mean value (3; vf (w)y=1
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>>> Consensus with row-stochasticity PB. 3: AVERAGE CONSENSUS

= 10T (w)x0)

BROADCAST GOSSIP

At each clock tick k, let i be the activating node:
» i broadcasts xf‘ to all its neighbors

XK gk
» All the neighbors update: x}lfﬂ = % forallj € \;

Features:
> Eulw)] = 31
> Analyzed by Aysal et al. in 2009

1 0
0 1
0 O
0 0
0 0

[eNeNTNoNe)
=R NeoNoNe]
i eNeoNoNe]
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>>> Consensus with row-stochasticity

SO oo

= 10T (w)x0)

PB. 3: AVERAGE CONSENSUS

BROADCAST GOSSIP

At each clock tick k, let i be the activating node:
» i broadcasts x{‘ to all its neighbors

. xk+1 va‘xjk .
» All the neighbors update: = for allj € MV

0 Features:

0.5

0.5 > Euv(w)] = %1

0.5 > Analyzed by Aysal et al. in 2009
1
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>>> Consensus with column-stochasticity PB. 3: AVERAGE CONSENSUS

1
sk = ngWEk,l...ngxo ~ vk(lTﬁxo) = vkxave
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1
sk = ngWEk,l...ngxo ~ vk(lTﬁxo) = vkxave

. 1
Let us define: wk = ngwgk,l ..‘Wél 1~ vk(lTN 1) = VK
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>>> Consensus with column-stochasticity PB. 3: AVERAGE CONSENSUS

1
S = WaWer.. Wax® ~ vk(lTﬁxo) =V Xae
. 1
Let us define: wk = ngwgk,l ..‘Wél 1~ vk(lTN 1) = VK

Sum-Weight framework:
» Two variables updated in the same way but initialized differently

A sum variable initialized with x°
A weight variable initialized with 1

» The estimate is

e o | S sk SR e
XS = o | T X = Xavel
wk Wk | w v

Convergence:
» Almost sure convergence for sequences of column-sto. matrices with E[K] primitive
Difficulty: (w) is not bounded away from O...
> Tight linear rate p (E[W ® W]. ((I —rNeU- %IIT)))

Same as for the doubly sto. case

References: Matrix Analysis, Probabilities on graphs
Kempe et al. Gossip-based computation of aggregate information FOCS, 2003.
Benezit et al. Weighted gossip: Distributed averaging using non-doubly stochastic matrices ISIT, 2010.
1., Ciblat & Hachem Analysis of Sum-Weight-like algorithms for averaging in WSNs, IEEE TSP, 2013.
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>>> Average Gossiping with Broadcast PB. 3: AVERAGE CONSENSUS

_ BWGossIp
At each clock tick k, let i be the activating node:

> i broadcasts (——L ) to its neighbors

1+d ) 1+d

. 1 i

> All the neighbors update: sj+ = SJIF + 17 and
1
k+1 _ ok Wi
Wil =Wt g
z k
> i updates: sk"'1 g and wk+1 1“_,’_“1_
1

Features
» Converges linearly (in L2) to the average

> Only Broadcast communications (no
feedback)

» Introduced in 2012

1 0
0 1
0 O
0 0
0 O

[eNeNTNoNe]
=N N eoNoNe]
— O OoOO0Oo
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>>> Average Gossiping with Broadcast

[eNeNeNeN

[eNeoNoN o]

[eNeNTNeNe]

[N o NoNe]

PB. 3: AVERAGE CONSENSUS

BWGOssIP
At each clock tick k, let i be the activating node:
sk wk
: K ; . .
> i broadcasts (. T 1r di) to its neighbors
3
» All the neighbors update: s]’.H'1 = s]’.‘ + 11 - and
1
k
k+1 _ ok Wi g -
w; _wj+1+diforall]e,/\fl
» iupd Lo kt+1 S{F dk+1_W{'<
tupdates: 57" = 7z andw; " = =iz

Features
0.(;5 » Converges linearly (in L2) to the average
0.25 > Only Broadcast communications (no
0.25 feedback)
0.25 » Introduced in 2012
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>>> Illustration PB. 3: AVERAGE CONSENSUS

(S (=]

ANDOM GOSSIP BROADCAST GOSSIP

H: Min

()] m: Max

SUM-WEIGHT BROADCAST : Mean
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>>> Summary PB. 3: AVERAGE CONSENSUS

—O— Random Gossip
—[0— Broadeast Gossip
—— BWGossip

Mean Squared Error

°

200 400 600 800 1,000 1,200 1,400
Number of iterations

» Randomized gossip is easy with symmetric communications
» For one-way communications, convergence can be obtain by using side-information




>>> Gossip Algorithms 101 CONCLUSION

Summary:
» Different algorithms/proofs for different objective
» Algebraic graph theory & Markov chains at the center

> The communications scheme plays a great role

END OF PART I
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