Gossip algorithms: Tutorial & Recent advances PART I: GOSSIPING

Franck Iutzeler LJK, Université Grenoble Alpes

Smile Paris - November 3, 2016

MATHEMATICAL FORMULATION

- PB. 1: RUMOR SPREADING
- PB. 2: VOTING
- PB. 3: AVERAGE CONSENSUS
 - THE SYNCHRONOUS CASE
 - THE ASYNCHRONOUS CASE
 - COMMUNICATIONS AND AVERAGING

MATHEMATICAL FORMULATION

PB. 1: RUMOR SPREADING

PB. 2: VOTING

PB. 3: AVERAGE CONSENSUS

THE SYNCHRONOUS CASE THE ASYNCHRONOUS CASE COMMUNICATIONS AND AVERAGING

Gossipping is spreading a rumor by local chats

It is generally not centralized

The goal is to reach a *consensus* Often, it is not *synchronized*

- DeGroot Reaching a consensus Journal of the American Statistical Association, 1974 Consensus as the result of a Markov chain
- Tsitsiklis & Bertsekas Distributed asynchronous optimal routing in data networks IEEE Transactions on Automatic Control, 1986
 Decentralized gradient algorithm with mixing matrices
- Demers et al. Epidemic algorithms for replicated database maintenance ACM Principles of distributed computing & Xerox note, 1987
 Epidemic algorithms for database maintenance
- Boyd et al. Randomized gossip algorithms IEEE/ACM Transactions on Networking, 2006 Randomized Averaged Gossip

>>> Current motivations

- Distributed computation, estimation
- Large-Scale optimization
- Energy production
- ▶ Fleet of UAVs, Drones, ...
- Cognitive radio

Individual hypothesis testing then Gossip: One warns others, Majority vote, Figure of merit?

MATHEMATICAL FORMULATION

PB. 1: RUMOR SPREADING

PB. 2: VOTING

PB. 3: AVERAGE CONSENSUS

THE SYNCHRONOUS CASE THE ASYNCHRONOUS CASE COMMUNICATIONS AND AVERAGING

 DISTRIBUTED COMPUTATION estimation/optimization

- DISTRIBUTED COMPUTATION estimation/optimization
- AGENTS a.k.a. nodes local data, measurements

- DISTRIBUTED COMPUTATION estimation/optimization
- AGENTS a.k.a. nodes local data, measurements
- NETWORK wired or wireless links

- DISTRIBUTED COMPUTATION estimation/optimization
- AGENTS a.k.a. nodes local data, measurements
- NETWORK wired or wireless links

Goal: distributively reach a consensus over a global value of interest

>>> Communication Graph

We define a graph as $\mathcal{G} = (V, E)$

- ► V : set of N = |V| vertices/nodes/agents $i \in V = \{1, 2, 3, 4, 5\}$ is a node
- ► E : set of edges/links $(i, j) \in E = \{(1, 2), (2, 3), ...\}$ is an edge

We denote:

- $\mathcal{N}_i = \{j : (i,j) \in E\}$: neighbors of i
- ▶ $d_i = |\mathcal{N}_i|$: degree of i
- ► A : adjacency matrix

 $N \times N$ matrix s.t. $A_{i,j} = 1$ iff i and j are neighbors

	Γ0	1	0	0	0	٦
	1	0	1	1	0	
A =	0	1	0	1	0	
	0	1	1	0	1	
	LΟ	0	0	1	0	

► *L* : Laplacian matrix

 $N \times N$ matrix s.t. L = D - A

5/34

- AGENTS At each (discrete) time k: Sensor i has estimate x_i^k One or more perform an action
- COMMUNICATIONS

- AGENTS At each (discrete) time k: Sensor i has estimate x^k_i One or more perform an action
- COMMUNICATIONS Pairwise communications

 AGENTS At each (discrete) time k: Sensor i has estimate x^k_i One or more perform an action

COMMUNICATIONS

Pairwise communications Broadcast communications

Goal: distributively reach a consensus over a global value of interest

Problem 1

Problem 2

Problem 3

Spreading a **rumor** across the network

Voting and spreading the result

Reaching consensus on the **average** of the initial values of the agents

MATHEMATICAL FORMULATION

■ PB. 1: RUMOR SPREADING

PB. 2: VOTING

PB. 3: AVERAGE CONSENSUS

THE SYNCHRONOUS CASE THE ASYNCHRONOUS CASE COMMUNICATIONS AND AVERAGING **Problem:** Each agent has a *rumor* a scalar the goal is to *spread* the *best one* the maximum

Different setups:

- Does the agent know it has the best rumor?
- Are communications synchronous?
- Which is the communication scheme?

Applications:

Localization, Meteorology, Database management

Overview of different algorithms with some basic results/theory and pointers

Random Walk

At time k, let i be the active node:

i sends x^k_i to a neighbor *j* uniformly chosen in N_i;

• *j* updates:
$$x_j^{k+1} = \max\left(x_i^k, x_j^k\right);$$

• *j* is then the active node for time k + 1.

Convergence:

Rumor aware (or not) Synchronous $\tau \leq H + C$ No Collisions

H and C are the maximal hitting time and cover times on the graph

References: Algebraic graph theory and Markov chains

Feige a tight upper bound on the cover time for random walks on graphs Random Structures and Algorithms, 1995

Aldous & Fill reversible Markov chains and random walks on graphs, book draft

Avin & Ercal one the cover time and mixing time of RGG Theoretical Computer Science, 2007

Random Pairwise_

At time k, let i be the active node:

- *i* chooses a neighbor *j* uniformly chosen in \mathcal{N}_i
- i and j exchange their values
- *i* and *j* updates: $x_i^{k+1} = x_j^{k+1} = \max\left(x_i^k, x_j^k\right)$

Convergence:

Rumor unaware

a. Asynchronous No Collisions

$$\mathbb{E}[\tau] \le N d_{\max} \frac{H_{N-1}}{\lambda_2(L)}$$

$$\tau = \mathcal{O}\left(\frac{N \log^2(N) d_{\max}}{\alpha}\right)$$

Rumor aware

b. Synchronous Collisions

$$\tau = \mathcal{O}\left(\frac{\log^{2.5}(N)d_{\max}}{\alpha}\right)$$

 d_{\max} is the maximal degree, H_N is the *N*-th harmonic number,

 $\lambda_2(L)$ is the second smallest eig. of the Laplacian, α is the vertex expansion of the graph

References: Algebraic graph theory and Probabilities

I., Ciblat & Jakubowicz Analysis of max-consensus algorithms in wireless channels IEEE TSP, 2012 Giakkoupis & Sauerwald Rumor Spreading and Vertex expansion SODA, 2012

Random Pairwise_

At time k, let i be the active node:

- *i* chooses a neighbor *j* uniformly chosen in \mathcal{N}_i
- i and j exchange their values
- *i* and *j* updates: $x_i^{k+1} = x_j^{k+1} = \max\left(x_i^k, x_j^k\right)$

Convergence:

Rumor unaware

a. Asynchronous No Collisions

$$\mathbb{E}[\tau] \le N d_{\max} \frac{H_{N-1}}{\lambda_2(L)}$$

$$\tau = \mathcal{O}\left(\frac{N \log^2(N) d_{\max}}{\alpha}\right)$$

Rumor aware

b. Synchronous Collisions

$$\tau = \mathcal{O}\left(\frac{\log^{2.5}(N)d_{\max}}{\alpha}\right)$$

 d_{\max} is the maximal degree, H_N is the *N*-th harmonic number,

 $\lambda_2(L)$ is the second smallest eig. of the Laplacian, α is the vertex expansion of the graph

References: Algebraic graph theory and Probabilities

I., Ciblat & Jakubowicz Analysis of max-consensus algorithms in wireless channels IEEE TSP, 2012 Giakkoupis & Sauerwald Rumor Spreading and Vertex expansion SODA, 2012

Random Pairwise_

At time k, let i be the active node:

- *i* chooses a neighbor *j* uniformly chosen in \mathcal{N}_i
- i and j exchange their values
- *i* and *j* updates: $x_i^{k+1} = x_j^{k+1} = \max\left(x_i^k, x_j^k\right)$

Convergence:

Rumor unaware

a. Asynchronous No Collisions

$$\mathbb{E}[\tau] \le N d_{\max} \frac{H_{N-1}}{\lambda_2(L)}$$

$$\tau = \mathcal{O}\left(\frac{N \log^2(N) d_{\max}}{\alpha}\right)$$

Rumor aware

b. Synchronous Collisions

$$\tau = \mathcal{O}\left(\frac{\log^{2.5}(N)d_{\max}}{\alpha}\right)$$

 d_{\max} is the maximal degree, H_N is the *N*-th harmonic number,

 $\lambda_2(L)$ is the second smallest eig. of the Laplacian, α is the vertex expansion of the graph

References: Algebraic graph theory and Probabilities

I., Ciblat & Jakubowicz Analysis of max-consensus algorithms in wireless channels IEEE TSP, 2012 Giakkoupis & Sauerwald Rumor Spreading and Vertex expansion SODA, 2012

Random Broadcast

At time k, let i be the active node:

- *i* broadcasts x^k_i to all its neighbors
- Each neighbor *j* updates: $x_j^{k+1} = \max\left(x_i^k, x_j^k\right)$

Convergence:

Rumor unaware

a. Asynchronous No Collisions

$$\mathbb{E}[\tau] \le N\Delta + N(\Delta - 1) \log\left(\frac{N-1}{\Delta - 1}\right)$$

$$\tau = \mathcal{O}(N \log(N)) \text{ complete graph}$$

Rumor aware

b. Synchronous Collisions

$$\begin{split} \mathbb{E}[\tau] &\leq \Delta \log \left(\frac{N}{\Delta} \right) \\ \tau &= \mathcal{O}\left(\log(N) \right) \text{ complete graph} \end{split}$$

 Δ is the diameter of the graph

References: Algebraic graph theory and Probabilities

I., Ciblat & Jakubowicz Analysis of max-consensus algorithms in wireless channels IEEE TSP, 2012 Feige et al. Randomized Broadcast in Networks Random Structures and Algorithms, 1990 Czumaj & Rytter Broadcasting algorithms in radio networks FOCS, 2003

Random Broadcast_

At time k, let i be the active node:

- *i* broadcasts x_i^k to all its neighbors
- Each neighbor *j* updates: $x_j^{k+1} = \max\left(x_i^k, x_j^k\right)$

Convergence:

Rumor unaware

a. Asynchronous No Collisions

$$\mathbb{E}[\tau] \le N\Delta + N(\Delta - 1) \log\left(\frac{N-1}{\Delta - 1}\right)$$

$$\tau = \mathcal{O}\left(N \log(N)\right) \text{ complete graph}$$

Rumor aware

b. Synchronous Collisions

$$\mathbb{E}[\tau] \le \Delta \log\left(\frac{N}{\Delta}\right)$$

$$\tau = \mathcal{O}\left(\log(N)\right) \text{ complete graph}$$

 Δ is the diameter of the graph

References: Algebraic graph theory and Probabilities

I., Ciblat & Jakubowicz Analysis of max-consensus algorithms in wireless channels IEEE TSP, 2012 Feige et al. Randomized Broadcast in Networks Random Structures and Algorithms, 1990 Czumaj & Rytter Broadcasting algorithms in radio networks FOCS, 2003

Random Broadcast

At time k, let i be the active node:

- ▶ *i* broadcasts x^k_i to all its neighbors
- Each neighbor *j* updates: $x_j^{k+1} = \max \left(x_i^k, x_j^k \right)$

Convergence:

Rumor unaware

a. Asynchronous No Collisions

$$\mathbb{E}[\tau] \le N\Delta + N(\Delta - 1) \log\left(\frac{N-1}{\Delta - 1}\right)$$

$$\tau = \mathcal{O}(N \log(N)) \text{ complete graph}$$

Rumor aware

b. Synchronous Collisions

$$\mathbb{E}[\tau] \leq \Delta \log\left(rac{N}{\Delta}
ight) \ au = \mathcal{O}\left(\log(N)
ight)$$
 complete graph

 Δ is the diameter of the graph

References: Algebraic graph theory and Probabilities

I., Ciblat & Jakubowicz Analysis of max-consensus algorithms in wireless channels IEEE TSP, 2012 Feige et al. Randomized Broadcast in Networks Random Structures and Algorithms, 1990 Czumaj & Rytter Broadcasting algorithms in radio networks FOCS, 2003 RANDOM WALK

PAIRWISE

BROADCAST

- ▶ Factor *N* in convergence time if the nodes do not known which rumor to spread
- Broadcast communications are very efficient for spreading a rumor
- Tools and Analyses coming from various communities

MATHEMATICAL FORMULATION

PB. 1: RUMOR SPREADING

■ PB. 2: VOTING

PB. 3: AVERAGE CONSENSUS

THE SYNCHRONOUS CASE THE ASYNCHRONOUS CASE COMMUNICATIONS AND AVERAGING

Problem: Each agent has a vote binary 0/1

the goal is to spread the majority vote everyone is aware of the result

Difficult problem:

- impossible by keeping one bit per agent
- 2 bits ok

Extensions: Quorum (e.g. 2/3 majority), multiple choices

Original algorithm with a beautiful construction

Asynchronous

 Pairwise No Collisions finite time if the graph is connected $\tau = \mathcal{O}(N^4 \log(N))$

References: Conservation of sum and Geometry

Benezit, Thiran & Vetterli The Distributed Multiple Voting Problem IEEE JSTSP, 2013 Shang et al. An Upper Bound on the Convergence Time for Distributed Binary Consensus ArXiv, 2013

60 agents on a RGG. 33 voted 1 - Red.

$$\begin{bmatrix} : 0 \\ : 0.5^{-} \end{bmatrix}$$
 Vote 0 - Blue
$$\begin{bmatrix} : 0.5^{+} \\ : 1 \end{bmatrix}$$
 Vote 1 - Red

- Original Algorithm with nice formulation
- Extensions to quorum and multiple votes

MATHEMATICAL FORMULATION

PB. 1: RUMOR SPREADING

PB. 2: VOTING

■ PB. 3: AVERAGE CONSENSUS

- THE SYNCHRONOUS CASE
- THE ASYNCHRONOUS CASE
- COMMUNICATIONS AND AVERAGING

MATHEMATICAL FORMULATION

PB. 1: RUMOR SPREADING

PB. 2: VOTING

■ PB. 3: AVERAGE CONSENSUS

 THE SYNCHRONOUS CASE THE ASYNCHRONOUS CASE COMMUNICATIONS AND AVERAGING

>>> Problem

Problem: Each agent has a *value* real (to simplify) the goal is to *reach a consensus* over the *means value*

Central problem:

- ► at the heart of *"distributed data/common objective*" pb. Detection, LMS, Optimization
- most investigated

Linear updates conditioned by an underlying communication graph

for the graph above, it produces the following mask

First let us be synchronous ($W^k = W$) and investigate desirable properties

Property 1: Stochasticity

- non-negative coefficients
- ▶ row sum is 1

Algo. interpretation:

. Each operation is a linear convex combination of the neighbors values

Consequences:

- spectral radius $\rho(W) = 1$
- ▶ 1 is an eigenvector for eigenvalue 1
- ∞ -norm is 1

in the ℓ_{∞} -induced or operator norm

if column sum is 1 (instead of row):

- spectral radius $\rho(W) = 1$
- 1 is a left eigenvector for eigenvalue 1
- 1-norm is 1

Г	0.5	0.5	0	0	0	٦
	0.25	0.25	0.25	0.25	0	
	0	0.33	0.33	0.33	0	
	0	0.25	0.25	0.25	0.25	
L	0	0	0	0.5	0.5	

Property 2: Primitivity

(W)ⁿ has positive entries for some n > 0
 Graph interpretation:

- i. Connected (Strongly)
- ii. there is some *n* such that if we can go from i to j in *n* steps, we can go in n + 1 steps

Consequences:

- spectral radius $\rho(W)$ is an eigenvalue
- $\rho(W)$ is the only eigenvalue with maximal modulus

– if the diagonal values are non-zero (or even just one): Connected (Strongly) \Leftrightarrow Primitive

- we do not care about the value of the entries as long as they are positive!

- if there is are cycles that contradict the reachability condition, there is as many maximal eigenvalues as the size of the cycle!
(W)ⁿ has positive entries for some n > 0
 Graph interpretation:

- i. Connected (Strongly)
- **ii.** there is some *n* such that if we can go from i to j in *n* steps, we can go in n + 1 steps

property ii. KO

Consequences:

- spectral radius $\rho(W)$ is an eigenvalue
- $\rho(W)$ is the only eigenvalue with maximal modulus

- if the diagonal values are non-zero (or even just one): Connected (Strongly) ⇔ Primitive

- we do not care about the value of the entries as long as they are positive!

(W)ⁿ has positive entries for some n > 0
 Graph interpretation:

- i. Connected (Strongly)
- **ii.** there is some *n* such that if we can go from *i* to *j* in *n* steps, we can go in n + 1 steps

property ii. KO

Consequences:

- spectral radius $\rho(W)$ is an eigenvalue
- $\rho(W)$ is the only eigenvalue with maximal modulus

- if the diagonal values are non-zero (or even just one): Connected (Strongly) ⇔ Primitive

- we do not care about the value of the entries as long as they are positive!

(W)ⁿ has positive entries for some n > 0
 Graph interpretation:

- i. Connected (Strongly)
- **ii.** there is some *n* such that if we can go from *i* to *j* in *n* steps, we can go in n + 1 steps

property ii. KO

Consequences:

- spectral radius $\rho(W)$ is an eigenvalue
- $\rho(W)$ is the only eigenvalue with maximal modulus

- if the diagonal values are non-zero (or even just one): Connected (Strongly) ⇔ Primitive

- we do not care about the value of the entries as long as they are positive!

(W)ⁿ has positive entries for some n > 0
 Graph interpretation:

- i. Connected (Strongly)
- **ii.** there is some *n* such that if we can go from *i* to *j* in *n* steps, we can go in n + 1 steps

property ii. KO

Consequences:

- spectral radius $\rho(W)$ is an eigenvalue
- $\rho(W)$ is the only eigenvalue with maximal modulus

- if the diagonal values are non-zero (or even just one): Connected (Strongly) ⇔ Primitive

- we do not care about the value of the entries as long as they are positive!

(W)ⁿ has positive entries for some n > 0
 Graph interpretation:

- i. Connected (Strongly)
- **ii.** there is some *n* such that if we can go from *i* to *j* in *n* steps, we can go in n + 1 steps

Consequences:

- spectral radius $\rho(W)$ is an eigenvalue
- $\rho(W)$ is the only eigenvalue with maximal modulus

- if the diagonal values are non-zero (or even just one): Connected (Strongly) ⇔ Primitive

- we do not care about the value of the entries as long as they are positive!

(W)ⁿ has positive entries for some n > 0
 Graph interpretation:

- i. Connected (Strongly)
- ii. there is some *n* such that if we can go from *i* to *j* in *n* steps, we can go in n + 1 steps

Consequences:

- spectral radius $\rho(W)$ is an eigenvalue
- $\rho(W)$ is the only eigenvalue with maximal modulus

- if the diagonal values are non-zero (or even just one): Connected (Strongly) ⇔ Primitive

- we do not care about the value of the entries as long as they are positive!

Assume that *W* is *stochastic* and *primitive*.

1 is the only eigenvalue of greatest modulus. Let λ be the second eigenvalue in modulus, $|\lambda| < 1$.

• let us **iterate** this matrix, looking at its Jordan normal form:

$$x^{1} = P \begin{bmatrix} 1 & & & & \\ & \lambda & 1 & & \\ & & \ddots & \ddots & \\ & & & \lambda & 1 & \\ & & & & \lambda & \\ & & & & & \ddots \end{bmatrix} P^{-1} x^{0}$$

Assume that *W* is *stochastic* and *primitive*.

1 is the only eigenvalue of greatest modulus. Let λ be the second eigenvalue in modulus, $|\lambda| < 1$.

▶ let us **iterate** this matrix, looking at its Jordan normal form:

$$x^{k} = P \begin{bmatrix} 1 & & & \\ & \lambda^{k} & k\lambda^{k-1} & \dots & \binom{k}{s}\lambda^{k-s} & & \\ & & \ddots & \ddots & \vdots & & \\ & & & \lambda^{k} & k\lambda^{k-1} & & \\ & & & & & \lambda^{k} & & \\ & & & & & & \ddots \end{bmatrix} P^{-1}x^{0}$$

Convergence:

• Exponential in $\tilde{\mathcal{O}}(\lambda^k)$

to a rank-1 matrix uv^T u and v are the right and left eigenvectors associated with 1

True for row-sto. (u = 1) and col.-sto. (v = 1)

Assume that W is *row-stochastic* and *primitive*.

1 is the only eigenvalue of greatest modulus. Let λ be the second eigenvalue in modulus, $|\lambda| < 1$.

▶ let us **iterate** this matrix, looking at its Jordan normal form:

$$x^k \to \mathbf{1} v^{\mathrm{T}} x^0$$

as 1 is the eigenvector associated with eigenvalue 1 ν is the corresponding left eigenvector; $\nu^{T} \mathbf{1} = 1$

Assume that *W* is *column-stochastic* and *primitive*.

1 is the only eigenvalue of greatest modulus. Let λ be the second eigenvalue in modulus, $|\lambda|<$ 1.

• let us iterate this matrix, looking at its Jordan normal form:

$$x^k \rightarrow \nu \mathbf{1}^{\mathrm{T}} x^0$$

as 1 is the *left* eigenvector associated with eigenvalue 1 ν is the corresponding (*right*) eigenvector; $\nu^{T} \mathbf{1} = 1$

In PageRank, that is exactly what is done. v is the Perron Vector. The use of $R = (1 - \alpha)W + \alpha J$ enables to retrieve primitivity!

Assume that W is doubly-stochastic and primitive.

1 is the only eigenvalue of greatest modulus. Let λ be the second eigenvalue in modulus, $|\lambda| < 1$.

let us iterate this matrix, looking at its Jordan normal form:

$$x^k
ightarrow \mathbf{11}^{\mathrm{T}} rac{1}{N} x^0 = \mathbf{1} x_{\mathrm{ave}}$$

as 1 is an eigenvector associated with eigenvalue 1 at both sides 1/N comes from the joint normalization.

Synchronous Average Consensus:

- Doubly-Stochastic Primitive matrix
- ▶ Exponential rate depending on the second eigenvalue ≈ the algebraic connectivity

 $\begin{array}{c} \text{ex. 1:} \\ \text{full graph} \\ \text{one step consensus} \end{array} \quad J = \frac{1}{N} \left[\begin{array}{c} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{array} \right] \quad \begin{array}{c} \text{ex. 2:} \\ \text{connected graph} \\ \text{Metropolis-Hastings} \end{array} \quad W_{i,j} = \left\{ \begin{array}{c} \frac{1}{1 + \max(d_i, d_j)} & \text{if } j \in \mathcal{N}_i \\ 1 - \sum_{j \in \mathcal{N}_i} W_{i,j} & \text{if } i = j \\ 0 & \text{else} \end{array} \right.$

Let us get to randomized average gossip! (after a small parenthesis)

>>> Link with differential equations

Differential equations can be used to prove convergence and rates at large gradient, accelerated gradient, FISTA

Define the $|\mathcal{E}| \times N$ incidence matrix of a graph: $\Box M_{ev} = 1$ if e = (v, j); -1 if e = (i, v); 0 elsewhere. $\Box M$ is a square root of $L: L = M^{\mathrm{T}}M$!

Consider reaching consensus by minimizing $f(x) = \frac{1}{2} ||Mx||^2$ and observe the ODE:

$$\dot{x}(t) = -\nabla f(x(t)) = -M^{\mathrm{T}}Mx(t) = -Lx(t)$$

An Euler discretisation gives:

$$\frac{x^{k+1} - x^k}{\gamma} = -Lx^k \Leftrightarrow x^{k+1} = x^k - \gamma Lx^k = \underbrace{(I - \gamma L)}_W x^k$$

It is easy to see that with step $\gamma < 1/d_{\text{max}}$, *W* is non-negative, doubly stochastic, primitive: it is an averaging algorithm.

References Pseudo-orbit of ODEs, Inertia, Krause model dynamical graph, multiple clusters Attouch, Peypouquet, & Redont *A dynamical approach to an inertial forward-backward algorithm for convex minimization*, SIOPT, 2014.

Blondel, Hendrickx, & Tsitsiklis On Krause's multi-agent consensus model with state-dependent connectivity, IEEE TAC, 2009.

HISTORY & MOTIVATION

MATHEMATICAL FORMULATION

PB. 1: RUMOR SPREADING

PB. 2: VOTING

PB. 3: AVERAGE CONSENSUS

THE SYNCHRONOUS CASE

THE ASYNCHRONOUS CASE
 COMMUNICATIONS AND AVERAGING

Problem: Each agent has a *value* real (to simplify) the goal is to *reach a consensus* over the *means value*

Linear updates conditioned by an underlying communication graph

for the graph above, it produces the following *mask*

Changes compared to Synchronous case:

- > At each iteration, a mixing matrix is randomly chosen in a set
- ▶ The objective is that only some nodes/links are involved at each iteration

Standard Model:

- Set $W = \{W_1, ..., W_M\}$ of *M* doubly-stochastic update matrices
- ► i.i.d. process $\{\xi^k\}_{k>0}$ valued in $\{1, ..., M\}$
- $\mathbb{E}[W]$ is *primitive*

$$x^{k+1} = W_{\xi^{k+1}} x^k = W_{\xi^{k+1}} W_{\xi^k} \dots W_{\xi^1} x^0$$

Convergence:

- $x^k \rightarrow \mathbf{1} x_{ave}$ almost surely
- > The mean squared error vanishes exponentially
- ► Exact rate $\rho\left(\mathbb{E}[W \otimes W].\left((I \frac{1}{N}\mathbf{1}\mathbf{1}^{\mathrm{T}}) \otimes (I \frac{1}{N}\mathbf{1}\mathbf{1}^{\mathrm{T}})\right)\right)$ outside a set of Lebesgue measure 0

References: Matrix Analysis and Probabilities

Boyd et al. Randomized gossip algorithms IEEE/ACM Transactions on Networking,2006 I. & Ciblat & Hachem Analysis of Sum-Weight-like algorithms for averaging in Wireless Sensor Networks IEEE TSP,2013 Classic way quick but not tight

$$\begin{split} \|(I-J)x^{k+1}\|_2^2 &= \|(I-J)W_{\xi^{k+1}}(I-J)x^k\|_2^2(\text{row-sto.}) \\ &= ((I-J)x^k)^{\mathrm{T}}((I-J)W_{\xi^{k+1}})^{\mathrm{T}}(I-J)W_{\xi^{k+1}}(I-J)x^k \end{split}$$

$$\mathbb{E}[\|(I-J)x^{k+1}\|_{2}^{2}|\mathcal{F}_{k}] = ((I-J)x^{k})^{\mathrm{T}}\mathbb{E}[((I-J)W_{\xi^{k+1}})^{\mathrm{T}}(I-J)W_{\xi^{k+1}}|\mathcal{F}_{k}](I-J)x^{k}$$

$$\leq \underbrace{\rho\left(\mathbb{E}[((I-J)W_{\xi^{k+1}})^{\mathrm{T}}(I-J)W_{\xi^{k+1}}|\mathcal{F}_{k}]\right)}_{:=\sigma<1} \|(I-J)x^{k}\|_{2}^{2}$$

Alternative way tight

$$\mathbb{E}[[(I-J)x^{k+1}] \otimes [(I-J)x^{k+1}]|\mathcal{F}_k] = \mathbb{E}[[(I-J)W_{\xi^{k+1}}] \otimes [(I-J)W_{\xi^{k+1}}]|\mathcal{F}_k] \times [(I-J)x^k] \otimes [(I-J)x^k] \times \underbrace{\rho\left(\mathbb{E}[[(I-J)W_{\xi^{k+1}}] \otimes [(I-J)W_{\xi^{k+1}}]|\mathcal{F}_k]\right)^k}_{:=\varsigma < 1}$$

- MSE converges exponentially to 0
- Markov + Borel-Cantelli = Almost-sure convergence
- $J = 1/N11^{T}$

At time k, let i be the active node:

- Two nodes and one link used at each iteration
- Introduced by Boyd et al. in 2004
- Converges as soon as the (undirected) graph is connected

At time k, let i be the active node:

1	- 1	0	0	0	0	٦
	0	1	0	0	0	
	0	0	1	0	0	
	0	0	0	1	0	
	0	0	0	0	1	I

- Two nodes and one link used at each iteration
- Introduced by Boyd et al. in 2004
- Converges as soon as the (undirected) graph is connected

At time k, let i be the active node:

• *i* chooses a neighbor *j* uniformly in \mathcal{N}_i

1	1	0	0	0	0 7	
	0	1	0	0	0	
	0	0	1	0	0	
	0	0	0	1	0	
	0	0	0	0	1	

- Two nodes and one link used at each iteration
- Introduced by Boyd et al. in 2004
- Converges as soon as the (undirected) graph is connected

At time k, let i be the active node:

- *i* chooses a neighbor *j* uniformly in \mathcal{N}_i
- they exchange their values

1	1	0	0	0	0 -	1
	0	1	0	0	0	
	0	0	1	0	0	
	0	0	0	1	0	
	0	0	0	0	1	

- Two nodes and one link used at each iteration
- Introduced by Boyd et al. in 2004
- Converges as soon as the (undirected) graph is connected

At time k, let i be the active node:

- *i* chooses a neighbor *j* uniformly in \mathcal{N}_i
- they exchange their values
- Both *i* and *j* update: $x_i^{k+1} = x_j^{k+1} = \frac{x_i^k + x_j^k}{2}$

1	0.5	0.5	0	0	0 -	1
	0.5	0.5	0	0	0	ļ
	0	0	1	0	0	
	0	0	0	1	0	
	0	0	0	0	1	

- Two nodes and one link used at each iteration
- Introduced by Boyd et al. in 2004
- Converges as soon as the (undirected) graph is connected

Under the standard assumptions, convergence to average consensus is easily obtained

- Primitivity in average is natural
- Double-stochasticity at each iteration is mandatory

Other formulation for asynchronous average gossip

► The product of any B < ∞ consecutive matrices is positive sort of *deterministic asynchrony* kind of asynchrony in [Tsitsiklis'84]

Double-stochasticity constrains the coefficients of the mixing matrix and thus the communicated values

Let us investigate different communications schemes

HISTORY & MOTIVATION

MATHEMATICAL FORMULATION

PB. 1: RUMOR SPREADING

PB. 2: VOTING

PB. 3: AVERAGE CONSENSUS THE SYNCHRONOUS CASE THE ASYNCHRONOUS CASE

COMMUNICATIONS AND AVERAGING

How to design a mixing matrix when agent 5 broadcasts to its neighbors 2, 3 and 4

no feedback

Γ1	0	0	0	0	٦
0	$w_{2,2}$	0	0	$w_{2,5}$	
0	0	W3,3	0	$w_{3,5}$	
0	0	0	W4,4	W4,5	
0	0	0	0	$w_{5,5}$]

How to design a mixing matrix when agent 5 broadcasts to its neighbors 2, 3 and 4

- no feedback
- Row-stochasticity is possible...

Г	1	0	0	0	0 -	l
	0	w_2	0	0	$1 - w_2$	
	0	0	w_3	0	$1 - w_3$	
	0	0	0	<i>w</i> 4	$1 - w_4$	
L	0	0	0	0	1 _	

How to design a mixing matrix when agent 5 broadcasts to its neighbors 2, 3 and 4

		Γ1	0	0	0	0 7	L
۲	no feedback	0	w_2	0	0	$1 - w_2$	
•	Row-stochasticity is possible	0	0	w_3	0	$1 - w_3$	
	had not dealed by the standard	0	0	0	W4	$1 - w_4$	
	Dut not double-stochasticity		0	0	0	1	l

How to design a mixing matrix when agent 5 broadcasts to its neighbors 2, 3 and 4

		Γ1	0	0	0	0 .	1
► no	feedback	0	$w_{2,2}$	0	0	$w_{2,5}$	
► Rov	w-stochasticity is possible	0	0	<i>w</i> _{3,3}	0	W3,5	
• 1	hut not double-stochasticity	0	0	0	<i>w</i> 4,4	W4,5	
► Col	umn-stochasticity is possible	L 0	0	0	0	w _{5,5}	

How to design a mixing matrix when agent 5 broadcasts to its neighbors 2, 3 and 4

- no feedback
- Row-stochasticity is possible...
- ... but not double-stochasticity
- Column-stochasticity is possible

 $w_{2,5} + w_{3,5} + w_{4,5} + w_{5,5} = 1$

▶ We need to choose between row and column stochasticity

Γ	• 1	0	0	0	0 -	1
	0	1	0	0	$w_{2,5}$	
	0	0	1	0	W3,5	
	0	0	0	1	W4,5	l
L	0	0	0	0	$w_{5,5}$	

Model:

- Set $W = \{W_1, ..., W_M\}$ of *M* non-negative update matrices
- i.i.d. process $\{\xi^k\}_{k>0}$ valued in $\{1, ..., M\}$
- $\mathbb{E}[W]$ is *primitive*

$$x^{k+1} = W_{\xi^{k+1}} x^k = W_{\xi^{k+1}} W_{\xi^k} \dots W_{\xi^1} x^0$$

row sto.

$$\begin{split} & W_{\xi^{k+1}}W_{\xi^k}...W_{\xi^1} \to \mathbf{1}\nu^{\mathrm{T}}(\omega) \\ & x^k \to \mathbf{1}(\nu^{\mathrm{T}}(\omega)x^0) \end{split}$$

Consensus Wrong Value

column sto.

$$\begin{split} W_{\xi^{k+1}}W_{\xi^k}...W_{\xi^1} &\sim \nu^k(\omega)\mathbf{1}^T\frac{1}{N}\\ x^k &\sim \nu^k(\omega)(\mathbf{1}^T\frac{1}{N}x^0) = \nu^k x_{a\nu e} \end{split}$$

No Convergence Good mean value $(\sum_i v_i^k(\omega) = 1)$

$$x^k \to \mathbf{1}(v^{\mathrm{T}}(\omega)x^0)$$

BROADCAST GOSSIP

At each clock tick k, let i be the activating node:

- *i* broadcasts x^k_i to all its neighbors
- ► All the neighbors update: $x_j^{k+1} = \frac{x_i^k + x_j^k}{2}$ for all $j \in \mathcal{N}_i$

Г	1	0	0	0	0	٦
	0	1	0	0	0	
	0	0	1	0	0	
	0	0	0	1	0	
L	0	0	0	0	1	

- $\mathbb{E}_{\omega}[v(\omega)] = \frac{1}{N}\mathbf{1}$
- Analyzed by Aysal et al. in 2009

$$x^k \to \mathbf{1}(v^{\mathrm{T}}(\omega)x^0)$$

BROADCAST GOSSIP

At each clock tick k, let i be the activating node:

- *i* broadcasts x_i^k to all its neighbors
- ► All the neighbors update: $x_j^{k+1} = \frac{x_i^k + x_j^k}{2}$ for all $j \in \mathcal{N}_i$

1	Γ1	0	0	0	0 .	1
	0	0.5	0	0	0.5	
	0	0	0.5	0	0.5	
	0	0	0	0.5	0.5	
	LΟ	0	0	0	1	

- $\mathbb{E}_{\omega}[v(\omega)] = \frac{1}{N}\mathbf{1}$
- Analyzed by Aysal et al. in 2009

$$s^{k} = W_{\xi^{k}}W_{\xi^{k-1}}...W_{\xi^{1}}x^{0} \sim v^{k}(\mathbf{1}^{T}\frac{1}{N}x^{0}) = v^{k}x_{ave}$$

$$s^{k} = W_{\xi^{k}} W_{\xi^{k-1}} ... W_{\xi^{1}} x^{0} \sim v^{k} (\mathbf{1}^{T} \frac{1}{N} x^{0}) = v^{k} x_{ave}$$

Let us define: $w^{k} = W_{\xi^{k}} W_{\xi^{k-1}} ... W_{\xi^{1}} \mathbf{1} \sim v^{k} (\mathbf{1}^{T} \frac{1}{N} \mathbf{1}) = v^{k}$

$$s^{k} = W_{\xi^{k}}W_{\xi^{k-1}}...W_{\xi^{1}}x^{0} \sim v^{k}(\mathbf{1}^{T}\frac{1}{N}x^{0}) = v^{k}x_{ave}$$

et us define: $w^{k} = W_{\xi^{k}}W_{\xi^{k-1}}...W_{\xi^{1}}\mathbf{1} \sim v^{k}(\mathbf{1}^{T}\frac{1}{N}\mathbf{1}) = v^{k}$

Sum-Weight framework:

- Two variables updated in the same way but initialized differently A sum variable initialized with x⁰
 A weight variable initialized with 1
- ► The estimate is

$$x^{k} \triangleq \left[\frac{s_{1}^{k}}{w_{1}^{k}}, ..., \frac{s_{N}^{k}}{w_{N}^{k}}\right] = \frac{s^{k}}{w^{k}} \sim \frac{v^{k}x_{ave}}{v^{k}} = x_{ave}\mathbf{1}$$

Convergence:

- ► Almost sure convergence for sequences of column-sto. matrices with E[K] primitive Difficulty: (w^k) is not bounded away from 0...
- ► Tight linear rate $\rho\left(\mathbb{E}[W \otimes W].\left((I \frac{1}{N}\mathbf{1}\mathbf{1}^{\mathrm{T}}) \otimes (I \frac{1}{N}\mathbf{1}\mathbf{1}^{\mathrm{T}})\right)\right)$ Same as for the doubly sto. case

References: Matrix Analysis, Probabilities on graphs

Kempe et al. Gossip-based computation of aggregate information FOCS, 2003. Benezit et al. Weighted gossip: Distributed averaging using non-doubly stochastic matrices ISIT, 2010. I., Ciblat & Hachem Analysis of Sum-Weight-like algorithms for averaging in WSNs, IEEE TSP, 2013.

BWGossip

At each clock tick k, let i be the activating node:

- *i* broadcasts $\left(\frac{s_i^k}{1+d_i}, \frac{w_i^k}{1+d_i}\right)$ to its neighbors
- ► All the neighbors update: $s_j^{k+1} = s_j^k + \frac{s_i^k}{1+d_i}$ and $w_i^{k+1} = w_i^k + \frac{w_i^k}{1+d_i}$ for all $j \in \mathcal{N}_i$

• *i* updates:
$$s_i^{k+1} = \frac{s_i^k}{1+d_i}$$
 and $w_i^{k+1} = \frac{w_i^k}{1+d_i}$

Г	1	0	0	0	ך 0
	0	1	0	0	0
	0	0	1	0	0
	0	0	0	1	0
L	0	0	0	0	1]

- Converges linearly (in L2) to the average
- Only Broadcast communications (no feedback)
- Introduced in 2012

BWGossip

At each clock tick *k*, let *i* be the activating node:

- *i* broadcasts $\left(\frac{s_i^k}{1+d_i}, \frac{w_i^k}{1+d_i}\right)$ to its neighbors
- ► All the neighbors update: $s_j^{k+1} = s_j^k + \frac{s_i^k}{1+d_i}$ and $w_i^{k+1} = w_i^k + \frac{w_i^k}{1+d_i}$ for all $j \in \mathcal{N}_i$

• *i* updates:
$$s_i^{k+1} = \frac{s_i^k}{1+d_i}$$
 and $w_i^{k+1} = \frac{w_i^k}{1+d_i}$

٢	1	0	0	0	0 7
	0	1	0	0	0.25
	0	0	1	0	0.25
	0	0	0	1	0.25
l	0	0	0	0	0.25

- Converges linearly (in L2) to the average
- Only Broadcast communications (no feedback)
- Introduced in 2012
RANDOM GOSSIP

BROADCAST GOSSIP

Sum-Weight BroadCast

- ▶ Randomized gossip is easy with symmetric communications
- ▶ For one-way communications, convergence can be obtain by using side-information

Summary:

- Different algorithms/proofs for different objective
- Algebraic graph theory & Markov chains at the center
- The communications scheme plays a great role

End of Part I