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>>> Gossipping HISTORY & MOTIVATION

Gossipping is spreading a rumor by local chats

It is generally not centralized

The goal is to reach a consensus
Often, it is not synchronized
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>>> Origins HISTORY & MOTIVATION

I DeGroot Reaching a consensus
Journal of the American Statistical Association, 1974
Consensus as the result of a Markov chain

I Tsitsiklis & Bertsekas Distributed asynchronous optimal routing in data networks
IEEE Transactions on Automatic Control, 1986
Decentralized gradient algorithm with mixing matrices

I Demers et al. Epidemic algorithms for replicated database maintenance
ACM Principles of distributed computing & Xerox note, 1987
Epidemic algorithms for database maintenance

I Boyd et al. Randomized gossip algorithms
IEEE/ACM Transactions on Networking, 2006
Randomized Averaged Gossip
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>>> Current motivations HISTORY & MOTIVATION

I Distributed computation, estimation
I Large-Scale optimization
I Energy production
I Fleet of UAVs, Drones, ...
I Cognitive radio

Individual hypothesis testing then Gossip:
One warns others, Majority vote, Figure of merit?
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>>> General setup FORMULATION

I DISTRIBUTED COMPUTATION

estimation/optimization

I AGENTS a.k.a. nodes
local data, measurements

I NETWORK

wired or wireless links

Goal: distributively reach a consensus over a global value of interest
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>>> Communication Graph FORMULATION

1 2

3

4

5

We define a graph as G = (V, E)

I V : set of N = |V| vertices/nodes/agents
i ∈ V = {1, 2, 3, 4, 5} is a node

I E : set of edges/links
(i, j) ∈ E = {(1, 2), (2, 3), ...} is an edge

We denote:

I Ni = {j : (i, j) ∈ E} : neighbors of i
I di = |Ni| : degree of i
I A : adjacency matrix

N × N matrix s.t. Ai,j = 1 iff i and j are
neighbors

A =


0 1 0 0 0
1 0 1 1 0
0 1 0 1 0
0 1 1 0 1
0 0 0 1 0


I L : Laplacian matrix

N × N matrix s.t. L = D− A

A =


1 −1 0 0 0
−1 3 −1 −1 0
0 −1 2 −1 0
0 −1 −1 3 −1
0 0 0 −1 1
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>>> Communications between agents FORMULATION

xk
1 xk

2

xk
3

xk
4

xk
5

I AGENTS
At each (discrete) time k:

Sensor i has estimate xk
i

One or more perform an action

I COMMUNICATIONS

Pairwise communications
Broadcast communications
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>>> General goal FORMULATION

Goal: distributively reach a consensus over a global value of interest
I xk = (xk

1, .., x
k
n)→ (f(x0), .., f(x0)) = 1f(x0)

I xk+1
i = F(xk

i , {x
k
j : j ∈ N k

i })

Problem 1

Spreading a rumor across
the network

Problem 2

Voting and spreading the
result

Problem 3

Reaching consensus on the
average of the initial values
of the agents
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>>> Problem PB. 1: RUMOR SPREADING

Problem: Each agent has a rumor a scalar
the goal is to spread the best one the maximum

Different setups:
I Does the agent know it has the best rumor?
I Are communications synchronous?
I Which is the communication scheme?

Applications:
Localization, Meteorology, Database management

I Overview of different algorithms with some basic results/theory and pointers
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>>> Random Walk PB. 1: RUMOR SPREADING

Random Walk
At time k, let i be the active node:

I i sends xk
i to a neighbor j uniformly chosen in Ni;

I j updates: xk+1
j = max

(
xk

i , x
k
j

)
;

I j is then the active node for time k + 1.

Convergence:
Rumor aware (or not)
Synchronous
No Collisions

τ ≤ H + C

H and C are the maximal hitting time and cover times on the graph

References: Algebraic graph theory and Markov chains
Feige a tight upper bound on the cover time for random walks on graphs Random Structures and
Algorithms,1995
Aldous & Fill reversible Markov chains and random walks on graphs, book draft
Avin & Ercal one the cover time and mixing time of RGG Theoretical Computer Science, 2007
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>>> Pairwise communications PB. 1: RUMOR SPREADING

Random Pairwise
At time k, let i be the active node:

I i chooses a neighbor j uniformly chosen in Ni

I i and j exchange their values

I i and j updates: xk+1
i = xk+1

j = max
(

xk
i , x

k
j

)

Convergence:

a.
Rumor unaware
Asynchronous
No Collisions

E[τ ] ≤ Ndmax
HN−1
λ2(L)

τ = O
(

N log2(N)dmax
α

)

b.
Rumor aware
Synchronous
Collisions

τ = O
(

log2.5(N)dmax
α

)
dmax is the maximal degree, HN is the N-th harmonic number,
λ2(L) is the second smallest eig. of the Laplacian, α is the vertex expansion of the graph

References: Algebraic graph theory and Probabilities
I., Ciblat & Jakubowicz Analysis of max-consensus algorithms in wireless channels IEEE TSP, 2012
Giakkoupis & Sauerwald Rumor Spreading and Vertex expansion SODA, 2012
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>>> Broadcast communications PB. 1: RUMOR SPREADING

Random Broadcast
At time k, let i be the active node:

I i broadcasts xk
i to all its neighbors

I Each neighbor j updates: xk+1
j = max

(
xk

i , x
k
j

)

Convergence:

a.
Rumor unaware
Asynchronous
No Collisions

E[τ ] ≤ N∆ + N(∆− 1) log
(

N−1
∆−1

)
τ = O (N log(N)) complete graph

b.
Rumor aware
Synchronous
Collisions

E[τ ] ≤ ∆ log
(

N
∆

)
τ = O (log(N)) complete graph

∆ is the diameter of the graph

References: Algebraic graph theory and Probabilities
I., Ciblat & Jakubowicz Analysis of max-consensus algorithms in wireless channels IEEE TSP, 2012
Feige et al. Randomized Broadcast in Networks Random Structures and Algorithms, 1990
Czumaj & Rytter Broadcasting algorithms in radio networks FOCS, 2003
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>>> Illustration in the Rumor unaware case PB. 1: RUMOR SPREADING

RANDOM WALK

PAIRWISE BROADCAST
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>>> Summary PB. 1: RUMOR SPREADING
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I Factor N in convergence time if the nodes do not known which rumor to spread
I Broadcast communications are very efficient for spreading a rumor
I Tools and Analyses coming from various communities
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>>> Problem PB. 2: VOTING

Problem: Each agent has a vote binary 0/1
the goal is to spread the majority vote everyone is aware of the result

Difficult problem:
I impossible by keeping one bit per agent
I 2 bits ok

Extensions:
Quorum (e.g. 2/3 majority), multiple choices

I Original algorithm with a beautiful construction
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>>> Voting algorithm PB. 2: VOTING

Distributed Voting
At time k, let i be the active node:

I i chooses a neighbor j uniformly chosen in Ni

I i and j exchange their values
I i and j update as given by the figure

-.
Asynchronous
Pairwise
No Collisions

finite time if the graph is connected
τ = O(N4 log(N))

References: Conservation of sum and Geometry
Benezit, Thiran & Vetterli The Distributed Multiple Voting Problem IEEE JSTSP, 2013
Shang et al. An Upper Bound on the Convergence Time for Distributed Binary Consensus ArXiv, 2013
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>>> Illustration & Summary PB. 2: VOTING

60 agents on a RGG. 33 voted 1 - Red. : 0
: 0.5−

}
Vote 0 - Blue : 0.5+

: 1

}
Vote 1 - Red

I Original Algorithm with nice formulation
I Extensions to quorum and multiple votes

images: Benezit et al.
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>>> Problem PB. 3: AVERAGE CONSENSUS

Problem: Each agent has a value real (to simplify)
the goal is to reach a consensus over the means value

Central problem:
I at the heart of “distributed data/common objective” pb.

Detection, LMS, Optimization

I most investigated

Linear updates conditioned by an underlying communication graph
for the graph above, it produces the following mask

xk+1 =


� � 0 0 0
� � � � 0
0 � � � 0
0 � � � �
0 0 0 � �


︸ ︷︷ ︸

Wk

xk

I First let us be synchronous (Wk = W) and investigate desirable properties
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>>> Preliminaries on Matrices PB. 3: AVERAGE CONSENSUS

Property 1: Stochasticity
I non-negative coefficients
I row sum is 1

Algo. interpretation:

. Each operation is a linear convex
combination of the neighbors values


0.5 0.5 0 0 0
0.25 0.25 0.25 0.25 0

0 0.33 0.33 0.33 0
0 0.25 0.25 0.25 0.25
0 0 0 0.5 0.5



Consequences:
I spectral radius ρ(W) = 1
I 1 is an eigenvector for eigenvalue 1
I ∞-norm is 1

in the `∞-induced or operator norm

if column sum is 1 (instead of row):
– spectral radius ρ(W) = 1
– 1 is a left eigenvector for eigenvalue 1
– 1-norm is 1
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>>> Preliminaries on Matrices PB. 3: AVERAGE CONSENSUS

Property 2: Primitivity
I (W)n has positive entries for some n > 0

Graph interpretation:

i. Connected (Strongly)

ii. there is some n such that if we can go from
i to j in n steps, we can go in n + 1 steps

1 2

3

W =

 0 1 0
0 0 0
0 0 0


property i. KO

Consequences:
I spectral radius ρ(W) is an eigenvalue
I ρ(W) is the only eigenvalue with maximal modulus

– if the diagonal values are non-zero (or even just one): Connected (Strongly)⇔ Primitive
– we do not care about the value of the entries as long as they are positive!
– if there is are cycles that contradict the reachability condition, there is as many maximal
eigenvalues as the size of the cycle!
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>>> Power method/Stationary Markov chain/Average consensus PB. 3: AVERAGE CONSENSUS

Assume that W is stochastic and primitive.
1 is the only eigenvalue of greatest modulus. Let λ be the second eigenvalue in modulus, |λ| < 1.

I let us iterate this matrix, looking at its Jordan normal form:

x1 = P



1
λ 1

. . .
. . .
λ 1

λ

. . .


P−1x0
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>>> Power method/Stationary Markov chain/Average consensus PB. 3: AVERAGE CONSENSUS

Assume that W is stochastic and primitive.
1 is the only eigenvalue of greatest modulus. Let λ be the second eigenvalue in modulus, |λ| < 1.

I let us iterate this matrix, looking at its Jordan normal form:

xk = P



1
λk kλk−1 . . .

(k
s

)
λk−s

. . .
. . .

...
λk kλk−1

λk

. . .


P−1x0

Convergence:

I Exponential in Õ(λk)

I to a rank-1 matrix uvT

u and v are the right and left eigenvectors associated with 1

True for row-sto. (u = 1) and col.-sto. (v = 1)
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>>> Power method/Stationary Markov chain/Average consensus PB. 3: AVERAGE CONSENSUS

Assume that W is row-stochastic and primitive.
1 is the only eigenvalue of greatest modulus. Let λ be the second eigenvalue in modulus, |λ| < 1.

I let us iterate this matrix, looking at its Jordan normal form:

xk → 1vTx0

as 1 is the eigenvector associated with eigenvalue 1
v is the corresponding left eigenvector; vT1 = 1

In PageRank, that is exactly what is done. v is the Perron Vector.
The use of R = (1− α)W + αJ enables to retrieve primitivity!

1 2

3

W =

 0 1 0
0.5 0 1
0.5 0 0


eig.: 1, 0.5± 0.5i

modulus: 1, 0.707

W20
=

 0.40 0.40 0.40
0.40 0.40 0.40
0.20 0.20 0.20
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>>> Power method/Stationary Markov chain/Average consensus PB. 3: AVERAGE CONSENSUS

Assume that W is column-stochastic and primitive.
1 is the only eigenvalue of greatest modulus. Let λ be the second eigenvalue in modulus, |λ| < 1.

I let us iterate this matrix, looking at its Jordan normal form:
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The use of R = (1− α)W + αJ enables to retrieve primitivity!

1 2

3

W =

 0 1 0
0.5 0 1
0.5 0 0


eig.: 1, 0.5± 0.5i

modulus: 1, 0.707

W20
=

 0.40 0.40 0.40
0.40 0.40 0.40
0.20 0.20 0.20



20 / 34



>>> Power method/Stationary Markov chain/Average consensus PB. 3: AVERAGE CONSENSUS

Assume that W is doubly-stochastic and primitive.
1 is the only eigenvalue of greatest modulus. Let λ be the second eigenvalue in modulus, |λ| < 1.

I let us iterate this matrix, looking at its Jordan normal form:

xk → 11T 1
N

x0 = 1xave

as 1 is an eigenvector associated with eigenvalue 1 at both sides
1/N comes from the joint normalization.

Synchronous Average Consensus:
I Doubly-Stochastic Primitive matrix
I Exponential rate depending on the second eigenvalue ≈ the algebraic connectivity

ex. 1:
full graph
one step consensus

J =
1

N


1 . . . 1
.
.
.

. . .
.
.
.

1 . . . 1


ex. 2:
connected graph
Metropolis-Hastings

Wi,j =


1

1+max(di,dj)
if j ∈ Ni

1−
∑

j∈Ni
Wi,j if i = j

0 else

I Let us get to randomized average gossip! (after a small parenthesis)
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>>> Link with differential equations PB. 3: AVERAGE CONSENSUS

Differential equations can be used to prove convergence and rates at large
gradient, accelerated gradient, FISTA

Define the |E| × N incidence matrix of a graph:
� Mev = 1 if e = (v, j); −1 if e = (i, v); 0 elsewhere.
� M is a square root of L: L = MTM !

Consider reaching consensus by minimizing f(x) = 1
2‖Mx‖2 and observe the ODE:

ẋ(t) = −∇f(x(t)) = −MTMx(t) = −Lx(t)

An Euler discretisation gives:

xk+1 − xk

γ
= −Lxk ⇔ xk+1 = xk − γLxk = (I − γL)︸ ︷︷ ︸

W

xk

It is easy to see that with step γ < 1/dmax, W is non-negative, doubly stochastic,
primitive: it is an averaging algorithm.

References Pseudo-orbit of ODEs, Inertia, Krause model dynamical graph, multiple clusters
Attouch, Peypouquet, & Redont A dynamical approach to an inertial forward-backward algorithm for
convex minimization, SIOPT, 2014.
Blondel, Hendrickx, & Tsitsiklis On Krause’s multi-agent consensus model with state-dependent
connectivity, IEEE TAC, 2009.
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>>> Problem PB. 3: AVERAGE CONSENSUS

Problem: Each agent has a value real (to simplify)
the goal is to reach a consensus over the means value

Linear updates conditioned by an underlying communication graph
for the graph above, it produces the following mask

−→
←− xk+1

=


� � 0 0 0
� � 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

Wk

xk

Changes compared to Synchronous case:
I At each iteration, a mixing matrix is randomly chosen in a set
I The objective is that only some nodes/links are involved at each iteration
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>>> Randomized Gossip PB. 3: AVERAGE CONSENSUS

Standard Model:
I SetW = {W1, ...,WM} of M doubly-stochastic update matrices
I i.i.d. process {ξk}k>0 valued in {1, ...,M}
I E[W] is primitive

xk+1 = Wξk+1 xk = Wξk+1 Wξk ...Wξ1 x0

Convergence:
I xk → 1xave almost surely
I The mean squared error vanishes exponentially

I Exact rate ρ
(
E[W ⊗W].

(
(I − 1

N 11T)⊗ (I − 1
N 11T)

))
outside a set of Lebesgue measure 0

References: Matrix Analysis and Probabilities
Boyd et al. Randomized gossip algorithms IEEE/ACM Transactions on Networking,2006
I. & Ciblat & Hachem Analysis of Sum-Weight-like algorithms for averaging in Wireless Sensor
Networks IEEE TSP,2013
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>>> Proof techniques PB. 3: AVERAGE CONSENSUS

Classic way quick but not tight

‖(I − J)xk+1‖2
2 = ‖(I − J)Wξk+1 (I − J)xk‖2

2(row-sto.)

= ((I − J)xk)T((I − J)Wξk+1 )T(I − J)Wξk+1 (I − J)xk

E[‖(I − J)xk+1‖2
2|Fk] = ((I − J)xk)TE[((I − J)Wξk+1 )T(I − J)Wξk+1 |Fk](I − J)xk

≤ ρ
(
E[((I − J)Wξk+1 )T(I − J)Wξk+1 |Fk]

)
︸ ︷︷ ︸

:=σ<1

‖(I − J)xk‖2
2

Alternative way tight

E[[(I − J)xk+1]⊗ [(I − J)xk+1]|Fk] = E[[(I − J)Wξk+1 ]⊗ [(I − J)Wξk+1 ]|Fk]

× [(I − J)xk]⊗ [(I − J)xk]

∝ ρ
(
E[[(I − J)Wξk+1 ]⊗ [(I − J)Wξk+1 ]|Fk]

)k

︸ ︷︷ ︸
:=ς<1

- MSE converges exponentially to 0
- Markov + Borel-Cantelli = Almost-sure convergence
J = 1/N11T 24 / 34



>>> Pairwise communications PB. 3: AVERAGE CONSENSUS

Random Gossip
At time k, let i be the active node:

I i chooses a neighbor j uniformly in Ni

I they exchange their values

I Both i and j update: xk+1
i = xk+1

j =
xk

i +xk
j

2


0 0 0
0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



Features:
– Two nodes and one link used at each iteration
– Introduced by Boyd et al. in 2004
– Converges as soon as the (undirected) graph is
connected
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>>> Pairwise communications PB. 3: AVERAGE CONSENSUS
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>>> Pairwise communications PB. 3: AVERAGE CONSENSUS

Random Gossip
At time k, let i be the active node:

I i chooses a neighbor j uniformly in Ni

I they exchange their values

I Both i and j update: xk+1
i = xk+1

j =
xk

i +xk
j

2


0.5 0.5 0 0 0
0.5 0.5 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Features:
– Two nodes and one link used at each iteration
– Introduced by Boyd et al. in 2004
– Converges as soon as the (undirected) graph is
connected
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>>> Summary PB. 3: AVERAGE CONSENSUS

Under the standard assumptions, convergence to average consensus is easily obtained
I Primitivity in average is natural
I Double-stochasticity at each iteration is mandatory

Other formulation for asynchronous average gossip
I The product of any B <∞ consecutive matrices is positive

sort of deterministic asynchrony
kind of asynchrony in [Tsitsiklis’84]

Double-stochasticity constrains the coefficients of the mixing matrix and thus the
communicated values

I Let us investigate different communications schemes
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>>> Problem PB. 3: AVERAGE CONSENSUS

We saw earlier the good properties of broadcast communications

How to design a mixing matrix when agent 5 broadcasts to its neighbors 2, 3 and 4

I no feedback

I Row-stochasticity is possible...
I ... but not double-stochasticity
I Column-stochasticity is possible

w2,5 + w3,5 + w4,5 + w5,5 = 1


1 0 0 0 0
0 w2,2 0 0 w2,5
0 0 w3,3 0 w3,5
0 0 0 w4,4 w4,5
0 0 0 0 w5,5



I We need to choose between row and column stochasticity
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We saw earlier the good properties of broadcast communications

How to design a mixing matrix when agent 5 broadcasts to its neighbors 2, 3 and 4

I no feedback
I Row-stochasticity is possible...
I ... but not double-stochasticity
I Column-stochasticity is possible

w2,5 + w3,5 + w4,5 + w5,5 = 1


1 0 0 0 0
0 1 0 0 w2,5
0 0 1 0 w3,5
0 0 0 1 w4,5
0 0 0 0 w5,5



I We need to choose between row and column stochasticity
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>>> Row vs. column stochasticity PB. 3: AVERAGE CONSENSUS

Model:
I SetW = {W1, ...,WM} of M non-negative update matrices
I i.i.d. process {ξk}k>0 valued in {1, ...,M}
I E[W] is primitive

xk+1 = Wξk+1 xk = Wξk+1 Wξk ...Wξ1 x0

row sto. column sto.

Wξk+1 Wξk ...Wξ1 → 1vT(ω) Wξk+1 Wξk ...Wξ1 ∼ vk(ω)1T 1
N

xk → 1(vT(ω)x0) xk ∼ vk(ω)(1T 1
N x0) = vkxave

Consensus No Convergence
Wrong Value Good mean value (

∑
i vk

i (ω) = 1)
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>>> Consensus with row-stochasticity PB. 3: AVERAGE CONSENSUS

xk → 1(vT(ω)x0)

←
−←−

←−
BROADCAST GOSSIP

At each clock tick k, let i be the activating node:
I i broadcasts xk

i to all its neighbors

I All the neighbors update: xk+1
j =

xk
i +xk

j
2 for all j ∈ Ni


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Features:

I Eω [v(ω)] = 1
N 1

I Analyzed by Aysal et al. in 2009
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xk → 1(vT(ω)x0)

BROADCAST GOSSIP

At each clock tick k, let i be the activating node:
I i broadcasts xk

i to all its neighbors

I All the neighbors update: xk+1
j =

xk
i +xk

j
2 for all j ∈ Ni


1 0 0 0 0
0 0.5 0 0 0.5
0 0 0.5 0 0.5
0 0 0 0.5 0.5
0 0 0 0 1


Features:

I Eω [v(ω)] = 1
N 1

I Analyzed by Aysal et al. in 2009

29 / 34



>>> Consensus with column-stochasticity PB. 3: AVERAGE CONSENSUS

sk = Wξk Wξk−1 ...Wξ1 x0 ∼ vk(1T 1
N

x0) = vkxave

Let us define: wk = Wξk Wξk−1 ...Wξ1 1 ∼ vk(1T 1
N

1) = vk

Sum-Weight framework:
I Two variables updated in the same way but initialized differently

A sum variable initialized with x0

A weight variable initialized with 1
I The estimate is

xk ,

[
sk
1

wk
1

, ...,
sk
N

wk
N

]
=

sk

wk
∼

vkxave

vk
= xave1

Convergence:
I Almost sure convergence for sequences of column-sto. matrices with E[K] primitive

Difficulty: (wk) is not bounded away from 0...

I Tight linear rate ρ
(
E[W ⊗W].

(
(I − 1

N 11T)⊗ (I − 1
N 11T)

))
Same as for the doubly sto. case

References: Matrix Analysis, Probabilities on graphs
Kempe et al. Gossip-based computation of aggregate information FOCS, 2003.
Benezit et al. Weighted gossip: Distributed averaging using non-doubly stochastic matrices ISIT, 2010.
I., Ciblat & Hachem Analysis of Sum-Weight-like algorithms for averaging in WSNs, IEEE TSP, 2013.
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>>> Average Gossiping with Broadcast PB. 3: AVERAGE CONSENSUS

←
−←−

←−

BWGOSSIP

At each clock tick k, let i be the activating node:

I i broadcasts (
sk
i

1+di
,

wk
i

1+di
) to its neighbors

I All the neighbors update: sk+1
j = sk

j +
sk
i

1+di
and

wk+1
j = wk

j +
wk

i
1+di

for all j ∈ Ni

I i updates: sk+1
i =

sk
i

1+di
and wk+1

i =
wk

i
1+di


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Features

I Converges linearly (in L2) to the average
I Only Broadcast communications (no

feedback)
I Introduced in 2012
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BWGOSSIP

At each clock tick k, let i be the activating node:

I i broadcasts (
sk
i

1+di
,

wk
i

1+di
) to its neighbors

I All the neighbors update: sk+1
j = sk

j +
sk
i

1+di
and

wk+1
j = wk

j +
wk

i
1+di

for all j ∈ Ni

I i updates: sk+1
i =

sk
i

1+di
and wk+1

i =
wk

i
1+di


1 0 0 0 0
0 1 0 0 0.25
0 0 1 0 0.25
0 0 0 1 0.25
0 0 0 0 0.25


Features

I Converges linearly (in L2) to the average
I Only Broadcast communications (no

feedback)
I Introduced in 2012
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>>> Illustration PB. 3: AVERAGE CONSENSUS

RANDOM GOSSIP BROADCAST GOSSIP

SUM-WEIGHT BROADCAST

: Min
: Max
: Mean
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>>> Summary PB. 3: AVERAGE CONSENSUS

0 200 400 600 800 1,000 1,200 1,400

10−2

10−1

100
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n
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Random Gossip

Broadcast Gossip

BWGossip

I Randomized gossip is easy with symmetric communications
I For one-way communications, convergence can be obtain by using side-information

33 / 34



>>> Gossip Algorithms 101 CONCLUSION

Summary:
I Different algorithms/proofs for different objective
I Algebraic graph theory & Markov chains at the center
I The communications scheme plays a great role

END OF PART I
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