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> Recent Advances and Problems in Gossiping
» Distributed Optimization and Learning [FOCUS]

. Gradient algorithms and variations
. Advanced algorithms

Problem:
: AN
min f(x) £ fi(x)
xERd e
@ > f; is a convex function local to agent i
> f is nowhere available
» Agents should reach consensus over a
minimizer x* of f
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>>> Quick Overview GossIp NEwW

» Open Systems
agents come and go; new paradigms to develop
Hendrickx & Martin Open Multi-Agent Systems:
Gossiping with Deterministic Arrivals and Departures,
Allerton 2016.

e ] » Quantized Gossip
values or communications are quantized
Frasca et al. Average consensus by gossip algorithms
with quantized communication, CDC 2008
Benezit et al. Interval consensus: from quantized gossip
to voting, ICASSP 2009

Sensor value trajectories

15
eration

> Gossip with errors > Gossip as an intermediate
error on communications, Byzantine Szerenyi et al. Gossip-based distributed
attackers stochastic bandit algorithms, ICML 2013.
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>>> Distributed Optimization Problem GOSSIP + GRADIENT

Problem:

12%% Foo) £ filx)
X N

! > f; is an L-smooth convex function local to agent i
» f is nowhere available

@ » Agents should reach consensus over a minimizer of f

@ ‘ Reformulation: Product-Space trick
> F(x) =32 fi(x;)

» Dimension went from d to Nd
= VF(X) = [Vfl(xl)r ) v_fN(xN)]

Dimension went from d to Nd but VF(x) = [Vf1(x1), .., Vv (xn)]
Gradient Computation is parallel
min Zfi(x) < minF(x) + consensus x = (x,X, ..,X)
i

» Average Consensus, thus Gossip, is needed to obtain the sought solution
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>>> Synchronous Gossip GOsSSIP + GRADIENT

Natural Algorithm: x*+1 = W(xk — vkVF(xk))

At each iteration k:
» Each agent i performs a local gradient descent

YL = xk — A V()
» The agents perform an average gossip step

KT — ket
Otherwise said: x* = (W)kx® — ZZ;} Y (W)L TF(xt)

» What can be say about the convergence?
Fixed stepsize or decreasing one as in stochastic algorithms?



>>> Convergence of Synchronous Distributed Gradient GOSSIP + GRADIENT

k—1
M = Wk — FVERR)) = W) =D A (W) VR
=1
Assumptions:

» W is doubly-stochastic and primitive
Same for average gossip

> Yt =4oo; T,(rH)E < Hoo; AT/ 1

As in stochastic algorithm even if there is no noise

LIE=-D Tz < @Ol 4y CZ () = O
—_————

exponential decay of gossip

finite
where o = ||(I — J)W||2 < 1is a bound on the gossiping rate.

2. f(xk“) FE) =~ I\Vf(xk)\|2+C( ? = TR FIVAERIZ < +oo

)
where ¥ = 1 SN !

~>v

> (x*) converges to a consensus over a minimizer of f



>>> Convergence of Synchronous Distributed Gradient GOSSIP + GRADIENT

HH = Wik — FVFR)) = (W) = > Af (W) VF(x)

Assumptions:

» W is doubly-stochastic and primitive
Same for average gossip

> vt =005 () <too; A/ o1
As in stochastic algorithm even if there is no noise

Remark:
» if W = J i.e. full consensus at each iteration, a constant stepsize is possible!

Even though Gossip is O(c¥) and gradient is O(1/k), parallel gradient and distributed
gradient have very different behaviors.

Reference
Tsitsiklis, Bertsekas & Athans Distributed Asynchronous Deterministic and Stochastic gradient
optimization algorithm, IEEE TAC, 1986
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>>> Randomized Gossip GOSSIP + GRADIEN

Natural Algorithm: x*+1 = Wkt (xk — Ak VF (k)

At each iteration k:
» Each agent i performs a local gradient descent
k+1 k k k
i =xf = A V)
» The agents perform a random average gossip step

Xk+1 = W§k+1yk+1

Assumptions:

> (W) is an i.i.d. sequence of doubly-stochastic and E[W] is primitive
Same for average gossip

> 37t =400 Tp(vh)? < Hoo s AR /AR 1
As in stochastic algorithm even if there is no noise

> (x*) converges almost surely to a consensus over a minimizer of f

Reference
Nedic & Ozdaglar Distributed Subgradient Methods for Multi Agent Optimization, IEEE TAC, 2009



>>> Summary GoOssIP + GRADIE

Distributed gradient algorithm xk+1 = Wkt (xXk — ¥k VF(x*)) converges
» Hypotheses on mixing matrices = for average gossip
» Hypotheses on stepsizes = stochastic approximation

Extensions
» Subgradients; non-convex functions
> Stochastic gradient

» Column-Stochastic mixing matrices
it is as if the average gossiping was lauched at each iteration with the current gradient

References

Bianchi & Jakubowicz Convergence of a Multi Agent Projected Stochastic gradient for non convex
optimization, IEEE TAC, 2013

Bianchi, Fort & Hachem Performance of a Distributed Stochastic Approximation algorithm, IEEE TIT,
2013

Duchi, Agarwal & Wainwright Dual Averaging for Distributed Optimization, IEEE TAC, 2012
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>>> Least Mean Squares GossIP + GRADIEN

» At each time k, each sensor i receive h;(k) and y;(k) = h;(k)T™w* + n;(k)
» The goal is to find w* by minimizing

K N 2
Jw) =323 (il — hi(0™w)

k=1i=1

10

° No cooperation

x Consensus-based D-LMS [14]
o . CTA diff. LMS,

o ATC diff. LMS,

Multi-level diff, LMS, [29]
-10 . Global LMS (13).

Transient network EMSE (dB)

~ AR A
20 40 60 80 100 120 140 160 180 200
Time. i

image: Cattivelli & Sayed

References: Diffusion LMS, Tracking for w* (k)

Schizas, Mateos, & Giannakis Distributed LMS for Consensus-Based In-Network Adaptive Processing,
IEEE TSP, 2010.

Cattivelli & Sayed Diffusion LMS Strategies for Distributed Estimation, IEEE TSP, 2010.

Chen, Richard & Sayed Diffusion LMS over Multitask Networks, IEEE TSP, 2015



>>> Distributed Dual Averaging GOSSIP + GRADIEN

» The goal is to minimize Z?’:l fi(x) over a closed set X

» the f; are convex but not necessarily smooth
= use of Nesterov dual averaging method.

= Wk 4 gk with gk = (gf< € afi(x{'())

1
For each agent xf“ = arg min {(zﬁ”‘l;x} + —kw(x)}
xeX [e%

Doubly stochastic W

=T\ _ f* log(N)
a* decreasing (typically o< 1/v/k) 8™ ) =Ir & O -l < © ( )

V/TAn-1(L)

References: Optimization, Learning

Nesterov Primal-dual subgradient methods for convex problems, Math. Prog., 2009.

Xiao Dual averaging methods for regularized stochastic learning and online optimization, JMLR, 2010.
Duchi, Agarwal, & Wainwright Dual Averaging for Distributed Optimization: Convergence Analysis and
Network Scaling, NIPS 2010 & IEEE TAC 2012.

Ma, Smith, Jaggi, Jordan, Richtarik, & Takac Adding vs. Averaging in Distributed Primal-Dual
Optimization, ICML 2015.



>>> Distributed Dual Averaging GOSSIP + GRADIENT

> The goal is to minimize S_N_, fi(x) over a closed set X

» the f; are convex but not necessarily smooth
= use of Nesterov dual averaging method.

For One-Way/Broadcast communications, there exists a Sum-Weight version!

sl = wsk + g5 with gk = (gf € Bfi(xlk))

wktl = Wk
o k1 1
. +1 _ . i . =
For each agenti x;"~ = arg ’Erélg s ;X ) + oF P(x)
L

Column stochastic W
a* decreasing (typically oc 1/v/k)
Same rate but larger set of communications (thus L) possible

=Ty _ log(N)
f(g") —f* <OPT + NET < O (m)

Reference:
Tsianos, Lawlor, & Rabbat Push-sum distributed dual averaging for convex optimization, CDC 2012.
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>>> Distributed Optimization Problem ADVANCED ALGOS. & G

Problem:

min f(x Z fi(%)

xERd

> f; is a convex function local to agent i
» f is nowhere available
» Agents should reach consensus over a minimizer of f

Goal: Mitigate the Optimization + Consensus problem differently
» Overcome the decreasing stepsize drawback of Distributed Gradient

» Include general convex functions (non-smooth, composite)



>>> Reformulating our problem ADVANCED ALGOS. & G

A proper problem for distributed optimization
The original problem is not suited as it does take into account
» the fact that each agent only has access to its own cost function;
» the fact that they have to exchange to reach the wanted optimum.

» Starting from the original problem

min gﬁoo
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>>> Reformulating our problem ADVANCED ALGOS. & G

A proper problem for distributed optimization
The original problem is not suited as it does take into account
» the fact that each agent only has access to its own cost function;

» the fact that they have to exchange to reach the wanted optimum.

» Starting from the original problem

min i (o
xER Zfl( )
iev
» Adding the fact that the agents only know
min F(x) £ Z fi(x) their own functions
xERY iev
subjectto  x;=xp=...=Xy

> We put the constraint into the function to
; minimize
min  F(x) + tgpan(1) (%)
x€RN ( pan(1) with the indicator function
0 ifxecC

te(x) = { 400 elsewhere



>>> Reformulating our consensus constraint ADVANCED ALGOS. & GOSSIP

General idea: Ensure consensus over L overlapping connected subsets
e.g. over all edges. Subset = 2 connected nodes + connecting link
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>>> Reformulating our consensus constraint ADVANCED ALGOS. & GOSSIP

General idea: Ensure consensus over L overlapping connected subsets
e.g. over all edges. Subset = 2 connected nodes + connecting link

— _ | X

> Ay = {1,2} Mlx_[xz }
X2
> Ay = {2,3,4} Mox = X3
X4

_ _ | X4
>A3—{4,5} M3)('—|:x5 ]

X2
X X.
LSpan(1) (|: xi j|) + LSpan(1) X3 + LSpan(1) (|: x: :|) = lSpan(1) (X)

X4



>>> Reformulating our consensus constraint ADVANCED ALGOS. & GOSSIP

General idea: Ensure consensus over L overlapping connected subsets
e.g. over all edges. Subset = 2 connected nodes + connecting link

» A ={1,2}) Mpx= { 2 }

X2
> Ay = {27374} Mox = X3
X4

> A3 ={4,5} Msx= { o~ }

X5
M,
» M2 | My |:sizeSk_ JA)2MxN
Ms

tspan(1) (M1X) + tspan(1) (MaX) + tgpan(1) (M3x) £ G (Mx)

Equivalent problem

min F(x) + G(Mx)
XERN



>>> Reformulating our consensus constraint ADVANCED ALGOS. & GOSSIP

Reformulated Problem

min Z fl(xl + Z LSpan(1) fo)

N
2SR nodes i=1 areas =1

F(x) G(Mx)

» A separable networked separated problem...
The functions f; act on local variables

The consensus is ensured locally on overlapping areas

Does this leads to a distributed algorithm?
Not exactly: G(M:) = twhole consensus (*) S0 any direct algorithm will look like

Xep1= | X | —v | VAE) | withxk =150 Xk

This is a simple proximal gradient with F as the smooth function and G as the proximable one.



>>> Reformulating our consensus constraint ADVANCED ALGOS. & GOSSIP

Reformulated Problem

min Z fl(xl + Z LSpan(1) fo)

N
2SR nodes i=1 areas =1

F(x) G(Mx)

» A separable networked separated problem...
The functions f; act on local variables

The consensus is ensured locally on overlapping areas

Does this leads to a distributed algorithm?
Not exactly: G(M:) = twhole consensus (*) S0 any direct algorithm will look like

otherwise said x*1 = J(x* — yVF(xX)); as already seen before.

This is a simple proximal gradient with F as the smooth function and G as the proximable one.



>>> Reformulating our consensus constraint ADVANCED ALGOS. & GOSSIP

Reformulated Problem

N L
min ST+ DD tspanr) 0ge)
x€RN yeRM nodes i=1 areas {=1
F(x) GO)
s.t. Mx =y

> A separable networked separated problem...
The functions f; act on local variables

The consensus is ensured locally on overlapping areas

» ... that we have to split.
Splitting algorithms are popular in Optimization (proximal gradient, ADMM, primal-dual)
We divide variable y into L adapted blocks (y|¢)

> Let us investigate the resulting algorithms



RECENT ADVANCES AND PROBLEMS IN GOSSIPING

DISTRIBUTED GRADIENT ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES

B  ADVANCED ALGORITHMS
= SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES



>>> Synchronous Case ADVANCED ALGOS. & GOSSIP

Distributed Optimization algorithm: Reformulated Problem + Splitting method

N L
min SO+ DD tspanr) 0ge)

N M
R SR nodes i=1 areas =1

F(x) G(y)

st. Mx =y

Splitting method what to treat with a prox v.s. a gradient

» G has to be treated with a prox
prox on indicator = projection

> F it depends!

gradient: f smooth prox: f convex
K=k vEd) T = argming {f(w) + Lllw — X1} = ¢ — yaf (¢

13/28



>>> Two popular splitting algorithms ADVANCED ALGOS. & GOSSIP

min F(x)+ G
XxERN ,yeRM ) ”)

st.Mx=y
k1 . P P A
= argmin{F0) + M 4 =7
k Pk A
ADMM At _ arg min{G(u) + E”Mx +1 4 *HZ}
" p

P U e P

> any F convex; p > 0 free parameter
» most popular and studied

1
S argmin{F*(w) + (VF () w) + o IMw — K a2y
T
Z = argmin{G(u) + plIMXkJrl u+ X 1%}
Primal-Dual B 2 P
AL 3K 4kt gy

uktt = 1- ‘rp)Mxk'*'1 + 7pdt?

» F = F* + F¢ with F* smooth, both convex; p, 7 > 0 parameter (bounded choice)
» Includes the ADMM as a special case



>>> Distributed Optimization with ADMM ADVANCED ALGOS. & GOSSIP

Distributed ADMM
At each clock tick k:

» Every sensor i performs a minimization:

2

P
k+1 _ s P =k i€
X = argmin fl-(x)—i-i E (xl—zé—i-p)

Leo;

» Every subset Ay computes its average:

s+ _ e
a: |Ae| lé:é

» Every sensor i updates:

Vi€ o, _ /\k|£+p(xk+1 Ierl)

\ Z

» Each step can be split by agent/block

- 2|¢: JAg|-sized block, corresponds to subset £
- Aj,|¢: scalar, corresponds to agent i’s entry in subset £ € o; Lliea}

» Convergence is immediate from Optimization theory
» Similar algorithm from Primal-Dual when F has a smooth part
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Distributed ADMM
At each clock tick k:

» Every sensor i performs a minimization:

2

Ak
k+1 _ : P _k i,|0
_ 2= argaings fiGOREE > (xl -2+ p)

21 Leo;

» Every subset Ay computes its average:

s+ _ e
a: |Ae| lé:é

» Every sensor i updates:
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» Every sensor i performs a minimization:

2

P
k+1 _ s P =k i€
X = argmin fl-(x)—i-i E (xl—zé—i-p)

Leo;

wl

» Every subset Ay computes its average:
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>>> Distributed Optimization with ADMM ADVANCED ALGOS. & GOSSIP

Distributed ADMM
At each clock tick k:

» Every sensor i performs a minimization:

2

P
k+1 _ s P =k i€
X = argmin fl-(x)—i-i E (xi—zé—i- . >

Leo;

» Every subset Ay computes its average:

s+ _ e
a: |Ae| lé:é

» Every sensor i updates:

Vi€ o, \l _ /\k|£+p(xk+1 Ierl)

» Each step can be split by agent/block

- 2|¢: JAg|-sized block, corresponds to subset £
- Ai,|¢: scalar, corresponds to agent i’s entry in subset £ € o; Lliea}

» Convergence is immediate from Optimization theory
» Similar algorithm from Primal-Dual when F has a smooth part



>>> Convergence rate DVANCED ALGOS. & G

—o— Synchronous Distributed Gradient descent
—o— Synchronous Distributed Optimization with the ADMM

100 |

10~2

Squared Error

| | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200

Number of iterations

» A drawback of distributed gradient was the decreasing stepsize and slow
convergence

Changes compared with Distributed Gradient:
» Fixed, free parameter p > 0
» Convergence in O(1/k) in the general case

> If 3=, V2fi(x*) > 0 locally strongly convex at optimum
Exponential rate with exact rate as the spectral radius of some matrix



>>> Parameter choice and network topology ADVANCED ALGOS. & GOSSIP

1

\

095 |
09

it w
\ o \

Centralized ®%, \ /// "N\
(1 block) ol 0ss \

SN os \

0% \ 055
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P
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Ring . 09 v (LIRS Vertical Asymptote!
N blOCkS) o 7

optimal p = 251“("277/1\1)
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P
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160

> Any reasonable p gives a reasonable speed (~ 1)
» Optimal one is tricky!



>>> Summary ADVANCED ALGOS. & GOSSIP

» Problem Formulation + Adapted Splitting algorithm = Distributed (Synchronous)
Algorithm

» Very intensively investigated
non-convex case, errors in prox, etc.

> Basis for the Asynchronous case!

References: Optimization & Fixed point theory

Lions & Mercier Splitting algorithms for the sum of two nonlinear operators, SIAM NUMA, 1979.
Eckstein & Bertsekas On the Douglas—Rachford splitting method and the proximal point algorithm for
maximal monotone operators, Math. Prog., 1992.

Condat A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and
linear composite terms, JOTA, 2013.

Problem Formulation

Schizas, Ribeiro & Giannakis Consensus in ad hoc WSNs with noisy links, IEEE TSP, 2008.
Distributed ADMM Analysis

L. et al. Explicit convergence rate of a distributed ADMM, IEEE TAC, 2015.
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>>> Randomized Case ADVANCED ALGOS. & GOSSIP

Distributed Optimization algorithm: Reformulated Problem + Splitting method

min Z filx) + Z tspan(1) (]e)

N M
HSL A nodes i=1 areas £=1

F(x) G)

s.t. Mx =y

» This formulation + a splitting method allowed to produce a distributed algorithm
information exchanges were only local, supported by the communication graph

» Link between i) entries of the variables and ii) communications areas

Distributed ADMM
At each clock tick k:

2
7 i Derf e kel o e o ok DNige
very sensor i performs a minimization: x; "~ = argminy  fi(x) + § > veo; | Xi = 2 + =

Every subset A, computes its average: z ktl W\ ZleA[ Xt (zkJrl = (2 gt1 ghtl ’k“))

le le 2Zle o

Every sensor i updates: V¢ € oi, A Til = Af il T ,U(Xf<+l 71?1)

Idea to produce randomized gossip algorithm

» Update only some entries corresponding to one/some areas

19/28



>>> Theoretical basis: Randomized Averaged Operators ADVANCED ALGOS. & GOSSIP

> a large variety of optimization algorithm can be written as fixed points operations
of an averaged operator: contraction property coming from monotone operator theory

¢ =T
For instance, it is the case for ADMM with ¢k = pzk + Ak

Splitting: x is split in L blocks along the areas defined previously with the indicator

x1|<1+1 Ty ()

I T | =76

i | LT



>>> Theoretical basis: Randomized Averaged Operators ADVANCED ALGOS. & GOSSIP

> a large variety of optimization algorithm can be written as fixed points operations
of an averaged operator: contraction property coming from monotone operator theory

¢ =T
For instance, it is the case for ADMM with ¢k = pzk + Ak
Splitting: x is split in L blocks along the areas defined previously with the indicator
Randomized Descent: update of one block ¢ chosen at random
the update rely on the whole x;

(contrary to whole descent on one coordinate xlgi) [Fercog,Richtarik’15])
the other blocks keep their entries fixed

x"‘1+1 xi(l
bas Xjff = T(Z).(Xk) 2T ()
X x|,

Problem: T is averaged but 'i'(@ is not in general...
Updating only a subset of entries made us lose the contraction property and thus convergence
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> Almost sure convergence can be retrieved if the blocs are chosen in an i.i.d. manner

Theorem

Let T be an averaged operator.

Let (¢X) be an i.i.d. process with values in {1, ...,L} such that P[¢! = ¢] = p, > 0 for all
¢ =1,...,L. The iterates sequence (xi) generated by

X1 = T(grrny (o)

converges almost-surely to a solution of our problem.

» Gives algorithms where only some agents communicate per iteration

» The derivation has to be careful: updated entries have to be as if the whole
operation happens

References: Monotone operators theory + Probabilities

Bianchi, Hachem, & I. A Coordinate Descent Primal-Dual Algorithm and Application to Distributed
Asynchronous Optimization, CDC 2013 and IEEE TAC, 2015.

Combettes & Pesquet Stochastic quasi-Fejér block-coordinate fixed point iterations with random
sweeping, SIOPT, 2015.
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Asynchronous Optimization w/ ADMM
At each clock tick k, let €51 be the index of the active block:

> Every sensori € Agiia of the block computes:
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N
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2601
» The block computes its average:
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Flgerr = i
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—o— Synchronous Distributed Gradient descent

—{}— Asynchronous Distributed Gradient descent

—Q— Synchronous Distributed Optimization with the ADMM
—V— Asynchronous Distributed Optimization with the ADMM

Squared Error
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Number of iterations

» Synchronous ADMM: 1 iteration = N argmin + L block-averaging
» Asynchronous ADMM: 1 iteration = \A§k| argmin + 1 block-averaging
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]
—Q— Synchronous Distributed Optimization with the ADMM
0 - Asynchronous Distributed Optimization with the ADMM
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» Synchronous ADMM: 1 iteration = N argmin + L block-averaging
» Asynchronous ADMM: 1 iteration = \A£k| argmin + 1 block-averaging
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» This setup enables to deal with a large variety of situations

» Distributed Optimization using local
coordinators

» Distributed Optimization with One-Way
communications

» Mini-batch optimization/learning

The network is then just an artifact



>>> Summary ADVANCED ALGOS. & GOSSIP

» Problem Formulation + Adapted Splitting algorithm
+ Randomized Coordinate Descent = Distributed Asynchronous Algorithm

> Almost sure convergence; MSE in O(1/k)

» Highly flexible formulation
Broadcast communications, change of Metric = change of averaging coefficients
Sometimes at the expense of performance compared to dedicated algorithms

References: Monotone operators theory + Probabilities

Bianchi, Hachem, & I. A Coordinate Descent Primal-Dual Algorithm and Application to Distributed
Asynchronous Optimization, CDC 2013 and IEEE TAC, 2015.

Wei & Ozdaglar On the O(1/k) convergence of asynchronous distributed ADMM, Arxiv, 2014.
Chouzenoux, Pesquet, & Repetti A block coordinate variable metric forward-backward algorithm, J.
Glob. Optim., 2013.



RECENT ADVANCES AND PROBLEMS IN GOSSIPING

DISTRIBUTED GRADIENT ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES

B  ADVANCED ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE

= APPLICATION EXAMPLES



/5-regularized Logistic Regression DVANCED ALGOS. & G

Problem: min,epp & 31, log (1 + eVl ) + u||x|)?

T
Reformulation: min, _pnp >N ( Z log (1 +e ytatxn> + %Hxn”%) + X certe, )
teBp ——

&n (xn)
fn (xn)

DAPD Formulation + L. Condat’s Primal-Dual algorithm + Randomization
> Select one (or more) agent n:

Ay () = X, (m) =

. Forallm ~n,do At! (n) =
2 2p

{n,m}

it = prox g g, [(1 = o = VARG + 3 D (07 A Ny ()]

n mn~n

. Forallm ~ n, send {xk*1, )\If[-rtlm} (n)} to Neighbor m.

> Other agents stay put.

—B— DGD —O— ABG
—A— PWG —4&— DAPD

covtype

0.74 T T =]
i

revt, 10 X 10 grid revl, 50-nodes Complete graph

| | | | |
0 1,000 2,000 3,000 0 1,000 2,000 3,000

realsim revi
T T

functional cost

functional coston 5 X 5 grid

I I T | I
0 1,000 2,000 3,000 0 1,000 2,000 3,000

number of local gradients computed




>>> 22?? ADVANCED ALGOS. & GOSSIP

Give n agents a real number (a;);—1,.. N-

What does the following algorithm do?

#—%+5 ifxk —yk + 8 < q
)?k—yi—l if)?k—yi—1>ai

a; elsewhere

all agents do: xf“ =

N
Pl =k kbl gkt gk NSk
i=1
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ADVANCED ALGOS. & GOSSIP
Give n agents a real number (a;)i=1,.. n-

What does the following algorithm do?

#—%+5 ifxk —yk + 8 < q
)‘ckfyifl if)_ckfyi71>a,'

a; elsewhere

all agents do: xf“ =

N
P =k kgl gk NSk
i=1

Hint 1: 20 agents with values in [0, 100]




Give n agents a real number (a;)i=1,.. n-

all agents do: xf“ =

Hint 2: It is ADMM on > fi(x;) + te (x)
General remark: p controls the tradeoff between consensus and local minimization.

100

80

40

20

Xk —Xk/p+8/p
’_Ck*)‘i/Pfl/p

Ak+1 _ )\k + p(xk+1 7)_('k+1)

%
\\\

ADVANCED ALGOS. & GOSSIP

What does the following algorithm do?

ifx* — X/p+B/p < q
ifxk—Xe/p—1/p > a
elsewhere

N
¥ =1/N> xf
i=1

B=4p=1
Sought value:
between 79 and 84.
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What does the following algorithm do?

Xk —Xk/p+8/p
’_Ck*)‘i/Pfl/p

a;

Hint 2: It is ADMM on > fi(x;) + te (x)
General remark: p controls the tradeoff between consensus and local minimization.

100

80

40

20

Py

—r

T

[ 50

100

150

200

ifx* — X/p+B/p < q
ifxk—Xe/p—1/p > a
elsewhere

N
¥ =1/N> xf
i=1

B=4,p=0.001
Sought value:
between 79 and 84.
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Give n agents a real number (a;)i=1,.. n-

ADVANCED ALGOS. & GOSSIP

What does the following algorithm do?

all agents do: xf“ =

Ak+1 _ )\k + p(xk+1 7)_('k+1)

Xk —Xk/p+8/p
’_Ck*)‘i/Pfl/p

a;

Hint 2: It is ADMM on > fi(x;) + te (x)
General remark: p controls the tradeoff between consensus and local minimization.
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200

ifx* — X/p+B/p < q
ifxk—Xe/p—1/p > a
elsewhere

N
¥ =1/N> xf
i=1

B=4,p=0.01
Sought value:
between 79 and 84.
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Give n agents a real number (a;)i=1,.. n-

all

ADVANCED ALGOS. & GOSSIP

What does the following algorithm do?

Xk —Xk/p+8/p
agents do: xf“ =9 *—Xe/p—1/p
a;

Ak+1 _ )\k + p(xk+1 7)_('k+1)

Hint 2: It is ADMM on > fi(x;) + te (x)
General remark: p controls the tradeoff between consensus and local minimization.
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r

l
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ifx* — X/p+B/p < q
ifxk—Xe/p—1/p > a
elsewhere

N
¥ =1/N> xf
i=1

B=4,p=01
Sought value:
between 79 and 84.
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all agents do: xf“ =

Hint 2: It is ADMM on > fi(x;) + te (x)
General remark: p controls the tradeoff between consensus and local minimization.
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What does the following algorithm do?
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ifxk—Xe/p—1/p > a
elsewhere

N
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i=1
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Give n agents a real number (a;)i=1,.. n-

ADVANCED ALGOS. & GOSSIP

What does the following algorithm do?

all agents do: xf“ =

Ak+1 _ )\k + p(xk+1 7)_('k+1)

Xk —Xk/p+8/p
’_Ck*)‘i/Pfl/p

a;

Hint 2: It is ADMM on > fi(x;) + te (x)
General remark: p controls the tradeoff between consensus and local minimization.

100
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40
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150

200

ifx* — X/p+B/p < q
ifxk—Xe/p—1/p > a
elsewhere

N
¥ =1/N> xf
i=1

B=4,p=10
Sought value:
between 79 and 84.



Give n agents a real number (a;)i=1,.. n-

all agents do: xf“ =

Solution: It is a quantile at 100 8/(1 + 8) % !
We saw: how to make it distributed, randomized, and rules for choosing p
— Complete gossip algorithm for median/quantile estimation!

100

80

3

40

20

Xk —Xk/p+8/p
’_Ck*)‘i/Pfl/p

Ak+1 _ )\k + p(xk+1 7)_('k+1)

ADVANCED ALGOS. & GOSSIP

What does the following algorithm do?

ifx* — X/p+B/p < q
ifxk—Xe/p—1/p > a
elsewhere

N
¥ =1/N> xf
i=1

B=4,p=0.1
Sought value:
between 79 and 84.



>>> Take Home Message CONCLUS

» Main mathematical tools: Matrix analysis, Optimization

» Guidelines: Gossiping is exponentially fast but disagreement can hurt joint task
(e.g. gradient)

» Performance evaluation is an issue
How to measure properly communication vs. computation time

» MPI — Spark implementation

» a Community of Optimization and Control for now...
arXiv:OC, IEEE TAC and TSP, Automatica, SICON
Tsitsiklis/Bertsekas ; Nedic/Ozdaglar ; Boyd
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