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>>> Outline

I Recent Advances and Problems in Gossiping
I Distributed Optimization and Learning [FOCUS]

. Gradient algorithms and variations

. Advanced algorithms

Problem:

min
x∈Rd

f(x) ,
∑
i∈V

fi(x)

f1 f2

f3

f4

f5

I fi is a convex function local to agent i
I f is nowhere available
I Agents should reach consensus over a

minimizer x? of f
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>>> Quick Overview GOSSIP NEWS

I Open Systems
agents come and go; new paradigms to develop
Hendrickx & Martin Open Multi-Agent Systems:
Gossiping with Deterministic Arrivals and Departures,
Allerton 2016.

I Quantized Gossip
values or communications are quantized
Frasca et al. Average consensus by gossip algorithms
with quantized communication, CDC 2008
Benezit et al. Interval consensus: from quantized gossip
to voting, ICASSP 2009

I Gossip with errors
error on communications, Byzantine
attackers

I Gossip as an intermediate
Szerenyi et al. Gossip-based distributed
stochastic bandit algorithms, ICML 2013.
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>>> Distributed Optimization Problem GOSSIP + GRADIENT

Problem:

min
x∈Rd

f(x) ,
∑

i

fi(x)

f1 f2

f3

f4

f5

I fi is an L-smooth convex function local to agent i
I f is nowhere available
I Agents should reach consensus over a minimizer of f

Reformulation: Product-Space trick
I F(x) =

∑
i fi(xi)

I Dimension went from d to Nd
I ∇F(x) = [∇f1(x1), ..,∇fN(xN)]

Dimension went from d to Nd but ∇F(x) = [∇f1(x1), ..,∇fN(xN)]
Gradient Computation is parallel

min
∑

i

fi(x)⇔ min F(x) + consensus x = (x, x, .., x)

I Average Consensus, thus Gossip, is needed to obtain the sought solution
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>>> Synchronous Gossip GOSSIP + GRADIENT

Natural Algorithm: xk+1 = W(xk − γk∇F(xk))

At each iteration k:
I Each agent i performs a local gradient descent

yk+1
i = xk

i − γ
k∇fi(xk

i )

I The agents perform an average gossip step

xk+1 = Wyk+1

Otherwise said: xk = (W)kx0 −
∑k−1
`=1 γ

`(W)k−`∇F(x`)

I What can be say about the convergence?
Fixed stepsize or decreasing one as in stochastic algorithms?
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>>> Convergence of Synchronous Distributed Gradient GOSSIP + GRADIENT

xk+1 = W(xk − γk∇F(xk)) = (W)kx0 −
k−1∑
`=1

γ`(W)k−`∇F(x`)

Assumptions:
I W is doubly-stochastic and primitive

Same for average gossip

I
∑
` γ

` = +∞ ;
∑
`(γ

`)2 < +∞ ; γk+1/γk → 1
As in stochastic algorithm even if there is no noise

1. ‖(I − J)xk+1‖2 ≤ (σ)
k+1‖x0‖2︸ ︷︷ ︸

exponential decay of gossip

+γk C
k∑
`=1

γ`

γk
(σ)

k+1−`

︸ ︷︷ ︸
finite

= O(γk)

where σ = ‖(I − J)W‖2 < 1 is a bound on the gossiping rate.

2. f(x̄k+1) ≤ f(x̄k)− γk‖∇f(x̄k)‖2
2 + C(γk)2 ⇒

∑∞
`=1 γ

k‖∇f(x̄k)‖2
2 < +∞

where x̄k = 1
N

∑N
i= xk

i .

I (xk) converges to a consensus over a minimizer of f
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k−1∑
`=1

γ`(W)k−`∇F(x`)

Assumptions:
I W is doubly-stochastic and primitive

Same for average gossip

I
∑
` γ

` = +∞ ;
∑
`(γ

`)2 < +∞ ; γk+1/γk → 1
As in stochastic algorithm even if there is no noise

Remark:
I if W = J i.e. full consensus at each iteration, a constant stepsize is possible!

Even though Gossip is O(σk) and gradient is O(1/k), parallel gradient and distributed
gradient have very different behaviors.

Reference
Tsitsiklis, Bertsekas & Athans Distributed Asynchronous Deterministic and Stochastic gradient
optimization algorithm, IEEE TAC, 1986
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>>> Randomized Gossip GOSSIP + GRADIENT

Natural Algorithm: xk+1 = Wξk+1 (xk − γk∇F(xk))

At each iteration k:
I Each agent i performs a local gradient descent

yk+1
i = xk

i − γ
k∇fi(xk

i )

I The agents perform a random average gossip step

xk+1 = Wξk+1 yk+1

Assumptions:
I (Wξk ) is an i.i.d. sequence of doubly-stochastic and E[W] is primitive

Same for average gossip

I
∑
` γ

` = +∞ ;
∑
`(γ

`)2 < +∞ ; γk+1/γk → 1
As in stochastic algorithm even if there is no noise

I (xk) converges almost surely to a consensus over a minimizer of f

Reference
Nedic & Ozdaglar Distributed Subgradient Methods for Multi Agent Optimization, IEEE TAC, 2009

5 / 28



>>> Summary GOSSIP + GRADIENT

Distributed gradient algorithm xk+1 = Wξk+1 (xk − γk∇F(xk)) converges

I Hypotheses on mixing matrices = for average gossip
I Hypotheses on stepsizes = stochastic approximation

Extensions
I Subgradients; non-convex functions
I Stochastic gradient
I Column-Stochastic mixing matrices

it is as if the average gossiping was lauched at each iteration with the current gradient

References
Bianchi & Jakubowicz Convergence of a Multi Agent Projected Stochastic gradient for non convex
optimization, IEEE TAC, 2013
Bianchi, Fort & Hachem Performance of a Distributed Stochastic Approximation algorithm, IEEE TIT,
2013
Duchi, Agarwal & Wainwright Dual Averaging for Distributed Optimization, IEEE TAC, 2012
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>>> Least Mean Squares GOSSIP + GRADIENT

I At each time k, each sensor i receive hi(k) and yi(k) = hi(k)Tw? + ni(k)

I The goal is to find w? by minimizing

J(w) =
K∑

k=1

N∑
i=1

(
yi(k)− hi(k)Tw

)2

image: Cattivelli & Sayed

References: Diffusion LMS, Tracking for w?(k)
Schizas, Mateos, & Giannakis Distributed LMS for Consensus-Based In-Network Adaptive Processing,
IEEE TSP, 2010.
Cattivelli & Sayed Diffusion LMS Strategies for Distributed Estimation, IEEE TSP, 2010.
Chen, Richard & Sayed Diffusion LMS over Multitask Networks, IEEE TSP, 2015
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>>> Distributed Dual Averaging GOSSIP + GRADIENT

I The goal is to minimize
∑N

i=1 fi(x) over a closed set X
I the fi are convex but not necessarily smooth
⇒ use of Nesterov dual averaging method.

zk+1 = Wzk + gk with gk =
(

gk
i ∈ ∂fi(xk

i )
)

For each agent i xk+1
i = arg min

x∈X

{
〈zk+1

i ; x〉+
1
αk
ψ(x)

}

Doubly stochastic W
ak decreasing (typically ∝ 1/

√
k) f(x̄i

T)− f? ≤ OPT + NET ≤ O
(

log(N)√
TλN−1(L)

)

References: Optimization, Learning
Nesterov Primal-dual subgradient methods for convex problems, Math. Prog., 2009.
Xiao Dual averaging methods for regularized stochastic learning and online optimization, JMLR, 2010.
Duchi, Agarwal, & Wainwright Dual Averaging for Distributed Optimization: Convergence Analysis and
Network Scaling, NIPS 2010 & IEEE TAC 2012.
Ma, Smith, Jaggi, Jordan, Richtarik, & Takac Adding vs. Averaging in Distributed Primal-Dual
Optimization, ICML 2015.
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>>> Distributed Dual Averaging GOSSIP + GRADIENT

I The goal is to minimize
∑N

i=1 fi(x) over a closed set X
I the fi are convex but not necessarily smooth
⇒ use of Nesterov dual averaging method.

For One-Way/Broadcast communications, there exists a Sum-Weight version!

sk+1 = Wsk + gk with gk =
(

gk
i ∈ ∂fi(xk

i )
)

wk+1 = Wwk

For each agent i xk+1
i = arg min

x∈X

{〈
sk+1
i

wk+1
i

; x

〉
+

1
αk
ψ(x)

}

Column stochastic W
ak decreasing (typically ∝ 1/

√
k) f(x̄i

T)− f? ≤ OPT + NET ≤ O
(

log(N)√
TλN−1(L)

)
Same rate but larger set of communications (thus L) possible

Reference:
Tsianos, Lawlor, & Rabbat Push-sum distributed dual averaging for convex optimization, CDC 2012.
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>>> Distributed Optimization Problem ADVANCED ALGOS. & GOSSIP

Problem:

min
x∈Rd

f(x) ,
∑

i

fi(x)

f1 f2

f3

f4

f5

I fi is a convex function local to agent i
I f is nowhere available
I Agents should reach consensus over a minimizer of f

Goal: Mitigate the Optimization + Consensus problem differently
I Overcome the decreasing stepsize drawback of Distributed Gradient
I Include general convex functions (non-smooth, composite)
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>>> Reformulating our problem ADVANCED ALGOS. & GOSSIP

A proper problem for distributed optimization

The original problem is not suited as it does take into account
I the fact that each agent only has access to its own cost function;
I the fact that they have to exchange to reach the wanted optimum.

min
x∈R

∑
i∈V

fi(x)

I Starting from the original problem

min
x∈RN

F(x) ,
∑
i∈V

fi(xi)

subject to x1=x2=...=xN

I Adding the fact that the agents only know
their own functions

min
x∈RN

F(x) + ιSpan(1)(x)

I We put the constraint into the function to
minimize

with the indicator function

ιC(x) =

{
0 if x ∈ C
+∞ elsewhere
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>>> Reformulating our consensus constraint ADVANCED ALGOS. & GOSSIP

General idea: Ensure consensus over L overlapping connected subsets
e.g. over all edges. Subset = 2 connected nodes + connecting link

I A1 = {1, 2} M1x =

[
x1
x2

]

I A2 = {2, 3, 4} M2x =

 x2
x3
x4


I A3 = {4, 5} M3x =

[
x4
x5

]

I M ,

 M1
M2
M3

: size
∑L
`=1 |A`| , M × N

ιSpan(1)

([
x1
x2

])
+ ιSpan(1)

 x2
x3
x4

 + ιSpan(1)

([
x4
x5

])
= ιSpan(1) (x)

Equivalent problem

min
x∈RN

F(x) + G(Mx)
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I M ,

 M1
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>>> Reformulating our consensus constraint ADVANCED ALGOS. & GOSSIP

Reformulated Problem

min
x∈RN

N∑
nodes i=1

fi(xi)︸ ︷︷ ︸
F(x)

+
L∑

areas `=1

ιSpan(1) (M`x)

︸ ︷︷ ︸
G(Mx)

s.t. Mx = y

I A separable networked separated problem...
The functions fi act on local variables
The consensus is ensured locally on overlapping areas

I ... that we have to split.
Splitting algorithms are popular in Optimization (proximal gradient, ADMM, primal-dual)
We divide variable y into L adapted blocks (y|`)

Does this leads to a distributed algorithm?
Not exactly: G(M·) ≡ ιwhole consensus(·) so any direct algorithm will look like

xk+1 =


...

x̄k

...

− γ


...
∇fi(x̄k)

...

 with x̄k = 1
N

∑L
i=1 xk

i

This is a simple proximal gradient with F as the smooth function and G as the proximable one.

I Let us investigate the resulting algorithms
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>>> Reformulating our consensus constraint ADVANCED ALGOS. & GOSSIP
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>>> Synchronous Case ADVANCED ALGOS. & GOSSIP

Distributed Optimization algorithm: Reformulated Problem + Splitting method

min
x∈RN ,y∈RM

N∑
nodes i=1

fi(xi)︸ ︷︷ ︸
F(x)

+
L∑

areas `=1

ιSpan(1)
(
y|`
)

︸ ︷︷ ︸
G(y)

s.t. Mx = y

Splitting method what to treat with a prox v.s. a gradient

I G has to be treated with a prox
prox on indicator = projection

I F it depends!

gradient: f smooth

xk+1 = xk − γ∇f(xk)

prox: f convex

xk+1 = arg minw{f(w) + 1
2‖w− xk‖2} = xk − γ∂f(xk+1)
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>>> Two popular splitting algorithms ADVANCED ALGOS. & GOSSIP

min
x∈RN ,y∈RM

F(x) + G(y)

s.t. Mx = y

ADMM

xk+1
= arg min

w
{F(w) +

ρ

2
‖Mw− zk

+
λk

ρ
‖2}

zk+1
= arg min

u
{G(u) +

ρ

2
‖Mxk+1 − u +

λk

ρ
‖2}

λ
k+1

= λ
k

+ ρ(Mxk+1 − zk+1
)

I any F convex; ρ > 0 free parameter
I most popular and studied

Primal-Dual

xk+1
= arg min

w
{Fc

(w) + 〈∇Fs
(xk

); w〉+
1

2τ
‖Mw− vk

+ τλ
k‖2}

zk+1
= arg min

u
{G(u) +

ρ

2
‖Mxk+1 − u +

λk

ρ
‖2}

λ
k+1

= λ
k

+ ρ(Mxk+1 − zk+1
)

uk+1
= (1− τρ)Mxk+1

+ τρzk+1

I F = Fs + Fc with Fs smooth, both convex; ρ, τ > 0 parameter (bounded choice)
I Includes the ADMM as a special case
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>>> Distributed Optimization with ADMM ADVANCED ALGOS. & GOSSIP

f1 f2

f3

f4

f5

Distributed ADMM
At each clock tick k:

I Every sensor i performs a minimization:

xk+1
i = arg min

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2


I Every subset A` computes its average:

z̄k+1
|` =

1
|A`|

∑
i∈A`

xk+1
i

I Every sensor i updates:

∀` ∈ σi, λ
k+1
i,|` = λk

i,|` + ρ(xk+1
i − z̄k+1

` )

I Each step can be split by agent/block
· z|`: |A`|-sized block, corresponds to subset `

· λi,|`: scalar, corresponds to agent i’s entry in subset ` ∈ σi , {l : i ∈ Al}
I Convergence is immediate from Optimization theory
I Similar algorithm from Primal-Dual when F has a smooth part
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>>> Distributed Optimization with ADMM ADVANCED ALGOS. & GOSSIP
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>>> Distributed Optimization with ADMM ADVANCED ALGOS. & GOSSIP
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>>> Distributed Optimization with ADMM ADVANCED ALGOS. & GOSSIP
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>>> Convergence rate ADVANCED ALGOS. & GOSSIP
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Synchronous Distributed Gradient descent

Synchronous Distributed Optimization with the ADMM

I A drawback of distributed gradient was the decreasing stepsize and slow
convergence

Changes compared with Distributed Gradient:
I Fixed, free parameter ρ > 0
I Convergence in O(1/k) in the general case
I If

∑
i∇2fi(x?) > 0 locally strongly convex at optimum

Exponential rate with exact rate as the spectral radius of some matrix
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>>> Parameter choice and network topology ADVANCED ALGOS. & GOSSIP

Centralized
(1 block)

Same σ2 = 16 Different σ2 = 4, 9, 16, 25, 39

Ring
(N blocks)

Same σ2 = 16

Vertical Asymptote!

optimal ρ = σ2
2 sin(2π/N)

I Any reasonable ρ gives a reasonable speed (∼ 1)
I Optimal one is tricky!
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>>> Summary ADVANCED ALGOS. & GOSSIP

I Problem Formulation + Adapted Splitting algorithm = Distributed (Synchronous)
Algorithm

I Very intensively investigated
non-convex case, errors in prox, etc.

I Basis for the Asynchronous case!

References: Optimization & Fixed point theory
Lions & Mercier Splitting algorithms for the sum of two nonlinear operators, SIAM NUMA, 1979.
Eckstein & Bertsekas On the Douglas—Rachford splitting method and the proximal point algorithm for
maximal monotone operators, Math. Prog., 1992.
Condat A primal–dual splitting method for convex optimization involving Lipschitzian, proximable and
linear composite terms, JOTA, 2013.
Problem Formulation
Schizas, Ribeiro & Giannakis Consensus in ad hoc WSNs with noisy links, IEEE TSP, 2008.
Distributed ADMM Analysis
I. et al. Explicit convergence rate of a distributed ADMM, IEEE TAC, 2015.
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>>> Randomized Case ADVANCED ALGOS. & GOSSIP

Distributed Optimization algorithm: Reformulated Problem + Splitting method

min
x∈RN ,y∈RM

N∑
nodes i=1

fi(xi)︸ ︷︷ ︸
F(x)

+
L∑

areas `=1

ιSpan(1)
(
y|`
)

︸ ︷︷ ︸
G(y)

s.t. Mx = y

I This formulation + a splitting method allowed to produce a distributed algorithm
information exchanges were only local, supported by the communication graph

I Link between i) entries of the variables and ii) communications areas

Distributed ADMM
At each clock tick k:

Every sensor i performs a minimization: xk+1
i = arg minx

{
fi(x) + ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`
ρ

)2}
Every subset A` computes its average: z̄k+1

|` = 1
|A`|

∑
i∈A`

xk+1
i ( zk+1

|` = (z̄k+1
|` , z̄k+1

|` , .., z̄k+1
|` ))

Every sensor i updates: ∀` ∈ σi, λ
k+1
i,|` = λk

i,|` + ρ(xk+1
i − z̄k+1

` )

Idea to produce randomized gossip algorithm
I Update only some entries corresponding to one/some areas
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>>> Theoretical basis: Randomized Averaged Operators ADVANCED ALGOS. & GOSSIP

I a large variety of optimization algorithm can be written as fixed points operations
of an averaged operator: contraction property coming from monotone operator theory

ζk+1 = T(ζk)

For instance, it is the case for ADMM with ζk = ρzk + λk

Splitting: x is split in L blocks along the areas defined previously with the indicator

Randomized Descent: update of one block ` chosen at random
the update rely on the whole xk

(contrary to whole descent on one coordinate x(i)
k [Fercoq,Richtarik’15])

the other blocks keep their entries fixed

xk+1 =



xk+1
|1
...

xk+1
|`
...

xk+1
|L


=



T(1)(xk)

...
T(`)(xk)

...
T(L)(xk)


= T(xk)

Problem: T is averaged but T̂(`) is not in general...
Updating only a subset of entries made us lose the contraction property and thus convergence
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>>> Theoretical basis: Randomized Averaged Operators ADVANCED ALGOS. & GOSSIP

I Almost sure convergence can be retrieved if the blocs are chosen in an i.i.d. manner

Theorem
Let T be an averaged operator.
Let (ξk) be an i.i.d. process with values in {1, ..., L} such that P[ξ1 = `] = p` > 0 for all
` = 1, ..., L. The iterates sequence (xk) generated by

xk+1 = T̂(ξk+1)(xk)

converges almost-surely to a solution of our problem.

I Gives algorithms where only some agents communicate per iteration
I The derivation has to be careful: updated entries have to be as if the whole

operation happens

References: Monotone operators theory + Probabilities
Bianchi, Hachem, & I. A Coordinate Descent Primal-Dual Algorithm and Application to Distributed
Asynchronous Optimization, CDC 2013 and IEEE TAC, 2015.
Combettes & Pesquet Stochastic quasi-Fejér block-coordinate fixed point iterations with random
sweeping, SIOPT, 2015.
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>>> Asynchronous Distributed optimization with ADMM ADVANCED ALGOS. & GOSSIP

f1 f2

f3

f4

f5

Asynchronous Optimization w/ ADMM
At each clock tick k, let ξk+1 be the index of the active block:

I Every sensor i ∈ Aξk+1 of the block computes:

xk+1
i = argmin

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2


I The block computes its average:

z̄k+1
|ξk+1 =

1
|Aξk+1 |

∑
i∈A

ξk+1

xk+1
i

I Every sensor i ∈ Aξk+1 of the block updates:

λk+1
i,|ξk+1 = λk

i,|ξk+1 + ρ(xk+1
i − z̄k+1

ξk+1 )

I Exchange similar to Random Gossip for average if a link is selected
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>>> Numerical Illustration on quadratic functions ADVANCED ALGOS. & GOSSIP
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Synchronous Distributed Gradient descent

Asynchronous Distributed Gradient descent

Synchronous Distributed Optimization with the ADMM

Asynchronous Distributed Optimization with the ADMM

I Synchronous ADMM: 1 iteration = N argmin + L block-averaging
I Asynchronous ADMM: 1 iteration = |Aξk | argmin + 1 block-averaging
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>>> Numerical Illustration on quadratic functions ADVANCED ALGOS. & GOSSIP
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>>> Adaptability ADVANCED ALGOS. & GOSSIP

I This setup enables to deal with a large variety of situations

I Distributed Optimization using local
coordinators

I Distributed Optimization with One-Way
communications

I Mini-batch optimization/learning
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>>> Summary ADVANCED ALGOS. & GOSSIP

I Problem Formulation + Adapted Splitting algorithm
+ Randomized Coordinate Descent = Distributed Asynchronous Algorithm

I Almost sure convergence; MSE in O(1/k)

I Highly flexible formulation
Broadcast communications, change of Metric = change of averaging coefficients
Sometimes at the expense of performance compared to dedicated algorithms

References: Monotone operators theory + Probabilities
Bianchi, Hachem, & I. A Coordinate Descent Primal-Dual Algorithm and Application to Distributed
Asynchronous Optimization, CDC 2013 and IEEE TAC, 2015.
Wei & Ozdaglar On the O(1/k) convergence of asynchronous distributed ADMM, Arxiv, 2014.
Chouzenoux, Pesquet, & Repetti A block coordinate variable metric forward–backward algorithm, J.
Glob. Optim., 2013.
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>>> `2-regularized Logistic Regression ADVANCED ALGOS. & GOSSIP

Problem: minx∈Rp 1
m

∑m
t=1 log

(
1 + e−ytaT

t x
)

+ µ‖x‖2

Reformulation: minx∈RNp
∑N

n=1

(∑
t∈Bn

1
m

log
(

1 + e−ytaT
t xn
)

︸ ︷︷ ︸
fn(xn)

+
µ

2N
‖xn‖2

2︸ ︷︷ ︸
gn(xn)

)
+
∑
ε∈E ιC2 (yε)

DAPD Formulation + L. Condat’s Primal-Dual algorithm + Randomization
I Select one (or more) agent n:

. For all m ∼ n, do λ
k+1
{n,m}(n) =

λk
{n,m}(n)− λk

{n,m}(m)

2
+

xk
n − xk

m

2ρ

. xk+1
n = proxτgn/dn

[
(1− τρ−1

)xk
n −

τ

dn
∇fn(xk

n) +
τ

dn

∑
m∼n

(ρ
−1xk

m + λ
k
{n,m}(m))

]

. For all m ∼ n, send {xk+1
n , λk+1

{n,m}(n)} to Neighbor m.
I Other agents stay put.
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>>> ??? ADVANCED ALGOS. & GOSSIP

Give n agents a real number (ai)i=1,..,N .

What does the following algorithm do?

all agents do: xk+1
i =


x̄k − yk

i + β if x̄k − yk
i + β < ai

x̄k − yk
i − 1 if x̄k − yk

i − 1 > ai
ai elsewhere

.

yk+1 = yk + xk+1 − x̄k+1 x̄k = 1/N
N∑

i=1

xk
i
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Hint 1: 20 agents with values in [0, 100]

β = 1
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
x̄k − yk

i + β if x̄k − yk
i + β < ai

x̄k − yk
i − 1 if x̄k − yk

i − 1 > ai
ai elsewhere

.

yk+1 = yk + xk+1 − x̄k+1 x̄k = 1/N
N∑

i=1

xk
i

Hint 1: 20 agents with values in [0, 100]

β = 4
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>>> ??? ADVANCED ALGOS. & GOSSIP

Give n agents a real number (ai)i=1,..,N .

What does the following algorithm do?

all agents do: xk+1
i =


x̄k − λk

i /ρ+ β/ρ if x̄k − λk
i /ρ+ β/ρ < ai

x̄k − λk
i /ρ− 1/ρ if x̄k − λk

i /ρ− 1/ρ > ai
ai elsewhere

.

λk+1 = λk + ρ(xk+1 − x̄k+1) x̄k = 1/N
N∑

i=1

xk
i

Hint 2: It is ADMM on
∑

i fi(xi) + ιC(x)

General remark: ρ controls the tradeoff between consensus and local minimization.

β = 4, ρ = 1
Sought value:
between 79 and 84.
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>>> ??? ADVANCED ALGOS. & GOSSIP

Give n agents a real number (ai)i=1,..,N .

What does the following algorithm do?

all agents do: xk+1
i =


x̄k − λk

i /ρ+ β/ρ if x̄k − λk
i /ρ+ β/ρ < ai

x̄k − λk
i /ρ− 1/ρ if x̄k − λk

i /ρ− 1/ρ > ai
ai elsewhere

.

λk+1 = λk + ρ(xk+1 − x̄k+1) x̄k = 1/N
N∑

i=1

xk
i

Hint 2: It is ADMM on
∑

i fi(xi) + ιC(x)

General remark: ρ controls the tradeoff between consensus and local minimization.

β = 4, ρ = 0.001
Sought value:
between 79 and 84.
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>>> ??? ADVANCED ALGOS. & GOSSIP

Give n agents a real number (ai)i=1,..,N .

What does the following algorithm do?

all agents do: xk+1
i =


x̄k − λk

i /ρ+ β/ρ if x̄k − λk
i /ρ+ β/ρ < ai

x̄k − λk
i /ρ− 1/ρ if x̄k − λk

i /ρ− 1/ρ > ai
ai elsewhere

.

λk+1 = λk + ρ(xk+1 − x̄k+1) x̄k = 1/N
N∑

i=1

xk
i

Hint 2: It is ADMM on
∑

i fi(xi) + ιC(x)

General remark: ρ controls the tradeoff between consensus and local minimization.

β = 4, ρ = 0.01
Sought value:
between 79 and 84.
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>>> ??? ADVANCED ALGOS. & GOSSIP

Give n agents a real number (ai)i=1,..,N .

What does the following algorithm do?

all agents do: xk+1
i =


x̄k − λk

i /ρ+ β/ρ if x̄k − λk
i /ρ+ β/ρ < ai

x̄k − λk
i /ρ− 1/ρ if x̄k − λk

i /ρ− 1/ρ > ai
ai elsewhere

.

λk+1 = λk + ρ(xk+1 − x̄k+1) x̄k = 1/N
N∑

i=1

xk
i

Hint 2: It is ADMM on
∑

i fi(xi) + ιC(x)

General remark: ρ controls the tradeoff between consensus and local minimization.

β = 4, ρ = 0.1
Sought value:
between 79 and 84.
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>>> ??? ADVANCED ALGOS. & GOSSIP

Give n agents a real number (ai)i=1,..,N .

What does the following algorithm do?

all agents do: xk+1
i =


x̄k − λk

i /ρ+ β/ρ if x̄k − λk
i /ρ+ β/ρ < ai

x̄k − λk
i /ρ− 1/ρ if x̄k − λk

i /ρ− 1/ρ > ai
ai elsewhere

.

λk+1 = λk + ρ(xk+1 − x̄k+1) x̄k = 1/N
N∑

i=1

xk
i

Hint 2: It is ADMM on
∑

i fi(xi) + ιC(x)

General remark: ρ controls the tradeoff between consensus and local minimization.

β = 4, ρ = 1
Sought value:
between 79 and 84.

27 / 28



>>> ??? ADVANCED ALGOS. & GOSSIP

Give n agents a real number (ai)i=1,..,N .

What does the following algorithm do?

all agents do: xk+1
i =


x̄k − λk

i /ρ+ β/ρ if x̄k − λk
i /ρ+ β/ρ < ai

x̄k − λk
i /ρ− 1/ρ if x̄k − λk

i /ρ− 1/ρ > ai
ai elsewhere

.

λk+1 = λk + ρ(xk+1 − x̄k+1) x̄k = 1/N
N∑

i=1

xk
i

Hint 2: It is ADMM on
∑

i fi(xi) + ιC(x)

General remark: ρ controls the tradeoff between consensus and local minimization.

β = 4, ρ = 10
Sought value:
between 79 and 84.
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>>> ??? ADVANCED ALGOS. & GOSSIP

Give n agents a real number (ai)i=1,..,N .

What does the following algorithm do?

all agents do: xk+1
i =


x̄k − λk

i /ρ+ β/ρ if x̄k − λk
i /ρ+ β/ρ < ai

x̄k − λk
i /ρ− 1/ρ if x̄k − λk

i /ρ− 1/ρ > ai
ai elsewhere

.

λk+1 = λk + ρ(xk+1 − x̄k+1) x̄k = 1/N
N∑

i=1

xk
i

Solution: It is a quantile at 100 β/(1 + β) % !
We saw: how to make it distributed, randomized, and rules for choosing ρ
→ Complete gossip algorithm for median/quantile estimation!

β = 4, ρ = 0.1
Sought value:
between 79 and 84.
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>>> Take Home Message CONCLUSION

I Main mathematical tools: Matrix analysis, Optimization
I Guidelines: Gossiping is exponentially fast but disagreement can hurt joint task

(e.g. gradient)
I Performance evaluation is an issue

How to measure properly communication vs. computation time

I MPI→ Spark implementation
I a Community of Optimization and Control for now...

arXiv:OC, IEEE TAC and TSP, Automatica, SICON
Tsitsiklis/Bertsekas ; Nedic/Ozdaglar ; Boyd
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