
Gossip algorithms: Tutorial & Recent advances
PART II: RECENT PROBLEMS, OPTIMIZATION, AND LEARNING

Franck Iutzeler LJK, Université Grenoble Alpes

Smile Paris – November 3, 2016

>>> Outline

I Recent Advances and Problems in Gossiping
I Distributed Optimization and Learning [FOCUS]

. Gradient algorithms and variations

. Advanced algorithms

Problem:

min
x∈Rd

f(x) ,
∑
i∈V

fi(x)

f1 f2

f3

f4

f5

I fi is a convex function local to agent i
I f is nowhere available
I Agents should reach consensus over a

minimizer x? of f

1 / 28

RECENT ADVANCES AND PROBLEMS IN GOSSIPING

DISTRIBUTED GRADIENT ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES

ADVANCED ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES

RECENT ADVANCES AND PROBLEMS IN GOSSIPING

DISTRIBUTED GRADIENT ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES

ADVANCED ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES

>>> Quick Overview GOSSIP NEWS

I Open Systems
agents come and go; new paradigms to develop
Hendrickx & Martin Open Multi-Agent Systems:
Gossiping with Deterministic Arrivals and Departures,
Allerton 2016.

I Quantized Gossip
values or communications are quantized
Frasca et al. Average consensus by gossip algorithms
with quantized communication, CDC 2008
Benezit et al. Interval consensus: from quantized gossip
to voting, ICASSP 2009

I Gossip with errors
error on communications, Byzantine
attackers

I Gossip as an intermediate
Szerenyi et al. Gossip-based distributed
stochastic bandit algorithms, ICML 2013.

1 / 28

RECENT ADVANCES AND PROBLEMS IN GOSSIPING

DISTRIBUTED GRADIENT ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES

ADVANCED ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES

>>> Distributed Optimization Problem GOSSIP + GRADIENT

Problem:

min
x∈Rd

f(x) ,
∑

i

fi(x)

f1 f2

f3

f4

f5

I fi is an L-smooth convex function local to agent i
I f is nowhere available
I Agents should reach consensus over a minimizer of f

Reformulation: Product-Space trick
I F(x) =

∑
i fi(xi)

I Dimension went from d to Nd
I ∇F(x) = [∇f1(x1), ..,∇fN(xN)]

Dimension went from d to Nd but ∇F(x) = [∇f1(x1), ..,∇fN(xN)]
Gradient Computation is parallel

min
∑

i

fi(x)⇔ min F(x) + consensus x = (x, x, .., x)

I Average Consensus, thus Gossip, is needed to obtain the sought solution

2 / 28

RECENT ADVANCES AND PROBLEMS IN GOSSIPING

DISTRIBUTED GRADIENT ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES

ADVANCED ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES

>>> Synchronous Gossip GOSSIP + GRADIENT

Natural Algorithm: xk+1 = W(xk − γk∇F(xk))

At each iteration k:
I Each agent i performs a local gradient descent

yk+1
i = xk

i − γ
k∇fi(xk

i)

I The agents perform an average gossip step

xk+1 = Wyk+1

Otherwise said: xk = (W)kx0 −
∑k−1
`=1 γ

`(W)k−`∇F(x`)

I What can be say about the convergence?
Fixed stepsize or decreasing one as in stochastic algorithms?

3 / 28

>>> Convergence of Synchronous Distributed Gradient GOSSIP + GRADIENT

xk+1 = W(xk − γk∇F(xk)) = (W)kx0 −
k−1∑
`=1

γ`(W)k−`∇F(x`)

Assumptions:
I W is doubly-stochastic and primitive

Same for average gossip

I
∑
` γ

` = +∞ ;
∑
`(γ

`)2 < +∞ ; γk+1/γk → 1
As in stochastic algorithm even if there is no noise

1. ‖(I − J)xk+1‖2 ≤ (σ)
k+1‖x0‖2︸ ︷︷ ︸

exponential decay of gossip

+γk C
k∑
`=1

γ`

γk
(σ)

k+1−`

︸ ︷︷ ︸
finite

= O(γk)

where σ = ‖(I − J)W‖2 < 1 is a bound on the gossiping rate.

2. f(x̄k+1) ≤ f(x̄k)− γk‖∇f(x̄k)‖2
2 + C(γk)2 ⇒

∑∞
`=1 γ

k‖∇f(x̄k)‖2
2 < +∞

where x̄k = 1
N

∑N
i= xk

i .

I (xk) converges to a consensus over a minimizer of f

4 / 28

>>> Convergence of Synchronous Distributed Gradient GOSSIP + GRADIENT

xk+1 = W(xk − γk∇F(xk)) = (W)kx0 −
k−1∑
`=1

γ`(W)k−`∇F(x`)

Assumptions:
I W is doubly-stochastic and primitive

Same for average gossip

I
∑
` γ

` = +∞ ;
∑
`(γ

`)2 < +∞ ; γk+1/γk → 1
As in stochastic algorithm even if there is no noise

Remark:
I if W = J i.e. full consensus at each iteration, a constant stepsize is possible!

Even though Gossip is O(σk) and gradient is O(1/k), parallel gradient and distributed
gradient have very different behaviors.

Reference
Tsitsiklis, Bertsekas & Athans Distributed Asynchronous Deterministic and Stochastic gradient
optimization algorithm, IEEE TAC, 1986

4 / 28

RECENT ADVANCES AND PROBLEMS IN GOSSIPING

DISTRIBUTED GRADIENT ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES

ADVANCED ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES

>>> Randomized Gossip GOSSIP + GRADIENT

Natural Algorithm: xk+1 = Wξk+1 (xk − γk∇F(xk))

At each iteration k:
I Each agent i performs a local gradient descent

yk+1
i = xk

i − γ
k∇fi(xk

i)

I The agents perform a random average gossip step

xk+1 = Wξk+1 yk+1

Assumptions:
I (Wξk) is an i.i.d. sequence of doubly-stochastic and E[W] is primitive

Same for average gossip

I
∑
` γ

` = +∞ ;
∑
`(γ

`)2 < +∞ ; γk+1/γk → 1
As in stochastic algorithm even if there is no noise

I (xk) converges almost surely to a consensus over a minimizer of f

Reference
Nedic & Ozdaglar Distributed Subgradient Methods for Multi Agent Optimization, IEEE TAC, 2009

5 / 28

>>> Summary GOSSIP + GRADIENT

Distributed gradient algorithm xk+1 = Wξk+1 (xk − γk∇F(xk)) converges

I Hypotheses on mixing matrices = for average gossip
I Hypotheses on stepsizes = stochastic approximation

Extensions
I Subgradients; non-convex functions
I Stochastic gradient
I Column-Stochastic mixing matrices

it is as if the average gossiping was lauched at each iteration with the current gradient

References
Bianchi & Jakubowicz Convergence of a Multi Agent Projected Stochastic gradient for non convex
optimization, IEEE TAC, 2013
Bianchi, Fort & Hachem Performance of a Distributed Stochastic Approximation algorithm, IEEE TIT,
2013
Duchi, Agarwal & Wainwright Dual Averaging for Distributed Optimization, IEEE TAC, 2012

6 / 28

RECENT ADVANCES AND PROBLEMS IN GOSSIPING

DISTRIBUTED GRADIENT ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES

ADVANCED ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES

>>> Least Mean Squares GOSSIP + GRADIENT

I At each time k, each sensor i receive hi(k) and yi(k) = hi(k)Tw? + ni(k)

I The goal is to find w? by minimizing

J(w) =
K∑

k=1

N∑
i=1

(
yi(k)− hi(k)Tw

)2

image: Cattivelli & Sayed

References: Diffusion LMS, Tracking for w?(k)
Schizas, Mateos, & Giannakis Distributed LMS for Consensus-Based In-Network Adaptive Processing,
IEEE TSP, 2010.
Cattivelli & Sayed Diffusion LMS Strategies for Distributed Estimation, IEEE TSP, 2010.
Chen, Richard & Sayed Diffusion LMS over Multitask Networks, IEEE TSP, 2015

7 / 28

>>> Distributed Dual Averaging GOSSIP + GRADIENT

I The goal is to minimize
∑N

i=1 fi(x) over a closed set X
I the fi are convex but not necessarily smooth
⇒ use of Nesterov dual averaging method.

zk+1 = Wzk + gk with gk =
(

gk
i ∈ ∂fi(xk

i)
)

For each agent i xk+1
i = arg min

x∈X

{
〈zk+1

i ; x〉+
1
αk
ψ(x)

}

Doubly stochastic W
ak decreasing (typically ∝ 1/

√
k) f(x̄i

T)− f? ≤ OPT + NET ≤ O
(

log(N)√
TλN−1(L)

)

References: Optimization, Learning
Nesterov Primal-dual subgradient methods for convex problems, Math. Prog., 2009.
Xiao Dual averaging methods for regularized stochastic learning and online optimization, JMLR, 2010.
Duchi, Agarwal, & Wainwright Dual Averaging for Distributed Optimization: Convergence Analysis and
Network Scaling, NIPS 2010 & IEEE TAC 2012.
Ma, Smith, Jaggi, Jordan, Richtarik, & Takac Adding vs. Averaging in Distributed Primal-Dual
Optimization, ICML 2015.

8 / 28

>>> Distributed Dual Averaging GOSSIP + GRADIENT

I The goal is to minimize
∑N

i=1 fi(x) over a closed set X
I the fi are convex but not necessarily smooth
⇒ use of Nesterov dual averaging method.

For One-Way/Broadcast communications, there exists a Sum-Weight version!

sk+1 = Wsk + gk with gk =
(

gk
i ∈ ∂fi(xk

i)
)

wk+1 = Wwk

For each agent i xk+1
i = arg min

x∈X

{〈
sk+1
i

wk+1
i

; x

〉
+

1
αk
ψ(x)

}

Column stochastic W
ak decreasing (typically ∝ 1/

√
k) f(x̄i

T)− f? ≤ OPT + NET ≤ O
(

log(N)√
TλN−1(L)

)
Same rate but larger set of communications (thus L) possible

Reference:
Tsianos, Lawlor, & Rabbat Push-sum distributed dual averaging for convex optimization, CDC 2012.

8 / 28

RECENT ADVANCES AND PROBLEMS IN GOSSIPING

DISTRIBUTED GRADIENT ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES

ADVANCED ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES

>>> Distributed Optimization Problem ADVANCED ALGOS. & GOSSIP

Problem:

min
x∈Rd

f(x) ,
∑

i

fi(x)

f1 f2

f3

f4

f5

I fi is a convex function local to agent i
I f is nowhere available
I Agents should reach consensus over a minimizer of f

Goal: Mitigate the Optimization + Consensus problem differently
I Overcome the decreasing stepsize drawback of Distributed Gradient
I Include general convex functions (non-smooth, composite)

9 / 28

>>> Reformulating our problem ADVANCED ALGOS. & GOSSIP

A proper problem for distributed optimization

The original problem is not suited as it does take into account
I the fact that each agent only has access to its own cost function;
I the fact that they have to exchange to reach the wanted optimum.

min
x∈R

∑
i∈V

fi(x)

I Starting from the original problem

min
x∈RN

F(x) ,
∑
i∈V

fi(xi)

subject to x1=x2=...=xN

I Adding the fact that the agents only know
their own functions

min
x∈RN

F(x) + ιSpan(1)(x)

I We put the constraint into the function to
minimize

with the indicator function

ιC(x) =

{
0 if x ∈ C
+∞ elsewhere

10 / 28

>>> Reformulating our problem ADVANCED ALGOS. & GOSSIP

A proper problem for distributed optimization

The original problem is not suited as it does take into account
I the fact that each agent only has access to its own cost function;
I the fact that they have to exchange to reach the wanted optimum.

min
x∈R

∑
i∈V

fi(x)

I Starting from the original problem

min
x∈RN

F(x) ,
∑
i∈V

fi(xi)

subject to x1=x2=...=xN

I Adding the fact that the agents only know
their own functions

min
x∈RN

F(x) + ιSpan(1)(x)

I We put the constraint into the function to
minimize

with the indicator function

ιC(x) =

{
0 if x ∈ C
+∞ elsewhere

10 / 28

>>> Reformulating our problem ADVANCED ALGOS. & GOSSIP

A proper problem for distributed optimization

The original problem is not suited as it does take into account
I the fact that each agent only has access to its own cost function;
I the fact that they have to exchange to reach the wanted optimum.

min
x∈R

∑
i∈V

fi(x)

I Starting from the original problem

min
x∈RN

F(x) ,
∑
i∈V

fi(xi)

subject to x1=x2=...=xN

I Adding the fact that the agents only know
their own functions

min
x∈RN

F(x) + ιSpan(1)(x)

I We put the constraint into the function to
minimize

with the indicator function

ιC(x) =

{
0 if x ∈ C
+∞ elsewhere

10 / 28

>>> Reformulating our problem ADVANCED ALGOS. & GOSSIP

A proper problem for distributed optimization

The original problem is not suited as it does take into account
I the fact that each agent only has access to its own cost function;
I the fact that they have to exchange to reach the wanted optimum.

min
x∈R

∑
i∈V

fi(x)

I Starting from the original problem

min
x∈RN

F(x) ,
∑
i∈V

fi(xi)

subject to x1=x2=...=xN

I Adding the fact that the agents only know
their own functions

min
x∈RN

F(x) + ιSpan(1)(x)

I We put the constraint into the function to
minimize

with the indicator function

ιC(x) =

{
0 if x ∈ C
+∞ elsewhere

10 / 28

>>> Reformulating our consensus constraint ADVANCED ALGOS. & GOSSIP

General idea: Ensure consensus over L overlapping connected subsets
e.g. over all edges. Subset = 2 connected nodes + connecting link

I A1 = {1, 2} M1x =

[
x1
x2

]

I A2 = {2, 3, 4} M2x =

 x2
x3
x4

I A3 = {4, 5} M3x =

[
x4
x5

]

I M ,

 M1
M2
M3

: size
∑L
`=1 |A`| , M × N

ιSpan(1)

([
x1
x2

])
+ ιSpan(1)

 x2
x3
x4

 + ιSpan(1)

([
x4
x5

])
= ιSpan(1) (x)

Equivalent problem

min
x∈RN

F(x) + G(Mx)

11 / 28

>>> Reformulating our consensus constraint ADVANCED ALGOS. & GOSSIP

General idea: Ensure consensus over L overlapping connected subsets
e.g. over all edges. Subset = 2 connected nodes + connecting link

I A1 = {1, 2} M1x =

[
x1
x2

]

I A2 = {2, 3, 4} M2x =

 x2
x3
x4

I A3 = {4, 5} M3x =

[
x4
x5

]

I M ,

 M1
M2
M3

: size
∑L
`=1 |A`| , M × N

ιSpan(1)

([
x1
x2

])

+ ιSpan(1)

 x2
x3
x4

 + ιSpan(1)

([
x4
x5

])
= ιSpan(1) (x)

Equivalent problem

min
x∈RN

F(x) + G(Mx)

11 / 28

>>> Reformulating our consensus constraint ADVANCED ALGOS. & GOSSIP

General idea: Ensure consensus over L overlapping connected subsets
e.g. over all edges. Subset = 2 connected nodes + connecting link

I A1 = {1, 2} M1x =

[
x1
x2

]

I A2 = {2, 3, 4} M2x =

 x2
x3
x4

I A3 = {4, 5} M3x =

[
x4
x5

]

I M ,

 M1
M2
M3

: size
∑L
`=1 |A`| , M × N

ιSpan(1)

([
x1
x2

])
+ ιSpan(1)

 x2
x3
x4

+ ιSpan(1)

([
x4
x5

])
= ιSpan(1) (x)

Equivalent problem

min
x∈RN

F(x) + G(Mx)

11 / 28

>>> Reformulating our consensus constraint ADVANCED ALGOS. & GOSSIP

General idea: Ensure consensus over L overlapping connected subsets
e.g. over all edges. Subset = 2 connected nodes + connecting link

I A1 = {1, 2} M1x =

[
x1
x2

]

I A2 = {2, 3, 4} M2x =

 x2
x3
x4

I A3 = {4, 5} M3x =

[
x4
x5

]

I M ,

 M1
M2
M3

: size
∑L
`=1 |A`| , M × N

ιSpan(1)

([
x1
x2

])
+ ιSpan(1)

 x2
x3
x4

 + ιSpan(1)

([
x4
x5

])

= ιSpan(1) (x)

Equivalent problem

min
x∈RN

F(x) + G(Mx)

11 / 28

>>> Reformulating our consensus constraint ADVANCED ALGOS. & GOSSIP

General idea: Ensure consensus over L overlapping connected subsets
e.g. over all edges. Subset = 2 connected nodes + connecting link

I A1 = {1, 2} M1x =

[
x1
x2

]

I A2 = {2, 3, 4} M2x =

 x2
x3
x4

I A3 = {4, 5} M3x =

[
x4
x5

]

I M ,

 M1
M2
M3

: size
∑L
`=1 |A`| , M × N

ιSpan(1)

([
x1
x2

])
+ ιSpan(1)

 x2
x3
x4

 + ιSpan(1)

([
x4
x5

])
= ιSpan(1) (x)

Equivalent problem

min
x∈RN

F(x) + G(Mx)

11 / 28

>>> Reformulating our consensus constraint ADVANCED ALGOS. & GOSSIP

General idea: Ensure consensus over L overlapping connected subsets
e.g. over all edges. Subset = 2 connected nodes + connecting link

I A1 = {1, 2} M1x =

[
x1
x2

]

I A2 = {2, 3, 4} M2x =

 x2
x3
x4

I A3 = {4, 5} M3x =

[
x4
x5

]

I M ,

 M1
M2
M3

: size
∑L
`=1 |A`| , M × N

ιSpan(1) (M1x) + ιSpan(1) (M2x) + ιSpan(1) (M3x) , G (Mx)

Equivalent problem

min
x∈RN

F(x) + G(Mx)

11 / 28

>>> Reformulating our consensus constraint ADVANCED ALGOS. & GOSSIP

Reformulated Problem

min
x∈RN

N∑
nodes i=1

fi(xi)︸ ︷︷ ︸
F(x)

+
L∑

areas `=1

ιSpan(1) (M`x)

︸ ︷︷ ︸
G(Mx)

s.t. Mx = y

I A separable networked separated problem...
The functions fi act on local variables
The consensus is ensured locally on overlapping areas

I ... that we have to split.
Splitting algorithms are popular in Optimization (proximal gradient, ADMM, primal-dual)
We divide variable y into L adapted blocks (y|`)

Does this leads to a distributed algorithm?
Not exactly: G(M·) ≡ ιwhole consensus(·) so any direct algorithm will look like

xk+1 =

...

x̄k

...

− γ

...
∇fi(x̄k)

...

 with x̄k = 1
N

∑L
i=1 xk

i

This is a simple proximal gradient with F as the smooth function and G as the proximable one.

I Let us investigate the resulting algorithms

12 / 28

>>> Reformulating our consensus constraint ADVANCED ALGOS. & GOSSIP

Reformulated Problem

min
x∈RN

N∑
nodes i=1

fi(xi)︸ ︷︷ ︸
F(x)

+
L∑

areas `=1

ιSpan(1) (M`x)

︸ ︷︷ ︸
G(Mx)

s.t. Mx = y

I A separable networked separated problem...
The functions fi act on local variables
The consensus is ensured locally on overlapping areas

I ... that we have to split.
Splitting algorithms are popular in Optimization (proximal gradient, ADMM, primal-dual)
We divide variable y into L adapted blocks (y|`)

Does this leads to a distributed algorithm?
Not exactly: G(M·) ≡ ιwhole consensus(·) so any direct algorithm will look like

otherwise said xk+1 = J(xk − γ∇F(xk)); as already seen before.

This is a simple proximal gradient with F as the smooth function and G as the proximable one.

I Let us investigate the resulting algorithms

12 / 28

>>> Reformulating our consensus constraint ADVANCED ALGOS. & GOSSIP

Reformulated Problem

min
x∈RN ,y∈RM

N∑
nodes i=1

fi(xi)︸ ︷︷ ︸
F(x)

+
L∑

areas `=1

ιSpan(1)
(
y|`
)

︸ ︷︷ ︸
G(y)

s.t. Mx = y

I A separable networked separated problem...
The functions fi act on local variables
The consensus is ensured locally on overlapping areas

I ... that we have to split.
Splitting algorithms are popular in Optimization (proximal gradient, ADMM, primal-dual)
We divide variable y into L adapted blocks (y|`)

Does this leads to a distributed algorithm?
Not exactly: G(M·) ≡ ιwhole consensus(·) so any direct algorithm will look like
This is a simple proximal gradient with F as the smooth function and G as the proximable one.

I Let us investigate the resulting algorithms

12 / 28

RECENT ADVANCES AND PROBLEMS IN GOSSIPING

DISTRIBUTED GRADIENT ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES

ADVANCED ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES

>>> Synchronous Case ADVANCED ALGOS. & GOSSIP

Distributed Optimization algorithm: Reformulated Problem + Splitting method

min
x∈RN ,y∈RM

N∑
nodes i=1

fi(xi)︸ ︷︷ ︸
F(x)

+
L∑

areas `=1

ιSpan(1)
(
y|`
)

︸ ︷︷ ︸
G(y)

s.t. Mx = y

Splitting method what to treat with a prox v.s. a gradient

I G has to be treated with a prox
prox on indicator = projection

I F it depends!

gradient: f smooth

xk+1 = xk − γ∇f(xk)

prox: f convex

xk+1 = arg minw{f(w) + 1
2‖w− xk‖2} = xk − γ∂f(xk+1)

13 / 28

>>> Two popular splitting algorithms ADVANCED ALGOS. & GOSSIP

min
x∈RN ,y∈RM

F(x) + G(y)

s.t. Mx = y

ADMM

xk+1
= arg min

w
{F(w) +

ρ

2
‖Mw− zk

+
λk

ρ
‖2}

zk+1
= arg min

u
{G(u) +

ρ

2
‖Mxk+1 − u +

λk

ρ
‖2}

λ
k+1

= λ
k

+ ρ(Mxk+1 − zk+1
)

I any F convex; ρ > 0 free parameter
I most popular and studied

Primal-Dual

xk+1
= arg min

w
{Fc

(w) + 〈∇Fs
(xk

); w〉+
1

2τ
‖Mw− vk

+ τλ
k‖2}

zk+1
= arg min

u
{G(u) +

ρ

2
‖Mxk+1 − u +

λk

ρ
‖2}

λ
k+1

= λ
k

+ ρ(Mxk+1 − zk+1
)

uk+1
= (1− τρ)Mxk+1

+ τρzk+1

I F = Fs + Fc with Fs smooth, both convex; ρ, τ > 0 parameter (bounded choice)
I Includes the ADMM as a special case

14 / 28

>>> Distributed Optimization with ADMM ADVANCED ALGOS. & GOSSIP

f1 f2

f3

f4

f5

Distributed ADMM
At each clock tick k:

I Every sensor i performs a minimization:

xk+1
i = arg min

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2

I Every subset A` computes its average:

z̄k+1
|` =

1
|A`|

∑
i∈A`

xk+1
i

I Every sensor i updates:

∀` ∈ σi, λ
k+1
i,|` = λk

i,|` + ρ(xk+1
i − z̄k+1

`)

I Each step can be split by agent/block
· z|`: |A`|-sized block, corresponds to subset `

· λi,|`: scalar, corresponds to agent i’s entry in subset ` ∈ σi , {l : i ∈ Al}
I Convergence is immediate from Optimization theory
I Similar algorithm from Primal-Dual when F has a smooth part

15 / 28

>>> Distributed Optimization with ADMM ADVANCED ALGOS. & GOSSIP

argmin
f1

argmin
f2

argmin
f3

argmin
f4

argmin
f5

Distributed ADMM
At each clock tick k:

I Every sensor i performs a minimization:

xk+1
i = arg min

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2

I Every subset A` computes its average:

z̄k+1
|` =

1
|A`|

∑
i∈A`

xk+1
i

I Every sensor i updates:

∀` ∈ σi, λ
k+1
i,|` = λk

i,|` + ρ(xk+1
i − z̄k+1

`)

I Each step can be split by agent/block
· z|`: |A`|-sized block, corresponds to subset `

· λi,|`: scalar, corresponds to agent i’s entry in subset ` ∈ σi , {l : i ∈ Al}
I Convergence is immediate from Optimization theory
I Similar algorithm from Primal-Dual when F has a smooth part

15 / 28

>>> Distributed Optimization with ADMM ADVANCED ALGOS. & GOSSIP

z̄1

Distributed ADMM
At each clock tick k:

I Every sensor i performs a minimization:

xk+1
i = arg min

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2

I Every subset A` computes its average:

z̄k+1
|` =

1
|A`|

∑
i∈A`

xk+1
i

I Every sensor i updates:

∀` ∈ σi, λ
k+1
i,|` = λk

i,|` + ρ(xk+1
i − z̄k+1

`)

I Each step can be split by agent/block
· z|`: |A`|-sized block, corresponds to subset `

· λi,|`: scalar, corresponds to agent i’s entry in subset ` ∈ σi , {l : i ∈ Al}
I Convergence is immediate from Optimization theory
I Similar algorithm from Primal-Dual when F has a smooth part

15 / 28

>>> Distributed Optimization with ADMM ADVANCED ALGOS. & GOSSIP

z̄2 z̄2
z̄2

Distributed ADMM
At each clock tick k:

I Every sensor i performs a minimization:

xk+1
i = arg min

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2

I Every subset A` computes its average:

z̄k+1
|` =

1
|A`|

∑
i∈A`

xk+1
i

I Every sensor i updates:

∀` ∈ σi, λ
k+1
i,|` = λk

i,|` + ρ(xk+1
i − z̄k+1

`)

I Each step can be split by agent/block
· z|`: |A`|-sized block, corresponds to subset `

· λi,|`: scalar, corresponds to agent i’s entry in subset ` ∈ σi , {l : i ∈ Al}
I Convergence is immediate from Optimization theory
I Similar algorithm from Primal-Dual when F has a smooth part

15 / 28

>>> Distributed Optimization with ADMM ADVANCED ALGOS. & GOSSIP

z̄3

Distributed ADMM
At each clock tick k:

I Every sensor i performs a minimization:

xk+1
i = arg min

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2

I Every subset A` computes its average:

z̄k+1
|` =

1
|A`|

∑
i∈A`

xk+1
i

I Every sensor i updates:

∀` ∈ σi, λ
k+1
i,|` = λk

i,|` + ρ(xk+1
i − z̄k+1

`)

I Each step can be split by agent/block
· z|`: |A`|-sized block, corresponds to subset `

· λi,|`: scalar, corresponds to agent i’s entry in subset ` ∈ σi , {l : i ∈ Al}
I Convergence is immediate from Optimization theory
I Similar algorithm from Primal-Dual when F has a smooth part

15 / 28

>>> Distributed Optimization with ADMM ADVANCED ALGOS. & GOSSIP

λ1,|1
λ2,|1
λ2,|2

λ3,|2

λ4,|2
λ4,|3

λ5,|3

Distributed ADMM
At each clock tick k:

I Every sensor i performs a minimization:

xk+1
i = arg min

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2

I Every subset A` computes its average:

z̄k+1
|` =

1
|A`|

∑
i∈A`

xk+1
i

I Every sensor i updates:

∀` ∈ σi, λ
k+1
i,|` = λk

i,|` + ρ(xk+1
i − z̄k+1

`)

I Each step can be split by agent/block
· z|`: |A`|-sized block, corresponds to subset `

· λi,|`: scalar, corresponds to agent i’s entry in subset ` ∈ σi , {l : i ∈ Al}
I Convergence is immediate from Optimization theory
I Similar algorithm from Primal-Dual when F has a smooth part

15 / 28

>>> Convergence rate ADVANCED ALGOS. & GOSSIP

0 20 40 60 80 100 120 140 160 180 200

10−4

10−2

100

Number of iterations

Sq
ua

re
d

Er
ro

r
Synchronous Distributed Gradient descent

Synchronous Distributed Optimization with the ADMM

I A drawback of distributed gradient was the decreasing stepsize and slow
convergence

Changes compared with Distributed Gradient:
I Fixed, free parameter ρ > 0
I Convergence in O(1/k) in the general case
I If

∑
i∇2fi(x?) > 0 locally strongly convex at optimum

Exponential rate with exact rate as the spectral radius of some matrix
16 / 28

>>> Parameter choice and network topology ADVANCED ALGOS. & GOSSIP

Centralized
(1 block)

Same σ2 = 16 Different σ2 = 4, 9, 16, 25, 39

Ring
(N blocks)

Same σ2 = 16

Vertical Asymptote!

optimal ρ = σ2
2 sin(2π/N)

I Any reasonable ρ gives a reasonable speed (∼ 1)
I Optimal one is tricky!

17 / 28

>>> Summary ADVANCED ALGOS. & GOSSIP

I Problem Formulation + Adapted Splitting algorithm = Distributed (Synchronous)
Algorithm

I Very intensively investigated
non-convex case, errors in prox, etc.

I Basis for the Asynchronous case!

References: Optimization & Fixed point theory
Lions & Mercier Splitting algorithms for the sum of two nonlinear operators, SIAM NUMA, 1979.
Eckstein & Bertsekas On the Douglas—Rachford splitting method and the proximal point algorithm for
maximal monotone operators, Math. Prog., 1992.
Condat A primal–dual splitting method for convex optimization involving Lipschitzian, proximable and
linear composite terms, JOTA, 2013.
Problem Formulation
Schizas, Ribeiro & Giannakis Consensus in ad hoc WSNs with noisy links, IEEE TSP, 2008.
Distributed ADMM Analysis
I. et al. Explicit convergence rate of a distributed ADMM, IEEE TAC, 2015.

18 / 28

RECENT ADVANCES AND PROBLEMS IN GOSSIPING

DISTRIBUTED GRADIENT ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES

ADVANCED ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES

>>> Randomized Case ADVANCED ALGOS. & GOSSIP

Distributed Optimization algorithm: Reformulated Problem + Splitting method

min
x∈RN ,y∈RM

N∑
nodes i=1

fi(xi)︸ ︷︷ ︸
F(x)

+
L∑

areas `=1

ιSpan(1)
(
y|`
)

︸ ︷︷ ︸
G(y)

s.t. Mx = y

I This formulation + a splitting method allowed to produce a distributed algorithm
information exchanges were only local, supported by the communication graph

I Link between i) entries of the variables and ii) communications areas

Distributed ADMM
At each clock tick k:

Every sensor i performs a minimization: xk+1
i = arg minx

{
fi(x) + ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`
ρ

)2}
Every subset A` computes its average: z̄k+1

|` = 1
|A`|

∑
i∈A`

xk+1
i (zk+1

|` = (z̄k+1
|` , z̄k+1

|` , .., z̄k+1
|`))

Every sensor i updates: ∀` ∈ σi, λ
k+1
i,|` = λk

i,|` + ρ(xk+1
i − z̄k+1

`)

Idea to produce randomized gossip algorithm
I Update only some entries corresponding to one/some areas

19 / 28

>>> Theoretical basis: Randomized Averaged Operators ADVANCED ALGOS. & GOSSIP

I a large variety of optimization algorithm can be written as fixed points operations
of an averaged operator: contraction property coming from monotone operator theory

ζk+1 = T(ζk)

For instance, it is the case for ADMM with ζk = ρzk + λk

Splitting: x is split in L blocks along the areas defined previously with the indicator

Randomized Descent: update of one block ` chosen at random
the update rely on the whole xk

(contrary to whole descent on one coordinate x(i)
k [Fercoq,Richtarik’15])

the other blocks keep their entries fixed

xk+1 =

xk+1
|1
...

xk+1
|`
...

xk+1
|L

=

T(1)(xk)

...
T(`)(xk)

...
T(L)(xk)

= T(xk)

Problem: T is averaged but T̂(`) is not in general...
Updating only a subset of entries made us lose the contraction property and thus convergence

20 / 28

>>> Theoretical basis: Randomized Averaged Operators ADVANCED ALGOS. & GOSSIP

I a large variety of optimization algorithm can be written as fixed points operations
of an averaged operator: contraction property coming from monotone operator theory

ζk+1 = T(ζk)

For instance, it is the case for ADMM with ζk = ρzk + λk

Splitting: x is split in L blocks along the areas defined previously with the indicator

Randomized Descent: update of one block ` chosen at random
the update rely on the whole xk

(contrary to whole descent on one coordinate x(i)
k [Fercoq,Richtarik’15])

the other blocks keep their entries fixed

xk+1 =

xk+1
|1
...

xk+1
|`
...

xk+1
|L

=

xk
|1
...

T(`)(xk)

...
xk
|L

, T̂(`)(x

k)

Problem: T is averaged but T̂(`) is not in general...
Updating only a subset of entries made us lose the contraction property and thus convergence

20 / 28

>>> Theoretical basis: Randomized Averaged Operators ADVANCED ALGOS. & GOSSIP

I Almost sure convergence can be retrieved if the blocs are chosen in an i.i.d. manner

Theorem
Let T be an averaged operator.
Let (ξk) be an i.i.d. process with values in {1, ..., L} such that P[ξ1 = `] = p` > 0 for all
` = 1, ..., L. The iterates sequence (xk) generated by

xk+1 = T̂(ξk+1)(xk)

converges almost-surely to a solution of our problem.

I Gives algorithms where only some agents communicate per iteration
I The derivation has to be careful: updated entries have to be as if the whole

operation happens

References: Monotone operators theory + Probabilities
Bianchi, Hachem, & I. A Coordinate Descent Primal-Dual Algorithm and Application to Distributed
Asynchronous Optimization, CDC 2013 and IEEE TAC, 2015.
Combettes & Pesquet Stochastic quasi-Fejér block-coordinate fixed point iterations with random
sweeping, SIOPT, 2015.

21 / 28

>>> Asynchronous Distributed optimization with ADMM ADVANCED ALGOS. & GOSSIP

f1 f2

f3

f4

f5

Asynchronous Optimization w/ ADMM
At each clock tick k, let ξk+1 be the index of the active block:

I Every sensor i ∈ Aξk+1 of the block computes:

xk+1
i = argmin

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2

I The block computes its average:

z̄k+1
|ξk+1 =

1
|Aξk+1 |

∑
i∈A

ξk+1

xk+1
i

I Every sensor i ∈ Aξk+1 of the block updates:

λk+1
i,|ξk+1 = λk

i,|ξk+1 + ρ(xk+1
i − z̄k+1

ξk+1)

I Exchange similar to Random Gossip for average if a link is selected

22 / 28

>>> Asynchronous Distributed optimization with ADMM ADVANCED ALGOS. & GOSSIP

argmin
f1

argmin
f2

Asynchronous Optimization w/ ADMM
At each clock tick k, let ξk+1 be the index of the active block:

I Every sensor i ∈ Aξk+1 of the block computes:

xk+1
i = argmin

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2

I The block computes its average:

z̄k+1
|ξk+1 =

1
|Aξk+1 |

∑
i∈A

ξk+1

xk+1
i

I Every sensor i ∈ Aξk+1 of the block updates:

λk+1
i,|ξk+1 = λk

i,|ξk+1 + ρ(xk+1
i − z̄k+1

ξk+1)

I Exchange similar to Random Gossip for average if a link is selected

22 / 28

>>> Asynchronous Distributed optimization with ADMM ADVANCED ALGOS. & GOSSIP

z̄1

Asynchronous Optimization w/ ADMM
At each clock tick k, let ξk+1 be the index of the active block:

I Every sensor i ∈ Aξk+1 of the block computes:

xk+1
i = argmin

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2

I The block computes its average:

z̄k+1
|ξk+1 =

1
|Aξk+1 |

∑
i∈A

ξk+1

xk+1
i

I Every sensor i ∈ Aξk+1 of the block updates:

λk+1
i,|ξk+1 = λk

i,|ξk+1 + ρ(xk+1
i − z̄k+1

ξk+1)

I Exchange similar to Random Gossip for average if a link is selected

22 / 28

>>> Asynchronous Distributed optimization with ADMM ADVANCED ALGOS. & GOSSIP

λ1,|1 λ2,|1

Asynchronous Optimization w/ ADMM
At each clock tick k, let ξk+1 be the index of the active block:

I Every sensor i ∈ Aξk+1 of the block computes:

xk+1
i = argmin

x

fi(x) +
ρ

2

∑
`∈σi

(
xi − z̄k

|` +
λk

i,|`

ρ

)2

I The block computes its average:

z̄k+1
|ξk+1 =

1
|Aξk+1 |

∑
i∈A

ξk+1

xk+1
i

I Every sensor i ∈ Aξk+1 of the block updates:

λk+1
i,|ξk+1 = λk

i,|ξk+1 + ρ(xk+1
i − z̄k+1

ξk+1)

I Exchange similar to Random Gossip for average if a link is selected

22 / 28

>>> Numerical Illustration on quadratic functions ADVANCED ALGOS. & GOSSIP

0 20 40 60 80 100 120 140 160 180 200

10−4

10−2

100

Number of iterations

Sq
ua

re
d

Er
ro

r

Synchronous Distributed Gradient descent

Asynchronous Distributed Gradient descent

Synchronous Distributed Optimization with the ADMM

Asynchronous Distributed Optimization with the ADMM

I Synchronous ADMM: 1 iteration = N argmin + L block-averaging
I Asynchronous ADMM: 1 iteration = |Aξk | argmin + 1 block-averaging

23 / 28

>>> Numerical Illustration on quadratic functions ADVANCED ALGOS. & GOSSIP

0 50 100 150 200 250 300

10−4

10−2

100

Number of argmin steps

Sq
ua

re
d

Er
ro

r

Synchronous Distributed Optimization with the ADMM

Asynchronous Distributed Optimization with the ADMM

I Synchronous ADMM: 1 iteration = N argmin + L block-averaging
I Asynchronous ADMM: 1 iteration = |Aξk | argmin + 1 block-averaging

23 / 28

>>> Adaptability ADVANCED ALGOS. & GOSSIP

I This setup enables to deal with a large variety of situations

I Distributed Optimization using local
coordinators

I Distributed Optimization with One-Way
communications

I Mini-batch optimization/learning

24 / 28

>>> Adaptability ADVANCED ALGOS. & GOSSIP

I This setup enables to deal with a large variety of situations

I Distributed Optimization using local
coordinators

I Distributed Optimization with One-Way
communications

I Mini-batch optimization/learning

24 / 28

>>> Adaptability ADVANCED ALGOS. & GOSSIP

I This setup enables to deal with a large variety of situations

−→
←−

I Distributed Optimization using local
coordinators

I Distributed Optimization with One-Way
communications

I Mini-batch optimization/learning

24 / 28

>>> Adaptability ADVANCED ALGOS. & GOSSIP

I This setup enables to deal with a large variety of situations

By adding dummy nodes

with constant functions

also enables network failures

I Distributed Optimization using local
coordinators

I Distributed Optimization with One-Way
communications

I Mini-batch optimization/learning

24 / 28

>>> Adaptability ADVANCED ALGOS. & GOSSIP

I This setup enables to deal with a large variety of situations

−→

By adding dummy nodes

with constant functions

also enables network failures

I Distributed Optimization using local
coordinators

I Distributed Optimization with One-Way
communications

I Mini-batch optimization/learning

24 / 28

>>> Adaptability ADVANCED ALGOS. & GOSSIP

I This setup enables to deal with a large variety of situations

By adding dummy nodes

with constant functions

also enables network failures

I Distributed Optimization using local
coordinators

I Distributed Optimization with One-Way
communications

I Mini-batch optimization/learning

24 / 28

>>> Adaptability ADVANCED ALGOS. & GOSSIP

I This setup enables to deal with a large variety of situations

The network is then just an artifact

I Distributed Optimization using local
coordinators

I Distributed Optimization with One-Way
communications

I Mini-batch optimization/learning

24 / 28

>>> Adaptability ADVANCED ALGOS. & GOSSIP

I This setup enables to deal with a large variety of situations

The network is then just an artifact

I Distributed Optimization using local
coordinators

I Distributed Optimization with One-Way
communications

I Mini-batch optimization/learning

24 / 28

>>> Summary ADVANCED ALGOS. & GOSSIP

I Problem Formulation + Adapted Splitting algorithm
+ Randomized Coordinate Descent = Distributed Asynchronous Algorithm

I Almost sure convergence; MSE in O(1/k)

I Highly flexible formulation
Broadcast communications, change of Metric = change of averaging coefficients
Sometimes at the expense of performance compared to dedicated algorithms

References: Monotone operators theory + Probabilities
Bianchi, Hachem, & I. A Coordinate Descent Primal-Dual Algorithm and Application to Distributed
Asynchronous Optimization, CDC 2013 and IEEE TAC, 2015.
Wei & Ozdaglar On the O(1/k) convergence of asynchronous distributed ADMM, Arxiv, 2014.
Chouzenoux, Pesquet, & Repetti A block coordinate variable metric forward–backward algorithm, J.
Glob. Optim., 2013.

25 / 28

RECENT ADVANCES AND PROBLEMS IN GOSSIPING

DISTRIBUTED GRADIENT ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES

ADVANCED ALGORITHMS
SYNCHRONOUS CASE
ASYNCHRONOUS CASE
APPLICATION EXAMPLES

>>> `2-regularized Logistic Regression ADVANCED ALGOS. & GOSSIP

Problem: minx∈Rp 1
m

∑m
t=1 log

(
1 + e−ytaT

t x
)

+ µ‖x‖2

Reformulation: minx∈RNp
∑N

n=1

(∑
t∈Bn

1
m

log
(

1 + e−ytaT
t xn
)

︸ ︷︷ ︸
fn(xn)

+
µ

2N
‖xn‖2

2︸ ︷︷ ︸
gn(xn)

)
+
∑
ε∈E ιC2 (yε)

DAPD Formulation + L. Condat’s Primal-Dual algorithm + Randomization
I Select one (or more) agent n:

. For all m ∼ n, do λ
k+1
{n,m}(n) =

λk
{n,m}(n)− λk

{n,m}(m)

2
+

xk
n − xk

m

2ρ

. xk+1
n = proxτgn/dn

[
(1− τρ−1

)xk
n −

τ

dn
∇fn(xk

n) +
τ

dn

∑
m∼n

(ρ
−1xk

m + λ
k
{n,m}(m))

]

. For all m ∼ n, send {xk+1
n , λk+1

{n,m}(n)} to Neighbor m.
I Other agents stay put.

0 1,000 2,000 3,000

0.55

0.6

0.65

0.7

covtype

0 1,000 2,000 3,000

0.64

0.66

0.68

alpha

0 1,000 2,000 3,000

0.2

0.4

0.6

realsim

0 1,000 2,000 3,000

0.2

0.4

0.6

rcv1

fu
nc

ti
on

al
co

st
on

5
×

5
gr

id

number of local gradients computed

0 1,000 2,000 3,000

0.2

0.4

0.6

rcv1, 10 × 10 grid

0 1,000 2,000 3,000

0.2

0.4

0.6

rcv1, 50-nodes Complete graph
fu

nc
ti

on
al

co
st

number of local gradients computed

DGD ABG
PWG DAPD

26 / 28

>>> ??? ADVANCED ALGOS. & GOSSIP

Give n agents a real number (ai)i=1,..,N .

What does the following algorithm do?

all agents do: xk+1
i =

x̄k − yk

i + β if x̄k − yk
i + β < ai

x̄k − yk
i − 1 if x̄k − yk

i − 1 > ai
ai elsewhere

.

yk+1 = yk + xk+1 − x̄k+1 x̄k = 1/N
N∑

i=1

xk
i

27 / 28

>>> ??? ADVANCED ALGOS. & GOSSIP

Give n agents a real number (ai)i=1,..,N .

What does the following algorithm do?

all agents do: xk+1
i =

x̄k − yk

i + β if x̄k − yk
i + β < ai

x̄k − yk
i − 1 if x̄k − yk

i − 1 > ai
ai elsewhere

.

yk+1 = yk + xk+1 − x̄k+1 x̄k = 1/N
N∑

i=1

xk
i

Hint 1: 20 agents with values in [0, 100]

β = 1

27 / 28

>>> ??? ADVANCED ALGOS. & GOSSIP

Give n agents a real number (ai)i=1,..,N .

What does the following algorithm do?

all agents do: xk+1
i =

x̄k − yk

i + β if x̄k − yk
i + β < ai

x̄k − yk
i − 1 if x̄k − yk

i − 1 > ai
ai elsewhere

.

yk+1 = yk + xk+1 − x̄k+1 x̄k = 1/N
N∑

i=1

xk
i

Hint 1: 20 agents with values in [0, 100]

β = 4

27 / 28

>>> ??? ADVANCED ALGOS. & GOSSIP

Give n agents a real number (ai)i=1,..,N .

What does the following algorithm do?

all agents do: xk+1
i =

x̄k − λk

i /ρ+ β/ρ if x̄k − λk
i /ρ+ β/ρ < ai

x̄k − λk
i /ρ− 1/ρ if x̄k − λk

i /ρ− 1/ρ > ai
ai elsewhere

.

λk+1 = λk + ρ(xk+1 − x̄k+1) x̄k = 1/N
N∑

i=1

xk
i

Hint 2: It is ADMM on
∑

i fi(xi) + ιC(x)

General remark: ρ controls the tradeoff between consensus and local minimization.

β = 4, ρ = 1
Sought value:
between 79 and 84.

27 / 28

>>> ??? ADVANCED ALGOS. & GOSSIP

Give n agents a real number (ai)i=1,..,N .

What does the following algorithm do?

all agents do: xk+1
i =

x̄k − λk

i /ρ+ β/ρ if x̄k − λk
i /ρ+ β/ρ < ai

x̄k − λk
i /ρ− 1/ρ if x̄k − λk

i /ρ− 1/ρ > ai
ai elsewhere

.

λk+1 = λk + ρ(xk+1 − x̄k+1) x̄k = 1/N
N∑

i=1

xk
i

Hint 2: It is ADMM on
∑

i fi(xi) + ιC(x)

General remark: ρ controls the tradeoff between consensus and local minimization.

β = 4, ρ = 0.001
Sought value:
between 79 and 84.

27 / 28

>>> ??? ADVANCED ALGOS. & GOSSIP

Give n agents a real number (ai)i=1,..,N .

What does the following algorithm do?

all agents do: xk+1
i =

x̄k − λk

i /ρ+ β/ρ if x̄k − λk
i /ρ+ β/ρ < ai

x̄k − λk
i /ρ− 1/ρ if x̄k − λk

i /ρ− 1/ρ > ai
ai elsewhere

.

λk+1 = λk + ρ(xk+1 − x̄k+1) x̄k = 1/N
N∑

i=1

xk
i

Hint 2: It is ADMM on
∑

i fi(xi) + ιC(x)

General remark: ρ controls the tradeoff between consensus and local minimization.

β = 4, ρ = 0.01
Sought value:
between 79 and 84.

27 / 28

>>> ??? ADVANCED ALGOS. & GOSSIP

Give n agents a real number (ai)i=1,..,N .

What does the following algorithm do?

all agents do: xk+1
i =

x̄k − λk

i /ρ+ β/ρ if x̄k − λk
i /ρ+ β/ρ < ai

x̄k − λk
i /ρ− 1/ρ if x̄k − λk

i /ρ− 1/ρ > ai
ai elsewhere

.

λk+1 = λk + ρ(xk+1 − x̄k+1) x̄k = 1/N
N∑

i=1

xk
i

Hint 2: It is ADMM on
∑

i fi(xi) + ιC(x)

General remark: ρ controls the tradeoff between consensus and local minimization.

β = 4, ρ = 0.1
Sought value:
between 79 and 84.

27 / 28

>>> ??? ADVANCED ALGOS. & GOSSIP

Give n agents a real number (ai)i=1,..,N .

What does the following algorithm do?

all agents do: xk+1
i =

x̄k − λk

i /ρ+ β/ρ if x̄k − λk
i /ρ+ β/ρ < ai

x̄k − λk
i /ρ− 1/ρ if x̄k − λk

i /ρ− 1/ρ > ai
ai elsewhere

.

λk+1 = λk + ρ(xk+1 − x̄k+1) x̄k = 1/N
N∑

i=1

xk
i

Hint 2: It is ADMM on
∑

i fi(xi) + ιC(x)

General remark: ρ controls the tradeoff between consensus and local minimization.

β = 4, ρ = 1
Sought value:
between 79 and 84.

27 / 28

>>> ??? ADVANCED ALGOS. & GOSSIP

Give n agents a real number (ai)i=1,..,N .

What does the following algorithm do?

all agents do: xk+1
i =

x̄k − λk

i /ρ+ β/ρ if x̄k − λk
i /ρ+ β/ρ < ai

x̄k − λk
i /ρ− 1/ρ if x̄k − λk

i /ρ− 1/ρ > ai
ai elsewhere

.

λk+1 = λk + ρ(xk+1 − x̄k+1) x̄k = 1/N
N∑

i=1

xk
i

Hint 2: It is ADMM on
∑

i fi(xi) + ιC(x)

General remark: ρ controls the tradeoff between consensus and local minimization.

β = 4, ρ = 10
Sought value:
between 79 and 84.

27 / 28

>>> ??? ADVANCED ALGOS. & GOSSIP

Give n agents a real number (ai)i=1,..,N .

What does the following algorithm do?

all agents do: xk+1
i =

x̄k − λk

i /ρ+ β/ρ if x̄k − λk
i /ρ+ β/ρ < ai

x̄k − λk
i /ρ− 1/ρ if x̄k − λk

i /ρ− 1/ρ > ai
ai elsewhere

.

λk+1 = λk + ρ(xk+1 − x̄k+1) x̄k = 1/N
N∑

i=1

xk
i

Solution: It is a quantile at 100 β/(1 + β) % !
We saw: how to make it distributed, randomized, and rules for choosing ρ
→ Complete gossip algorithm for median/quantile estimation!

β = 4, ρ = 0.1
Sought value:
between 79 and 84.

27 / 28

>>> Take Home Message CONCLUSION

I Main mathematical tools: Matrix analysis, Optimization
I Guidelines: Gossiping is exponentially fast but disagreement can hurt joint task

(e.g. gradient)
I Performance evaluation is an issue

How to measure properly communication vs. computation time

I MPI→ Spark implementation
I a Community of Optimization and Control for now...

arXiv:OC, IEEE TAC and TSP, Automatica, SICON
Tsitsiklis/Bertsekas ; Nedic/Ozdaglar ; Boyd

28 / 28

	Recent Advances and Problems in Gossiping
	Distributed Gradient Algorithms
	Synchronous Case
	Asynchronous Case
	Application Examples

	Advanced Algorithms
	Synchronous Case
	Asynchronous Case
	Application Examples

