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Decision under uncertainty

⊲ Mathematical modelling

� The cost fx of a decision parametrized by x ∈ X

� depends on an uncertain variable b ∈ Ξ

⊲ Why do we want robustness in practical applications?

Difficult-to-predict environments

Biased, outdated, insufficient data

Attacks against complex models

In phase with regulations

� Ben-Tal, Ghaoui, Nemirovski. Robust optimization. Princeton university press, 2009.
� Kolter, Madry. Adversarial robustness - theory and practice. NeurIPS tutorial https://adversarial-ml-tutorial.org/, 2018. 1/32

https://adversarial-ml-tutorial.org/


Decision under uncertainty

⊲ Mathematical modelling

� The cost fx of a decision parametrized by x ∈ X

� depends on an uncertain variable b ∈ Ξ

⊲ Why do we want robustness in statistical learning?

� cost = model + loss fx on data point b ex. least squares fx (b = (a, b) ) = (〈x, a〉 − b)2

� the uncertainty variable’s distribution is known through samples b1, .., bN

� Robustness is desirable for

⊲ Generalization guarantees on the true distribution of the samples

⊲ Distribution shifts between training and application
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Popular approaches

⊲ The uncertain variable b lives in some uncertainty set U

min
x∈X

sup
b∈U

fx (b) (Worst-case robustness)

� U may be difficult to design

� pessimistic decisions (unlikely values of b)

⊲ The uncertain variable b is known though its empirical distribution P̂N = 1
N

∑N
i=1Xbi

min
x∈X

�
b∼P̂N

[fx (b)] (Sample Average Approximation)

� also called Empirical Risk Minimization in machine learning

� the empirical distribution P̂N may not be close to the true distribution of b in the target application
too few samples, biased collection, distribution shifts

� Ben-Tal and Nemirovski. Robust convex optimization. Mathematics of operations research, 1998.
� Shapiro, Dentcheva, and Ruszczynski. Lectures on stochastic programming: modeling and theory. SIAM, 2021.
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Distributionally Robust Optimization

⊲ The empirical distribution data provides partial information about the encountered distribution of b

� The uncertain variable’s distribution lives in a neighborhood U(P̂N ) of its empirical distribution

min
x∈X

sup
Q∈P(Ξ)
Q∈U(P̂N )

�b∼Q [fx (b)] (DRO)

� Inner sup taken over the set P(Ξ) of probability measures on Ξ infinite dimensional

� For some U(P̂N ), parametric (Gaussian) or not (q-divergences), this leads to finite-dimension
min-max problems efficient stochastic optimization methods

� Enforces model robustness at training

� Scarf. A min-max solution of an inventory problem. Studies in the mathematical theory of inventory and production, 1958.
� Rahimian and Mehrotra. Distributionally robust optimization: A review. arXiv 1908.05659, 2019.
� Delage and Ye. Distributionally robust optimization under moment uncertainty with application to data-driven problems. Op. Res., 2010.
� Namkoong and Duchi. Stochastic gradient methods for distributionally robust optimization with f-divergences. NeurIPS, 2016.
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Wasserstein Distributionally Robust Optimization

⊲ The uncertain variable’s distribution lives in a Wasserstein neighborhood of its empirical distribution

min
x∈X

sup
Q∈P(Ξ)

Wc (P̂N ,Q)≤d

�b∼Q [fx (b)] (WDRO)

� For a cost function c : Ξ × Ξ → ℝ+, the Wasserstein distance between P̂N and Q is defined as

Wc (P̂N ,Q) = inf
{
�(b,Z )∼c [c (b, Z )] : c ∈ P(Ξ × Ξ), c1 = P̂N , c2 = Q

}
,

with c1 (resp. c2) the first (resp. second) marginal of the transport plan c .

� Natural metric to compare empirical and absolutely continuous distributions contrary to the

Kullback-Leibler divergence and strong generalization/concentration results

� Inner sup stays infinite dimensional and the constraint is itself linked to an optimization problem

� Esfahani and Kuhn. Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable
reformulations. Mathematical Programming, 2018.

� Kuhn, Esfahani, Nguyen, and Shafieezadeh-Abadeh. Wasserstein distributionally robust optimization: Theory and applications in machine
learning. In Operations Research & Management Science in the Age of Analytics, 2019.

� Blanchet and Murthy. Quantifying distributional model risk via optimal transport. Mathematics of Operations Research, 2019.
� Gao and Kleywegt. Distributionally robust stochastic optimization with Wasserstein distance. Mathematics of Operations Research, 2022.
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⊲ WDRO is an appealing framework for distributional robustness but difficult to optimize

� Understand precisely the behavior of WDRO solutions

� Study its statistical guarantees

� Provide computationally tractable formulations for a large class of problems

Outline

Diving into the problem
Statistical guarantees
Approximation
Optimization



Wasserstein Distributionally Robust Optimization

♦ Diving into the problem



Diving into the problem

⊲ Let us investigate the WDRO inner problem (we drop the minx part)

� Make explicit the Wasserstein constraint

� Use the topological duality between signed measures and continuous functions on compact spaces

� Denoting by 〈·, ·〉 the corresponding duality pairing so that 〈c, i〉 B
∫
x i (x) dc (x)

with f̃x : (b, Z ) ↦→ fx (Z ) and c assumed to be continuous Riesz representation theorem

R̂d (fx ) B sup
Q∈P(Ξ)

Wc (P̂N ,Q)≤d

�b∼Q [fx (b)] with Wc (P̂N ,Q) = inf
c∈P(Ξ×Ξ)
c1=P̂N ,c2=Q

�(b,Z )∼c [c (b, Z )]

⊲ This is a linear program on measures

� The solutions belong to the border of the constraint set

� The optimal worst-case distribution c★2 is supported on N + 1 atoms LP with N + 1 constraints

� Pinelis. On the extreme points of moments sets. Mathematical Methods of Operations Research, 2016.
� Yue, Kuhn, and Wiesemann. On linear optimization over Wasserstein balls. Mathematical Programming, 2021.
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Dual problem

⊲ Duality is at the core of modern WDRO

� Lagrangian duality + Sup over (conditional) measure realized by a Dirac at the sup

R̂d (fx ) = sup
c∈P(Ξ×Ξ)

c1=P̂N , �(b,Z )∼c [c (b,Z ) ]≤d

�Z∼c2 [fx (Z )]

= inf
_≥0

_d + �
b∼P̂N

[
sup
Z ∈Ξ

{fx (Z ) − _c (b, Z )}
]

(Dual-WDRO)

⊲ Main improvement: this is a finite-dimensional problem and _ is 1D!

� If the sup is tractable, the Dual-WDRO problem is solvable! and thusWDRO, but that's a big if

� The optimal worst-case distribution is supported on N + 1 atoms taken in
argmaxZ ∈Ξ

{
fx (Z ) − _★c (bi, Z )

}
for i = 1, ..,N

� Esfahani and Kuhn. Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable
reformulations. Mathematical Programming, 2018.

� Zhao and Guan. Data-driven risk-averse stochastic optimization with Wasserstein metric. Operations Research Letters, 2018.
� Blanchet and Murthy. Quantifying distributional model risk via optimal transport. Mathematics of Operations Research, 2019.
� Gao and Kleywegt. Distributionally robust stochastic optimization with Wasserstein distance. Mathematics of Operations Research, 2022. 7/32



(Dual) Optimization of WDRO problems

⊲ Putting it all together, we have to solve

min
x∈X

R̂d (fx )︷                           ︸︸                           ︷
sup

Q∈P(Ξ)
Wc (P̂N ,Q)≤d

�b∼Q [fx (b)] = min
x∈X

inf
_≥0

_d + �
b∼P̂N

[
sup
Z ∈Ξ

{fx (Z ) − _c (b, Z )}
]

⊲ min/min problem easier than previous min-max but with an inner sup bottleneck

⊲ Strong interplay between the loss fx and the transport cost c

� With x fixed, _ should be such that supZ ∈Ξ {fx (Z ) − _c (b, Z )} < +∞

� If Ξ is bounded and the loss and cost are Lipschitz, this is ok

� If Ξ is unbounded, fx (Z )
c (b,Z ) should be uniformly bounded
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Example I – the NewsVendor problem

⊲ A NewsVendor has to decide how many papers he will buy for tomorrow

� His buying price is k = 5 and his retail price is u = 7

� He has a collection of sales data b1, .., bN

� He wants to minimize its loss fx (b) = kx − umin(x, b) by optimizing the number x ∈ ℝ+ of
newspaper bought, facing the uncertain demand of tomorrow b ∈ ℝ+

⊲ Taking a robust decision

� Worst-case robustness leads to x★WCR = 0 since b = 0 is possible

� Sample Average Approximation leads to x★SAA > 0 by minimizing the average loss over the past

� What about WDRO?
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Example I – the NewsVendor problem

⊲ A NewsVendor has to decide how many papers he will buy for tomorrow

� His buying price is k = 5 and his retail price is u = 7

� He has a collection of sales data b1, .., bN in ℝ+ = Ξ

� He wants to minimize its loss fx (b) = kx − umin(x, b) by optimizing the number x ∈ ℝ+ of
newspaper bought, facing the uncertain demand of tomorrow b ∈ ℝ+

min
x≥0

inf
_≥0

_d + 1
N

N∑
i=1

sup
Z ∈Ξ

{
kx − umin(x, Z ) − _ |bi − Z |

}
⊲ We can solve Dual-WDRO with c (b, Z ) = |b − Z |

� If _★ = 0, the sup is attained at Z★i = 0 for all bi , leading to x★ = 0 → d too large, worst-case

� If _★ ≥ u, the sup is attained at Z★i = bi for each bi → SAA problem linear cost/function cancel out

� _ ∈ (0, u) cannot be optimal gradient either positive or negative

⊲ WDRO leads to x★WCR = 0 or x★SAA depending on d!
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Example II – Logistic regression

⊲ Standard classification problem

� Labeled data b1, .., bN of the form bi = (xi, yi) ∈ ℝd × {−1, +1} = Ξ

� We minimize the loss fx (b = (x ′, y′)) = log(1 + exp(−y′〈x ′, x〉)) by fitting separator x ∈ ℝd

min
x∈ℝd

inf
_≥0

_d + 1
N

N∑
i=1

sup
Z=(z,v ) ∈Ξ

{
log(1 + exp(−yi 〈xi, x〉)) − _

(
‖xi − z‖ + ^1yi≠v

)}
⊲ We can solve Dual-WDRO by disciplined convex programming

� for this, c (b = (x, y), Z = (z, v)) = ‖x − z‖ + ^1y≠v if ^ = +∞, (WDRO) is ERM regularized by d ‖x ‖∗

min
x,_,s

_d + 1
N

N∑
i=1

si

s.t. log(1 + exp(−yi 〈xi, x 〉) ) ≤ si ∀i
log(1 + exp(yi 〈xi, x 〉) ) − ^_ ≤ si ∀i
‖x ‖∗ ≤ _

-1
+1
shifted +1 -> -1
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Example III – Portfolio selection

⊲ Optimize a portfolio x ∈ {y ∈ ℝd
+ :

∑d
i=1 y [i] = 1} over m assets subject to uncertain yearly returns

� Return data b1, .., bN in ℝd = Ξ

� We minimize a risk-averse loss fx (b, g) = −〈x, b〉 + [g + [
U max(−〈x, b〉 − g ; 0) with [ ≥ 0 is the risk

aversion and U ∈ (0, 1] is the risk level risk �[−〈x, b〉] + [ CVaRU [−〈x, b〉]

min
x∈{ℝd

+:
∑d

i=1 x [i ]=1}
min
g∈ℝ

inf
_≥0

_d + 1
N

N∑
i=1

sup
Z ∈Ξ

{
−〈x, Z 〉 + [g + [

U
max(−〈x, Z 〉 − g ; 0) − _‖bi − Z ‖

}
⊲ We can again solve Dual-WDRO by disciplined convex programming for c (b, Z ) = ‖b − Z ‖

min
x,g,_,s

_d + 1
N

N∑
i=1

si

s.t. [g − 〈x, bi 〉 ≤ si ∀i
[ (1 − 1/U )g − (1 + [/U ) 〈x, bi 〉 ≤ si ∀i

‖x ‖∗ ≤ _/[,
d∑
i=1

x [i ] = 1, x ≥ 0

Portfolio as a function of d Source: Esfahani & Kuhn, 2018 12/32
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{
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U
max(−〈x, Z 〉 − g ; 0) − _‖bi − Z ‖
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⊲ We can again solve Dual-WDRO by disciplined convex programming for c (b, Z ) = ‖b − Z ‖

⊲ Recovers that optimality of equally weighted port-
folio under high ambiguity

� Esfahani and Kuhn. Data-driven distributionally robust optimiza-
tion using the Wasserstein metric: Performance guarantees and
tractable reformulations. Mathematical Programming, 2018.

� Pflug, Pichler, Wozabal. The 1/N investment strategy is optimal under
high model ambiguity. J. Bank. Financ., 2012.

� Rockafellar and Uryasev. Optimization of conditional value-at-risk.
J. Risk, 2000. Portfolio as a function of d Source: Esfahani & Kuhn, 2018 12/32



Wasserstein Distributionally Robust Optimization

♦ Statistical guarantees



Statistical properties of WDRO: a first approach

⊲ Let P̂N = 1
N

∑N
i=1Xbi with bi ∼ P i.i.d.

� We can see P as the true distribution encountered in practice

� Take c (b, Z ) = ‖b − Z ‖2 and Ξ ⊂ ℝd compact, convex, with nonempty interior

� Concentration results for optimal transport P has finite moments

ℙ
[
W 2

2 (P̂N ,P) ≤ d2
]
≥ 1 − c1e−c2Ndd

� With probability at least 1 − X , taking d ∝ log(1/X )
N 1/d , for any fx

unaccessible/target �b∼P [fx (b)] ≤ R̂d (fx ) = sup
Q∈P(Ξ)

W2 (P̂N ,Q)≤d

�b∼Q [fx (b)] computable

� Overly pessimistic due to the curse of dimensionality N scales exponentially in d

� Fournier and Guillin. On the rate of convergence in Wasserstein distance of the empirical measure. Probability Theory and Related Fields, 2015
� Esfahani and Kuhn. Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable

reformulations. Mathematical Programming, 2018.
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Statistical properties of WDRO: illustration on Example III - Portfolio selection

⊲ Sample 200 training datasets of size N = {30, 300, 3000} from the same distribution

� for each of them, solve WDRO to get optimal point x̂★ and value R̂d (fx̂★)

⊲ Reliability = pc. of datasets s.t. the WDRO value is greater than the loss at the WDRO optimal point:
estimated by taking N = 30000 target �b∼P [fx̂★ (b)] ≤ R̂d (fx̂★) computed

Out-of-sample performance �b∼P
[
fx̂★ (b )

]
and reliability as a function of d Source: Esfahani & Kuhn, 2018

⊲ To get a fixed reliability, no need to scale 1
N 1/10 ,

1√
N

seems enough!
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Statistical properties of WDRO: a finer proposition

⊲ Objective: Get that with high probability �b∼P [fx (b)] ≤ R̂d (fx )

⊲ Why can we hope to do better than measure concentration ?

� We do no need to bound the distance W 2
2 (P̂N ,P) whp.

� Using the dual formulation, we can reformulate the target inequality as

�b∼P [fx (b)] = sup
Q∈P(Ξ)

W2 (P,Q)≤0

�b∼Q [fx (b)]

= inf
_≥0

�b∼P

[
sup
Z ∈Ξ

{
fx (Z ) − _‖b − Z ‖2

}]
≤ inf

_≥0
_d + �

b∼P̂N

[
sup
Z ∈Ξ

{
fx (Z ) − _‖b − Z ‖2

}]
= R̂d (fx )

� Rather, we may show that whp uniformly in fx (ok...) and in _ (less cool)

�b∼P
[
supZ ∈Ξ

{
fx (Z ) − _‖b − Z ‖2

}]
_

≤
�
b∼P̂N

[
supZ ∈Ξ

{
fx (Z ) − _‖b − Z ‖2

}]
_

+ d

� The concentration error is directly related to the radius d hopefully with a good dependency in N ...
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Concentration

⊲ For X ∈ (0, 1) and some 0 < _ < +∞, we have with probability at least 1 − X/2 that

sup
(fx ,_) ∈F×[_,+∞)


�b∼P

[
supZ ∈Ξ

{
fx (Z ) − _‖b − Z ‖2

}]
− �

b∼P̂N

[
supZ ∈Ξ

{
fx (Z ) − _‖b − Z ‖2

}]
_


≤ 117

√
N_

(
I(F ) + Cst

(
1 +

√
log

1
X

))
:= dN

� Error!minimal radius for concentration in O
(

1√
N

)
no curse of dimension

� The complexity of the class of functions appears as one can expect

� Lower bound on the dual variable, _, needed we have to show it

⊲ Proof relies on standard concentration results + sup Lipschitz and bounded

� Boucheron, Lugosi, and Massart. Concentration Inequalities. A Nonasymptotic Theory of Independence. Oxford University Press, 2013.
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Lower-bounding the dual variable

⊲ Crux of the proof for getting the concentration result: if _ > _, we have with probability 1 − X/2

�b∼P [fx (b)] ≤ R̂d (fx )

whenever d is bigger than dN = 117√
N_

(
I(F ) + Cst

(
1 +

√
log 1

X

))
.

⊲ Careful analysis of the dual function: It’s all a matter of compromises

� If d is small, the constraint is stringent, _ is big
BUT d has to be also greater than dN

� If d is bigger, we have more margin for error
BUT the constraint has to be sufficiently active so that _ does not vanish

� The lower bound depends on P̂N natively which is not nice
SO we also need to concentrate the opposite quantity to get back to P

� AND the minimal _ depends on d…
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Concentration result for WDRO

Theorem (Azizian, I., Malick’23 – informal)
There is a critical radius dc depending only on F and P such that for any X ∈ (0, 1) and N ≥ 1, if

O
(√

1 + log 1/X
N

)
≤ d ≤ dc

2
− O

(√
1 + log 1/X

N

)
then, there is dN = O

(√
1+log 1/X

N

)
such that, with probability 1 − X , ∀fx ∈ F ,

�b∼Q [fx (b)] ≤ R̂d (fx ) for all Q such that W2 (P,Q) ≤
√
d (d − dN ) ,

In particular, with probability 1 − X , we have ∀fx ∈ F ,

�b∼P [fx (b)] ≤ R̂d (fx ) .

⊲ dc =
√
inf fx ∈F �b∼P

[ 1
2d

2 (b, argmax fx )
]
is the maximal radius before falling back to worst case

robustness
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A word on assumptions and literature

⊲ Assumptions

� Sample space Ξ compact convex + suppP strictly included in Ξ with some margin

� All functions fx are twice differentiable + bounded/smooth regularized or non-convex models are ok

� Decrease condition around maximizers of fx uniformly + non-vanishing gradients ok for most linear

models

⊲ Literature: Bridging the gap between several results on concentration for WDRO with d ∝ 1/
√
N

� With error terms

� Asymptotic

� Experimental

� An and Gao. Generalization Bounds for (Wasserstein) Robust Optimization. NeurIPS, 2021.
� Blanchet, Murthy, and Si. Confidence regions in wasserstein distributionally robust estimation. Biometrika, 2022.
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Conclusion on statistical guarantees

⊲ WDRO models control the true risk with high probability

� Radius d should be taken proportional to 1/
√
N

� Uniform in the model fx we still have to optimize it!

⊲ What about tightness?

� Under the same assumptions whp.

R√
d (d−dN ) (fx ) ≤ R̂d (fx ) ≤ R√

d (d+dN ) (fx )

with Rd (fx ) the (regularized) WDRO risk rooted at P
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Wasserstein Distributionally Robust Optimization

♦ Approximation



Entropic regularization

⊲ We wish to get rid of the linearity of the problem

� We draw inspiration from regularization in optimal transport

WDRO

Regularized WDRO

sup
Q∈P(Ξ)

Wc (P̂N ,Q)≤d

�b∼Q [fx (b)]

sup
c∈M(Ξ×Ξ)

c1=P̂N , 〈c,c〉≤d

〈c, f̃x 〉 −YKL(c |c0)

= inf
_≥0

_d + �
b∼P̂N

[
sup
Z ∈Ξ

{fx (Z ) − _c (b, Z )}
]

= inf
_≥0

_d + Y �
b∼P̂N

[
log

(
�Z∼c0 ( · |b )

[
e
fx (Z )−_c (b,Z )

Y

] )]

B R̂d (fx )

� c must be absolutely continuous wrt. to the chosen c0 and (c0)1 = P̂N

� Lagrangian then Fenchel duality in the space of finite signed measures on a compact space

� The sup is transformed into a log-integral-exp

� Peyré, Cuturi. Computational Optimal Transport. Foundation and Trends in Machine Learning, 2019.
� Wang, Gao, and Xie. Sinkhorn Distributionally Robust Optimization. ArXiv 2109.11926, 2021.
� Azizian, I., Malick. Regularization for Wasserstein Distributionally Robust Optimization. ESAIM:COCV, 2022.
� Piat, Fadili, Jurie, da Veiga. Regularized Robust Optimization with Application to Robust Learning. preprint, 2022. 21/32



Entropic regularization

⊲ We wish to get rid of the linearity of the problem

� We draw inspiration from regularization in optimal transport

WDRO Regularized WDRO

sup
c∈M(Ξ×Ξ)

c1=P̂N , 〈c,c〉≤d

〈c, f̃x 〉 sup
c∈M(Ξ×Ξ)

c1=P̂N , 〈c,c〉≤d

〈c, f̃x 〉 −YKL(c |c0)

= inf
_≥0

_d + �
b∼P̂N

[
sup
Z ∈Ξ

{fx (Z ) − _c (b, Z )}
]

= inf
_≥0

_d + Y �
b∼P̂N

[
log

(
�Z∼c0 ( · |b )

[
e
fx (Z )−_c (b,Z )

Y

] )]

B R̂d (fx ) B R̂Y
d (fx )

� c must be absolutely continuous wrt. to the chosen c0 and (c0)1 = P̂N

� Lagrangian then Fenchel duality in the space of finite signed measures on a compact space

� The sup is transformed into a log-integral-exp

� Peyré, Cuturi. Computational Optimal Transport. Foundation and Trends in Machine Learning, 2019.
� Wang, Gao, and Xie. Sinkhorn Distributionally Robust Optimization. ArXiv 2109.11926, 2021.
� Azizian, I., Malick. Regularization for Wasserstein Distributionally Robust Optimization. ESAIM:COCV, 2022.
� Piat, Fadili, Jurie, da Veiga. Regularized Robust Optimization with Application to Robust Learning. preprint, 2022. 21/32
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Approximation error

⊲ The reference coupling c0 is a kind of prior

� In optimal transport, entropic regularization with KL(c | P ⊗Q) c0 is the product of marginals

� In WDRO, the second marginal is not fixed but optimized to get our adversarial distribution

� We choose c0 (db, dZ ) ∝ P̂N (db)e−
‖b−Z ‖p

2p−1f 1Z ∈Ξ dZ

R̂d (fx ) = inf
_≥0

_d + �
b∼P̂N

[
sup
Z ∈Ξ

{
fx (Z ) − _‖b − Z ‖p

}]
(WDRO)

R̂Y
d (fx ) = inf

_≥0
_d + Y �

b∼P̂N

[
log

(
�Z∼c0 ( · |b )

[
e
fx (Z )−_‖b−Z ‖p

Y

] )]
(Y-WDRO)

Theorem (Azizian, I., Malick’22)
If Ξ ⊂ ℝd is compact, convex, with nonempty interior and fx is Lipschitz continuous, then as Y goes to 0

0 ≤ R̂d (fx ) − R̂Y
d (fx ) ≤ O

(
Yd log

(
1
Y

))
� Genevay, Chizat, Bach, Cuturi, and Peyré. Sample complexity of sinkhorn divergences. AIStats, 2019. 22/32



Example IV – A problem that has no tractable WDRO formulation

⊲ Optimization of a cantilever beam minimization of the compliance under a volume constraint

� Uncertainty lies in the load b applied around the vector (−1, 0)

⊲ Entropic WDRO formulation over a finite element solver Expectation approx. by a 10 Gaussian samples
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What about generalization?

⊲ Thanks to our duality results, we can use the same kind of technique

� Classical

�b∼P
[
supZ ∈Ξ

{
fx (Z ) − _‖b − Z ‖2

}]
_

≤
�
b∼P̂N

[
supZ ∈Ξ

{
fx (Z ) − _‖b − Z ‖2

}]
_

+ d

� Regularized with −YKL(c |c0) and c0 (db, dZ ) ∝ P̂N (db)e−
‖b−Z ‖2

2f 1Z ∈Ξ dZ

Y �b∼P

[
log

(
�Z∼c0 ( · |b )

[
e
fx (Z )−_‖b−Z ‖2

Y

] )]
_

≤
Y �

b∼P̂N

[
log

(
�Z∼c0 ( · |b )

[
e
fx (Z )−_‖b−Z ‖2

Y

] )]
_

+ d

⊲ Same proof layout but quite different derivations

� The additional parameters Y and f should be taken proportional to d to get close to the true risk at
the same time it naturally appears in the proofs
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Concentration result for regularized WDRO

Theorem (Azizian, I., Malick’23 – informal)
For f = f0d with f0 > 0, Y = Y0d with Y0 > 0 such that Y0/f2

0 is small enough depending on F , P, Ξ, there is an
explicit constant dc depending only on F , P and Ξ such that for all X ∈ (0, 1) and N ≥ 1, if

O
(√

1 + log 1/X
N

)
≤ d ≤ dc

2
− O

(
1

√
N

)
, and dc ≥ O

(
1

N 1/6 +
(
1 + log 1/X

N

)1/4)
,

then, there are g = O(Yd) and dN = O
(√

1+log 1/X
N

)
such that, with probability at least 1 − X , ∀fx ∈ F ,

�b∼Q [fx (b)] ≤ R̂Y
d (fx ) for all Q such that W2,g (P,Q) ≤

√
d (d − dN )

Furthermore, when f0 and f are small enough depending on P and Ξ, with probability 1 − X , ∀fx ∈ F ,

�b∼P�Z∼c0 ( · |b ) [fx (Z )] ≤ R̂Y
d (fx ) .

⊲ Not exactly an upper bound on the true risk on P but rather the risk for smoothed P ∗ c0 (·|b)

⊲ Robust wrt. W2,g (P,Q) B
√
inf

{
�c

[ 1
2 ‖b − Z ‖2

]
+ g KL(c |c0) : c ∈ P(Ξ × Ξ), c1 = P, c2 = Q

}
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Conclusion on approximation

⊲ The WDRO problem R̂d (fx ) can be controllably approximated by

R̂Y
d (fx ) = sup

c∈M(Ξ×Ξ)
c1=P̂N , 〈c,c〉≤d

〈c, f̃x 〉 −YKL(c |c0) = inf
_≥0

_d + Y �
b∼P̂N

[
log

(
�Z∼c0 ( · |b )

[
e
fx (Z )−_‖b−Z ‖p

Y

] )]
� Differentiable and more tractable problem as soon as the inner integral can be evaluated

⊲ This is not exactly a Sinkhorn distance

� We can regularize in the objective and/or in the constraints

� We cannot symmetrize to get an actual distance

⊲ Worst case probability measures from optimal dual value _★

∝
N∑
i=1

e
fx (Z )−_★‖bi−Z ‖p

Y e−
‖bi−Z ‖p

2p−1f 1Z ∈Ξ dZ

⊲ Concentration is very similar for the regularized version

� Insight on the choice of Y ∝ d same thing for f

� Thanks to regularization, we get rid of the need to control the behavior near maximizers
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Wasserstein Distributionally Robust Optimization

♦ Optimization



Solving generic WDRO problems

⊲ Leverage the entropic regularization

min
x∈X

inf
_≥0

_d + Y
1
N

N∑
i=1

[
log

(
�Z∼c0 ( · |bi )

[
e
fx (Z )−_‖bi−Z ‖2

Y

] )]
� Gradients in x and _ are available

1
N

N∑
i=1


�Z∼c0 ( · |bi )∇x fx (Z )e

fx (Z )−_‖bi−Z ‖2
Y

�Z∼c0 ( · |bi ) e
fx (Z )−_‖bi−Z ‖2

Y

 and d − 1
N

N∑
i=1


�Z∼c0 ( · |bi ) ‖bi − Z ‖2e

fx (Z )−_‖bi−Z ‖2
Y

�Z∼c0 ( · |bi ) e
fx (Z )−_‖bi−Z ‖2

Y


⊲ Crude approach: sample some points from c0 (·|bi) ∝ e

‖bi−Z ‖2
2f 1Z ∈Ξ and minimize the sampled loss

� This is a biased approximation with poor performance in practice except for d = 1

⊲ Better approach: sample the expectation at each iteration by (Metropolis-adjusted) Langevin

� “Robustifies” but unstable behavior of _

⊲ Implemented approach: additionally use importance sampling towards ∇bi fx (bi)

� Much more stable, when initialized with the ERM solution
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Talking code

⊲ Python package coming soon – Two modes:

� à la scikit-learn

� à la pytorch
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Back to example I – the NewsVendor problem

⊲ A NewsVendor has to maximize its gain −fx (b) = −kx + umin(x, b) by optimizing the number x ∈ ℝ+ of
newspaper bought, facing the uncertain demand of tomorrow

� His buying price is k = 5 and his retail price is u = 7 d = 2, Y = 0.1

� N = 20 i.i.d. samples from P

⊲ Samples distribution P: “good day” N(50, 5) w/ prob. 0.5, “bad day” N(20, 5) w/ prob. 0.5, truncated at 0

⊲ Shifted distribution Q: “good day” N(50, 5) w/ prob. 0.3, “bad day” N(20, 5) w/ prob. 0.7, truncated at 0

SAA WDRO Y-WDRO
x★ 16 0 12

Empirical loss 11.10 0.00 9.99

Actual gain on P 11.04 0.00 9.78
Actual gain on Q 5.65 0.00 6.08

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12

P
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Back to example II – Logistic regression

⊲ Regularization offers new possibilities:

� Different transport costs squared norm, exotic ones

� Regularization l1, l2, anything not data-driven

� Scaling to larger datasets gradient-based methods instead of DCP

⊲ Regularized WDRO as new robustness model:

� Y is not necessarily small max(1e−3, d/10)

� Absolutely continuous true distribution prior linked to transport cost

Entrainement (Pn) Test (Qm)

Acc. 88%

ERM

Acc. 93%

WDR0

Acc. 92%

-WDRO
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Back to example III – Portfolio selection

⊲ 10 assets, N = 30, 200 simulations

⊲ Choice of the radius d

� Cross validation inherited as a scikit-learn estimator

� By statistically testing that the test distribution is encompassed
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Conclusion on optimization

⊲ Why optimizing correctly matters?

� Being accurate in _ enables to get a bound on the true risk

� Instrumental to get the worst case distributions

⊲ Toolbox underway!

� Based on solving the dual regularized problem

� AdamW using importance sampling for approximating the expectation

� Default values for the radius, regularization, etc. from statistical study

⊲ Currently undergoing testing on optimization and generalization

� email me if you’re interested in a V-version

⊲ Paves the way to a widespread use of WDRO

� Large class of objectives and costs not necessarily smooth

� Cross validation of parameters
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Conclusion

Hokusai

Fine Wind, Clear Morning (Gaifū kaisei) in Thirty-six Views of Mount Fuji (1830-1832)



Closing words

⊲ Machine Learning models perform well but are they reliable?

� Distributionally robust optimization provides an appealing framework to address this question

� Interplay between statistics and optimization

⊲ Wasserstein distributionally robust models are in!

� Generalization and robustness guarantees

� Widely implementable thanks to regularization

⊲ Exciting perspectives: automated radius tuning, practical applications, robust feature selection, etc.

Azizian, I., Malick: Regularization for Wasserstein Distributionally Robust Optimization, arXiv 2205.08826, ESAIM:
Control, Optimisation, and Calculus of Variations, 2023.

Azizian, I., Malick: Exact Generalization Guarantees for (Regularized) Wasserstein Distributionally Robust Models,
arXiv 2305.17076, NeurIPS, 2023.

Dapogny, I., Meda, Thibert. Entropy-regularized Wasserstein distributionally robust shape and topology optimization.
ArXiv 2209.01500, Structural and Multidisciplinary Optimization, 2022.

Thank you! – www.iutzeler.org

https://arxiv.org/abs/2205.08826
https://arxiv.org/abs/2305.17076
https://arxiv.org/abs/2209.01500
http://www.iutzeler.org
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