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Decision under uncertainty

> Mathematical modelling
The cost fy of a decision parametrized by x € X
depends on an uncertain variable £ € =

> Why do we want robustness in practical applications?

Difficult-to-predict environments Attacks agalnnst complex m?dels

pig (99%)

airliner (96%)

In phase with regulations

ETHICS GUIDELINES
FOR TRUSTWORTHY Al

o Ben-Tal, Ghaoui, Nemirovski. Robust optimization. Princeton university press, 2009.

o Kolter, Madry. Adversarial robustness - theory and practice. NeurIPS tutorial https://adversarial-ml-tutorial.org/, 2018. L2


https://adversarial-ml-tutorial.org/

Decision under uncertainty

> Mathematical modelling
The cost fy of a decision parametrized by x € X
depends on an uncertain variable ¢ € =
> Why do we want robustness in statistical learning?
cost = model + loss f; on data point £ ex. least squares f; (¢ = (a,b)) = ({x,a) — b)*
the uncertainty variable’s distribution is known through samples &1, .., én
Robustness is desirable for
> Generalization guarantees on the true distribution of the samples

> Distribution shifts between training and application
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Popular approaches

> The uncertain variable & lives in some uncertainty set U

min sup fx (&) (Worst-case robustness)
xeX rey

U may be difficult to design

pessimistic decisions (unlikely values of &)

> The uncertain variable £ is known though its empirical distribution Py = % Zjiil(%i

min E P [ (O] (Sample Average Approximation)
xeX STEN

also called Empirical Risk Minimization in machine learning
the empirical distribution Py may not be close to the true distribution of  in the target application

too few samples, biased collection, distribution shifts

o Ben-Tal and Nemirovski. Robust convex optimization. Mathematics of operations research, 1998.
o Shapiro, Dentcheva, and Ruszczynski. Lectures on stochastic programming: modeling and theory. SIAM, 2021.
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Distributionally Robust Optimization

> The empirical distribution data provides partial information about the encountered distribution of ¢

The uncertain variable’s distribution lives in a neighborhood U(Py) of its empirical distribution

min sup  Ez olfx(8)] (DRO)
xeX  Qep(E) G
QeU(Py)

Inner sup taken over the set £ (Z) of probability measures on E infinite dimensional
For some U (Py), parametric (Gaussian) or not (¢-divergences), this leads to finite-dimension
min-max problems efficient stochastic optimization methods

Enforces model robustness at training

Scarf. A min-max solution of an inventory problem. Studies in the mathematical theory of inventory and production, 1958.

Rahimian and Mehrotra. Distributionally robust optimization: A review. arXiv 1908.05659, 2019.

Delage and Ye. Distributionally robust optimization under moment uncertainty with application to data-driven problems. Op. Res., 2010.
Namkoong and Duchi. Stochastic gradient methods for distributionally robust optimization with f-divergences. NeurIPS, 2016.

o 0 O O
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Wasserstein Distributionally Robust Optimization

> The uncertain variable’s distribution lives in a Wasserstein neighborhood of its empirical distribution

min sup  Egolfx(8)] (WDRO)
xeX  Qep(8) co
Wc(PN,Q)SP

For a cost function ¢ : 2 X & — R, the Wasserstein distance between f’N and Q is defined as
W (P, Q) = inf {Eg)~n [(£] : m € PEXE), 11 = Py, 72 =Q},
with 71 (resp. m2) the first (resp. second) marginal of the transport plan 7.

Natural metric to compare empirical and absolutely continuous distributions contrary to the
Kullback-Leibler divergence and strong generalization/concentration results

Inner sup stays infinite dimensional and the constraint is itself linked to an optimization problem

o Esfahani and Kuhn. Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable
reformulations. Mathematical Programming, 2018.

o Kuhn, Esfahani, Nguyen, and Shafieezadeh-Abadeh. Wasserstein distributionally robust optimization: Theory and applications in machine
learning. In Operations Research & Management Science in the Age of Analytics, 2019.

o Blanchet and Murthy. Quantifying distributional model risk via optimal transport. Mathematics of Operations Research, 2019.

o Gao and Kleywegt. Distributionally robust stochastic optimization with Wasserstein distance. Mathematics of Operations Research, 2022.
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> WDRO is an appealing framework for distributional robustness but difficult to optimize
Understand precisely the behavior of WDRO solutions
Study its statistical guarantees

Provide computationally tractable formulations for a large class of problems

Outline

Diving into the problem
Statistical guarantees
Approximation
Optimization



Wasserstein Distributionally Robust Optimization

Diving into the problem



Diving into the problem

> Let us investigate the WDRO inner problem (we drop the miny part)

Make explicit the Wasserstein constraint

Ry (fr) = s Eeolfi(9] with We(Py,Q) = inf  Egg)oy [c(£0)]

P(=) m1€P(EXE)

W, (Pn,Q)<p 71=Py,72=Q
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Diving into the problem

> Let us investigate the WDRO inner problem (we drop the miny part)
Make explicit the Wasserstein constraint Q disappears

Use the topological duality between signed measures and continuous functions on compact spaces

Rp(fx) = e Egolfe(®)] = sup Eg o, [fe(D)]

P (2) | reP(ExE)
We(Pn,Q)<p m1=PN, E(go)~x[c(£0)]<p
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Diving into the problem

> Let us investigate the WDRO inner problem (we drop the miny part)
Make explicit the Wasserstein constraint Q disappears
Use the topological duality between signed measures and continuous functions on compact spaces

Denoting by (-, -) the corresponding duality pairing so that (r, ¢) = /x @(x) dm(x)

withﬁ( 1 (£,0) — fx({) and c assumed to be continuous Riesz representation theorem
Ro(f) = sup  Beolik®l=  sup  (mfo)
QeP(E) re M(EXE)

Wc(f’N,Q)Sp m1=Py, (m,c)y<p
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Diving into the problem

> Let us investigate the WDRO inner problem (we drop the miny part)
Make explicit the Wasserstein constraint Q disappears
Use the topological duality between signed measures and continuous functions on compact spaces

Denoting by (-, -) the corresponding duality pairing so that (r, ¢) = /x @(x) dm(x)

withﬁ( 1 (£,0) — fx({) and c assumed to be continuous Riesz representation theorem
Ro(f) = sup  Beolik®l=  sup  (mfo)
QeP(E) ngM(ExE)
Wc(f’N,Q)Sp m1=PN, (m,c)<p

> This is a linear program on measures
The solutions belong to the border of the constraint set

The optimal worst-case distribution 7 is supported on N + 1 atoms LP with N + 1 constraints

o Pinelis. On the extreme points of moments sets. Mathematical Methods of Operations Research, 2016.
o Yue, Kuhn, and Wiesemann. On linear optimization over Wasserstein balls. Mathematical Programming, 2021.
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Dual problem

> Duality is at the core of modern WDRO
Lagrangian duality + Sup over (conditional) measure realized by a Dirac at the sup

Ry (fy) = sup Egor, [(D)]

. TeP(EXE)
m1=Pn, E(gg)~nlc(£)]1<p

= /111;1;) Ap + ]E§~f’N 21;153 {fx(0) —Ac(& )} (Dual-WDRO)

> Main improvement: this is a finite-dimensional problem and A is 1D!
If the sup is tractable, the Dual-WDRO problem is solvable! and thus WDRO, but that's a big if

The optimal worst-case distribution is supported on N + 1 atoms taken in
arg maxyez {A(Q) = 2*c(& ) fori=1,.,N

o Esfahani and Kuhn. Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable
reformulations. Mathematical Programming, 2018.

o Zhao and Guan. Data-driven risk-averse stochastic optimization with Wasserstein metric. Operations Research Letters, 2018.

o Blanchet and Murthy. Quantifying distributional model risk via optimal transport. Mathematics of Operations Research, 2019.

o Gao and Kleywegt. Distributionally robust stochastic optimization with Wasserstein distance. Mathematics of Operations Research, 2022. 7/32



(Dual) Optimization of WDRO problems

> Putting it all together, we have to solve

Ry (f)
min o, B-qfc(9) = mip inf 39 + By p, |sup (£e(§) ~Ae(t 5)}}
We(Py.Q)<p

> min/min problem easier than previous min-max but with an inner sup bottleneck
> Strong interplay between the loss f and the transport cost ¢

With x fixed, A should be such that supyez {fx({) = Ac(&, )} < +o0

If = is bounded and the loss and cost are Lipschitz, this is ok

If = is unbounded, f( ;2) should be uniformly bounded
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Example I — the NewsVendor problem

> A NewsVendor has to decide how many papers he will buy for tomorrow
His buying price is k = 5 and his retail price is u = 7
He has a collection of sales data &1, .., &N

He wants to minimize its loss fi(£) = kx — umin(x, &) by optimizing the number x € Ry of
newspaper bought, facing the uncertain demand of tomorrow ¢ € R,

> Taking a robust decision

*
Worst-case robustness leads to XWeR

Sample Average Approximation leads to xJ, , > 0 by minimizing the average loss over the past

= 0 since & = 0 is possible

What about WDRO?
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Example I — the NewsVendor problem

> A NewsVendor has to decide how many papers he will buy for tomorrow
His buying price is k = 5 and his retail price is u = 7
He has a collection of sales data &3, ..,y in Ry = 2

He wants to minimize its loss fi(£) = kx — umin(x, &) by optimizing the number x € Ry of
newspaper bought, facing the uncertain demand of tomorrow ¢ € Ry

N
q g 1 q
i g 3 (e - 0|

> We can solve Dual-WDRO with ¢(&,{) = |£ = (]|
If A* = 0, the sup is attained at {}* = 0 for all &;, leading to x* = 0 — p too large, worst-case
If A* > u, the sup is attained at gvl* = ¢; for each &; — SAA problem linear cost/function cancel out
A € (0, u) cannot be optimal gradient either positive or negative

> WDRO leads to x*

Wer = 0or x7, , depending on p!
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Example II - Logistic regression

> Standard classification problem
Labeled data &, .., £y of the form &; = (xj, y;) € RY x {-1,+1} =&

We minimize the loss fi (€ = (x’, ) = log(1 + exp(—y'{x’, x})) by fitting separator x € R?

1 N
min inf Ap + —

log(1+ —yi{xi, —A(llx — 2|l + k1,
min a3 s {log(h+ explontes ) 2 (a2l )

> We can solve Dual-WDRO by disciplined convex programming

for this, ¢(£ = (x,¥),{ = (2,v)) = [|x — z|| + k1 y%y if k = +o0, (WDRO) is ERM regularized by p||x|

e -1
® +1
o shifted +1 -> -1
q N ’s s %0 °

. 1 ) ° o5 © '. .

mn dot 5 ) e s
= % o o 5 ‘.l“ .. °
st. log(1+exp(—yi{x;,x))) < s Vi 2 0759 AoLE ot o
b He 3, goo8%e
log(1+exp(yi{xi,x))) — kA <s; Vi o ede -"" O L

o @AkS © 0% oo, o ‘e
[Ix[l« < 4 o ® 0p ® -
3 o oo o .
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Example III — Portfolio selection

> Optimize a portfolio x € {y € ]R‘i : Z?zl yli] = 1} over m assets subject to uncertain yearly returns
Return data &y, .., &y in Ri=%
We minimize a risk-averse loss fx(& 1) = —(x, &) + nt + g max(—(x, &) — r;0) with > 0 is the risk

aversion and a € (0, 1] is the risk level ~» risk E[—(x, £)| + n CVaRy[—(x, &)]

N

. . 1 U
min min inf Ap + — sup {—(x,§)+}77+—max(—(x,{)—r;O)—AHf-—{H}
xe{R%L:24, x[i]=1} T€ER 120 N; l€E a l

> We can again solve Dual-WDRO by disciplined convex programming for ¢(&,{) = ||€ — (||

1

N

. 1 0.8
min Ap+ — Z si
x,7,A,8 N = 06

st. nr—(x, &) < s Vi

0.4/
d

lxle < A/n. ) x[i] =Lx 2 0

=1

0
10° 102 107! 10°
Portfolio as a function of p Source: Esfahani & Kuhn, 2018 12/32



Example III — Portfolio selection

> Optimize a portfolio x € eRY : Z?'_ i] = 1} over m assets subject to uncertain yearly returns
P P y + i=1Y ] yearly

Return data &y, .., &y in R =%

We minimize a risk-averse loss fx(& 1) = —(x, &) + nt + g max(—(x, &) — r;0) with > 0 is the risk

aversion and a € (0, 1] is the risk level ~» risk E[—(x, £)| + n CVaRy[—(x, &)]

N

. . 1 U
min min inf Ap + — sup {—(x,§)+ryr+—max(—(x,{)—r;O)—AHf-—{H}
xe{R%L:24, x[i]=1} T€ER 120 N; l€E a l

> We can again solve Dual-WDRO by disciplined convex programming for ¢(&,{) = ||€ — (||
> Recovers that optimality of equally weighted port- !
folio under high ambiguity 038

o Esfahani and Kuhn. Data-driven distributionally robust optimiza- 0.6

tion using the Wasserstein metric: Performance guarantees and 0.4 /
tractable reformulations. Mathematical Programming, 2018.
o Pflug, Pichler, Wozabal. The I/N investment strategy is optimal under 0.2 -

high model ambiguity. J. Bank. Financ., 2012.
o Rockafellar and Uryasev. Optimization of conditional value-at-risk.
J. Risk, 2000.

Portfolio as a function of p Source: Esfahani & Kuhn, 2018 12/32



Wasserstein Distributionally Robust Optimization

Statistical guarantees



Statistical properties of WDRO: a first approach

> LetPy = IN 6 with & ~ Piid.
We can see P as the true distribution encountered in practice
Take c(&,¢) = || - ¢]|? and E c R? compact, convex, with nonempty interior
Concentration results for optimal transport P has finite moments

P [sz(f’N, P) < pz] >1-— cle—cszd

With probability at least 1 — §, taking p o loi(%, for any fx

unaccessible/target Eg p [fx(£)] < ﬁp (fx) = sup  Eg g[fx(£)] computable
) QeP(2)
Wa(Py.Q)<p

Overly pessimistic due to the curse of dimensionality N scales exponentially in d

o Fournier and Guillin. On the rate of convergence in Wasserstein distance of the empirical measure. Probability Theory and Related Fields, 2015

o Esfahani and Kuhn. Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable
reformulations. Mathematical Programming, 2018.
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Statistical properties of WDRO: illustration on Example III - Portfolio selection

> Sample 200 training datasets of size N = {30, 300,3000} from the same distribution
for each of them, solve WDRO to get optimal point * and value R o (fir)

> Reliability = pc. of datasets s.t. the WDRO value is greater than the loss at the WDRO optimal point:
estimated by taking N = 30000 target Eg_p [fir (O] < Rp(fzx) computed

? g g %
/ g ; < ;
1 5 / ] ;
! g £ ! /! 8 g Ar / 8
{ < S /
i 6 = 3 6 =
‘l =7 o =
= i
/ =
i/ 4 g g o e
Vi & 2
/ 4 ]
; 7 2 ? g - 2
] 47 5 ]
& - 8 8
© a4 S 0 ~ o4 0 ~ 4
10* 10° 102 107! 10 10° 102 107" 10 107 102 107

Out-of-sample performance E¢.p [fx* (§)] and reliability as a function of p Source: Esfahani & Kuhn, 2018

—L seems enough!

> To get a fixed reliability, no need to scale ﬁ, T
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Statistical properties of WDRO: a finer proposition

> Objective: Get that with high probability Ez.p [fx(£)] < ﬁp(fx)

> Why can we hope to do better than measure concentration ?
We do no need to bound the distance W22(13N, P) whp.

Using the dual formulation, we can reformulate the target inequality as

Ez.p [f(5)] = Es g[fx(6)]
e~p [fx(€ QESEI()_) e~ lfx(€

W2(P,Q)<0
—ME=-2I?Y| <infAp+E
sup {£e(@) - Allg -2 }} < inf Ap + Epp,
= Rp (fx)
Rather, we may show that whp uniformly in fi (ok..) and in A (less cool)

Egp|supges (A0 - ME-I2}|  Epp [supzes (K0 - A1E- 21}
s — +p
A A

The concentration error is directly related to the radius p hopefully with a good dependency in N...

= inf Eg.
A>0 &P

?g{&@)—MK—§W4
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Concentration

> For § € (0,1) and some 0 < A < +00, we have with probability at least 1 — §/2 that

Egp|supges {0 - 2E - £I7}] - By, [supges (D) - AlE - 112}
() X [A+o0) A

I(F) +Cst(1 +4/log %)) = pN

Error <+~ minimal radius for concentration in O (ﬁ) no curse of dimension

117

= W2

The complexity of the class of functions appears as one can expect
Lower bound on the dual variable, A, needed we have to show it

> Proof relies on standard concentration results + sup Lipschitz and bounded
o Boucheron, Lugosi, and Massart. Concentration Inequalities. A Nonasymptotic Theory of Independence. Oxford University Press, 2013.
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Lower-bounding the dual variable

> Crux of the proof for getting the concentration result: if A > A, we have with probability 1 — §/2

Egp [£:(D] < R (f)

whenever p is bigger than py = %(I(?_) + Cst(l + 4/log (ls)) .

> Careful analysis of the dual function: It’s all a matter of compromises

If p is small, the constraint is stringent, 4 is big
BUT p has to be also greater than py

If p is bigger, we have more margin for error

BUT the constraint has to be sufficiently active so that A does not vanish

The lower bound depends on Py natively which is not nice

SO we also need to concentrate the opposite quantity to get back to P

AND the minimal A depends on p...
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Concentration result for WDRO

Theorem (Azizian, 1., Malick’23 — informal)
There is a critical radius p. depending only on & and P such that for any § € (0,1) and N > 1, if

0( /1+1og1/5)SpS&_O( /1+1og1/5)
N 2 N

then, there is pn = 0(#%) such that, with probability 1 — 6, Vfy € F,

Erg (O] <Rp(f)  forall Qsuch that Wa(P,Q) < Vp(p - px),

In particular, with probability 1 — 5, we haveVfyx € F,

Egp [fx(D] < Rp(fo).

> pe= \/inffxe¢]E§~p [% d?(¢ arg maxfx)] is the maximal radius before falling back to worst case
robustness
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A word on assumptions and literature

> Assumptions
Sample space E compact convex + supp P strictly included in Z with some margin
All functions fy are twice differentiable + bounded/smooth regularized or non-convex models are ok

Decrease condition around maximizers of fy uniformly + non-vanishing gradients ok for most linear

models

> Literature: Bridging the gap between several results on concentration for WDRO with p o 1/VN
With error terms
Asymptotic

Experimental

o An and Gao. Generalization Bounds for (Wasserstein) Robust Optimization. NeurIPS, 2021.
o Blanchet, Murthy, and Si. Confidence regions in wasserstein distributionally robust estimation. Biometrika, 2022.
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Conclusion on statistical guarantees

> WDRO models control the true risk with high probability
Radius p should be taken proportional to 1/VN
Uniform in the model f; we still have to optimize it!

> What about tightness?

Under the same assumptions whp.

R oo F) < Rolf) < R o5 ()
with R, (fx) the (regularized) WDRO risk rooted at P
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Wasserstein Distributionally Robust Optimization

Approximation



Entropic regularization

> We wish to get rid of the linearity of the problem

We draw inspiration from regularization in optimal transport
WDRO

sup  Egglfx(9)]
germ O
WC(PN!Q)SP

=infAp+E, bup {:(0) = Ae(£. )}

= Rp (f)

o Peyré, Cuturi. Computational Optimal Transport. Foundation and Trends in Machine Learning, 2019.
o Wang, Gao, and Xie. Sinkhorn Distributionally Robust Optimization. ArXiv 2109.11926, 2021.

o Azizian, I, Malick. Regularization for Wasserstein Distributionally Robust Optimization. ESAIM:COCV, 2022.
o

Piat, Fadili, Jurie, da Veiga. Regularized Robust Optimization with Application to Robust Learning. preprint, 2022. 2L52



Entropic regularization

> We wish to get rid of the linearity of the problem

We draw inspiration from regularization in optimal transport

WDRO Regularized WDRO
sup (ﬂ,f;) sup (n,f;) —e KL(o |7g)
re M(EXE) e M(EXE)
1=Pn, (me)y<p =Py, (m,c)y<p
‘/llnf Ap+IEg bup {f+(0) = Ae(& )}
= Ry (fx) = R (f)

7 must be absolutely continuous wrt. to the chosen 7o and (779); = Py

Peyré, Cuturi. Computational Optimal Transport. Foundation and Trends in Machine Learning, 2019.
Wang, Gao, and Xie. Sinkhorn Distributionally Robust Optimization. ArXiv 2109.11926, 2021.
Azizian, I, Malick. Regularization for Wasserstein Distributionally Robust Optimization. ESAIM:COCV, 2022.

Piat, Fadili, Jurie, da Veiga. Regularized Robust Optimization with Application to Robust Learning. preprint, 2022. 2Ls2

o O 0O 0



Entropic regularization

> We wish to get rid of the linearity of the problem

We draw inspiration from regularization in optimal transport

WDRO Regularized WDRO
sup (ﬂ,f;) sup (n,f;) —e KL (7 |70)
re M(EXE) e M(EXE)
m1=Py, (m,c)<p =Py, (m,c)<p
. FH@)=2e(Ed)
= /11nf Ap +]E bup {fx(0) —Ac(& )} = /1lr>1%/1p +¢ E§~f’N log | Egry(-12) | € €
= Ry (fx) = R (f)

7 must be absolutely continuous wrt. to the chosen 7o and (779); = Py
Lagrangian then Fenchel duality in the space of finite signed measures on a compact space

The sup is transformed into a log-integral-exp

Peyré, Cuturi. Computational Optimal Transport. Foundation and Trends in Machine Learning, 2019.
Wang, Gao, and Xie. Sinkhorn Distributionally Robust Optimization. ArXiv 2109.11926, 2021.
Azizian, I, Malick. Regularization for Wasserstein Distributionally Robust Optimization. ESAIM:COCV, 2022.

Piat, Fadili, Jurie, da Veiga. Regularized Robust Optimization with Application to Robust Learning. preprint, 2022. 2Ls2

o O 0O 0



Approximation error

> The reference coupling 7 is a kind of prior
In optimal transport, entropic regularization with KL(7 | P ® Q) 7, is the product of marginals

In WDRO, the second marginal is not fixed but optimized to get our adversarial distribution

. _lg=zip
We choose mo(d¢,d{) oc Py(dé)e 27'o Tyezdd

Ry (fr) =inf Ap+Ey 5, 21611:3 {0 —lllf—éllp}} (WDRO)
= . S (O =AIE=LIIP
R, (f) =)1Lr§) Ap+e ]E§~f’N [log (ng,,o(_m [e G ])] (e-WDRO)

Theorem (Azizian, 1., Malick’22)
IfiEle RY is compact, convex, with nonempty interior and fy is Lipschitz continuous, then as € goes to 0

0< ﬁp(fx) —ﬁ;(fx) <0 (Edlog (%))

o Genevay, Chizat, Bach, Cuturi, and Peyré. Sample complexity of sinkhorn divergences. AlStats, 2019. 22/32



Example IV — A problem that has no tractable WDRO formulation

> Optimization of a cantilever beam minimization of the compliance under a volume

Uncertainty lies in the load & applied around the vector (-1, 0)

> Entropic WDRO formulation over a finite element solver Expectation approx. by a 10 Gaussian samples

p=15 p=2

o Dapogny, I, Meda, Thibert. Entropy-regularized Wasserstein distributionally robust shape and topology optimization. Structural and
Multidisciplinary Optimization, ArXiv 2209.01500, 2022.
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https://arxiv.org/abs/2209.01500

What about generalization?

> Thanks to our duality results, we can use the same kind of technique

Classical

Egp|supges {0 - AE- LI} Bpp [suppes (£ - g - 21}
_E

P p i
Regularized with —¢ KL (7 |o) and 7o(d&, d0) o Py (dE)e™ 20 Lregdl

[e(@)-AllE=I
¢ Egpllog|Epor,(p) € ¢ ¢ Eppy |18 | Brmo12) | €
P = A +p

IE-2112

fe (D) =AlE=ZI?
&

> Same proof layout but quite different derivations

The additional parameters ¢ and o should be taken proportional to p to get close to the true risk at

the same time it naturally appears in the proofs
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Concentration result for regularized WDRO

Theorem (Azizian, 1., Malick’23 — informal)
For o = opp with oy > 0, € = egp with &g > 0 such that so/ag is small enough depending on F, P, E, there is an
explicit constant p. depending only on ¥, P and = such that for all § € (0,1) and N > 1, if

[1+1og1/6 pe o 1 1 1+log1/8\/*
O( T)SPS? O(\/_N')’ and chO(Nl/é-'—( N ) s

then, there are T = O(ep) and pN = O(w/ M) such that, with probability at least 1 — 6, Vfy € F,

Er o [fe(®] <RE(f)  forall Q such that War(P,Q) < Vp(p — pN)

Furthermore, when oy and o are small enough depending on P and =, with probability 1 — 6, Vfy € F,

EgpEgr,(12) (D] < RS (f).

> Not exactly an upper bound on the true risk on P but rather the risk for smoothed P * 7 (-|£)

> Robust wrt. Wy (P, Q) := \/inf {]E,r[%Hf— §||2] +tKL(7m|mg) : m e P(EXE), m1 =P, 12 = Q}
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Conclusion on approximation

> The WDRO problem ﬁp(fx) can be controllably approximated by

= = S (O =AE=LIIP
RE (fy) = sup (m, fx) —eKL(x|mo) = inf Ap+¢E, 3 [log (IE (e [e e ])]
o e M(EXE) - YTz §PN i)

ﬂ]:ﬁN,<ﬂ£>Sp
Differentiable and more tractable problem as soon as the inner integral can be evaluated
> This is not exactly a Sinkhorn distance
We can regularize in the objective and/or in the constraints
We cannot symmetrize to get an actual distance
> Worst case probability measures from optimal dual value 1*

_lg-qwp

(@)= A*Hfl aie _1&=dP
Z e o gz dl

> Concentration is very similar for the regularized version
Insight on the choice of € o p same thing for o

Thanks to regularization, we get rid of the need to control the behavior near maximizers
26/32



Wasserstein Distributionally Robust Optimization

Optimization



Solving generic WDRO problems

> Leverage the entropic regularization
N 12
1 F(@-ME=LI
ininf Ap+¢ — log (E¢y, (-1 e
miy inf Ap fN;[Og( {omo(-18) [e m
Gradients in x and A are available

(@) =Alg =112 S -ANg=Z11?
ii Egmy(1g) Vafc (e~ . _ii Epomiz) G- gl%e
N & fx (@ =AlIE =112 and.p N £ fe (D) =AlE =112
= Eromiegne ¢ =1 Eromiegne ¢

l1&-¢1?

> Crude approach: sample some points from 7o (:|¢;) « e” 20~ 1 ¢z and minimize the sampled loss
This is a biased approximation with poor performance in practice except for d = 1

> Better approach: sample the expectation at each iteration by (Metropolis-adjusted) Langevin
“Robustifies” but unstable behavior of A

> Implemented approach: additionally use importance sampling towards V, fi (&)

Much more stable, when initialized with the ERM solution
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Talking code

> Python package coming soon — Two modes:
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Back to example I — the NewsVendor problem

> A NewsVendor has to maximize its gain —f;(¢) = —kx + umin(x, &) by optimizing the number x € R, of
newspaper bought, facing the uncertain demand of tomorrow

His buying price is k = 5 and his retail priceis u =7 p=2¢=0.1

N =20 i.i.d. samples from P

> Samples distribution P: “good day” N (50, 5) w/ prob. 0.5, “bad day” A (20,5) w/ prob. 0.5, truncated at 0

| SAA | WDRO | £WDRO
x* 16 0 12
Empirical loss 11.10 0.00 9.99
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> A NewsVendor has to maximize its gain —f;(¢) = —kx + umin(x, &) by optimizing the number x € R, of

newspaper bought, facing the uncertain demand of tomorrow
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Back to example I — the NewsVendor problem

> A NewsVendor has to maximize its gain —f;(¢) = —kx + umin(x, &) by optimizing the number x € R, of

newspaper bought, facing the uncertain demand of tomorrow
His buying price is k = 5 and his retail priceis u =7 p=2¢=0.1

N =20 i.i.d. samples from P

> Samples distribution P: “good day” N (50, 5) w/ prob. 0.5, “bad day” A (20,5) w/ prob. 0.5, truncated at 0
> : “good day” N (50,5) w/ prob. 0.3, “bad day” N (20, 5) w/ prob. 0.7, truncated at 0

— GainsAA
=3 Gain eps-WDRO

0.08

| SAA | WDRO | £WDRO

x* 16 0 12 .
Empirical loss | 11.10 0.00 9.99
Actual gain on P 11.04 0.00 9.78
Actual gain on 5.65 0.00 6.08 o
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Back to example II — Logistic regression

> Regularization offers new possibilities:
Different transport costs squared norm, exotic ones
Regularization 11, 12, anything not data-driven
Scaling to larger datasets gradient-based methods instead of DCP
> Regularized WDRO as new robustness model:
¢ is not necessarily small max(1e7%, p/10)

Absolutely continuous true distribution prior linked to transport cost

Entrainement (Pn) . Test (Qm) ERM WDRO

Acc. 93%

Acc. 9296p



Back to example III - Portfolio selection

> 10 assets, N = 30, 200 simulations
> Choice of the radius p
Cross validation inherited as a scikit-learn estimator

By statistically testing that the test distribution is encompassed

ERM WDRO with radius = 0.100000 WDRO with radius = 8.000000
014
. n-sample . n-sample . n-sample
Em out-of-sample Em out-of-sample E out-of-sample
012

Probability
Probability

Probability
o
H

-] 0 -1 0 -1 0
Mean-risk objective Mean-risk objective Mean-risk objective
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> 10 assets, N = 30, 200 simulations
> Choice of the radius p
Cross validation inherited as a scikit-learn estimator

By statistically testing that the test distribution is encompassed

ERM WDRO with tuned radius Distribution of rho values taken when tuning rho
= insample 0200 = insample
= outofsample = outofsample
0175

0150

0125

Probability

0.100

Probability

0075

Number of occurences

0,050

0025

0,000
- 00 100 100 100 10°
Rho values.

-] 0 -1 )
Mean-risk objective Mean-risk objective
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Conclusion on optimization

> Why optimizing correctly matters?
Being accurate in A enables to get a bound on the true risk
Instrumental to get the worst case distributions
> Toolbox underway!
Based on solving the dual regularized problem
AdamW using importance sampling for approximating the expectation
Default values for the radius, regularization, etc. from statistical study
> Currently undergoing testing on optimization and generalization
email me if you’re interested in a f-version
> Paves the way to a widespread use of WDRO
Large class of objectives and costs not necessarily smooth

Cross validation of parameters
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Closing words

> Machine Learning models perform well but are they reliable?
Distributionally robust optimization provides an appealing framework to address this question
Interplay between statistics and optimization
> Wasserstein distributionally robust models are in!
Generalization and robustness guarantees
Widely implementable thanks to regularization
> Exciting perspectives: automated radius tuning, practical applications, robust feature selection, etc.

Azizian, I., Malick: Regularization for Wasserstein Distributionally Robust Optimization, arXiv 2205.08826, ESAIM:
=| Control, Optimisation, and Calculus of Variations, 2023.

Azizian, 1., Malick: Exact Generalization Guarantees for (Regularized) Wasserstein Distributionally Robust Models,
arXiv 2305.17076, NeurIPS, 2023.

Dapogny, L., Meda, Thibert. Entropy-regularized Wasserstein distributionally robust shape and topology optimization.
=| ArXiv 2209.01500, Structural and Multidisciplinary Optimization, 2022.

[iie) [iie) [iis)

Thank you! - www.iutzeler.org
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