
Nonsmooth Convex Optimization Methods –
Part II

Franck Iutzeler

October 21, 2021

Contents

Chapter 1 Convexity 1

1.1 Convex sets . 1
1.2 Convex functions . 3

Chapter 2 Gradient and Subgradient methods 7

2.1 Smoothness and gradient descent . 7
2.2 Nonsmooth (sub)gradient descent . 9
2.3 Non-Euclidean gradient descent . 12

Chapter 3 Proximal and Bundle methods 17

3.1 The Proximity Operator . 17
3.2 Bundle methods . 21

CHAPTER 1 Convexity

Convexity is at the heart of optimization. This is notably due to the unicity
of projections onto convex sets and the direct link between critical points

and minimums for convex functions.

In this chapter, we will �rst study convex sets, then convex functions.

1.1 Convex sets

1.1.1 Motivation: Projecting onto a closed set

Similarly to orthogonal projections onto a�ne subspaces, we can de�ne projection on
nonempty closed sets.1 1Nonempty: otherwise there is

nothing to project onto. Closed:
otherwise “the” closest point in a
set from another point is not
well-de�ned.

Thus, let us consider a non-empty closed set � and investigate the problem

inf
G ∈�

� ~ (G) B
1
2 ‖~ − G ‖

2 (1.1)

which intuitively amounts to projecting ~ onto � .
First, take D ∈ � , and de�ne (B {G ∈ ℝ= : ‖~ − G ‖2 ≤ ‖~ − D‖2}. Then, the

problem (1.1) is equivalent to

inf
G ∈�∩(

� ~ (G) B
1
2 ‖~ − G ‖

2 (1.2)

where�∩(is a closed compact set. Projecting thus amounts to minimizing a continuous
function over a closed compact set, which always admits a solution, as per the following
lemma.
Lemma 1.1. Let � : ℝ= → ℝbe a proper lower semi-continuous function (or in particular,
a continuous function) and let (be a closed compact set. Then, there is some G★ ∈ (such
that � (G★) = infG ∈(� (G).

Proof. ([★]) Since � is proper, it nevers takes the value−∞ thus V̄ B infG ∈(� (G) > −∞.
For a decreasing sequence of reals (V=) with V= → V̄ , let us de�ne the sequence of the
(V= = {G : � (G) ≤ V=}. For any =, (V= is nonempty, closed, and included in (V=−1 . Thus,
the limit (V̄ = {G : � (G) = infD∈(� (D)} is also nonempty and closed which gives the
result. �

This grants the existence of a minimizer of (1.2), and thus of (1.1), ie. a projection
on � . In particular, the inf above are actually min. However, the projection may not
be unique, that is where convexity comes into play.2 2The above enables us to show the

existence of projections onto
nonempty closed sets, but the
projection may not be unique.

2 Chap. 1 - Convexity

1.1.2 Convexity for sets

Let us now introduce the de�nition of a convex set.
De�nition 1.2. A subset� ofℝ= is convex if and only if for any G,D ∈ � , (1−U)G+UD ∈
� for any U ∈ (0, 1).

The crucial property here is that any (weighted) average of points of a convex
set belongs stay in the set. Equivalently, the set � is convex if and only if for any
(G 1, .., G#) ∈ �# ,

#∑
8=1

U8G8 ∈ � for any (U 1, .., U#) ∈ ℝ#+ with
#∑
8=1

U8 = 1,

where
∑#
8=1 U8G8 is called a convex combination of (G 1, .., G#).

Examples of convex sets:
• A�ne spaces {G : 〈B, G〉 = A }
• Balls {G : ‖G − B ‖ ≤ A }
• Half spaces {G : 〈B, G〉 ≤ A } and open half spaces {G : 〈B, G〉 < A }
• Simplices {G :

∑=
8=1 G8 = 1 and G8 ≥ 0 for all 8 = 1, .., =}

• Intersections of convex sets ∩#8=1�8

Examples of non-convex sets:
• Discrete sets (eg. {0} ∪ {1}) or disjoint sets
• Spheres {G : ‖G − B ‖ = A }
• Sets with “holes”

1.1.3 Projection on convex sets

Getting back to the projection problem (1.1)

min
G ∈�

� ~ (G) B
1
2 ‖~ − G ‖

2 (1.3)

where (B {G ∈ ℝ= : ‖~ − G ‖2 ≤ ‖~ − D‖2}. Now, let us assume that � is additionally
convex.

Suppose that G 1
★ ≠ G2

★ are two distinct solutions of (1.3). De�ne G0
★ = (G 1

★ +
G2

★)/2, then

� ~ (G0
★) = 1

2 ‖~ − G0
★‖2 =

1
2 ‖(~ − G 1

★)/2 + (~ − G2
★)/2‖2

=
1
4 ‖~ − G 1

★‖2 + 1
4 ‖~ − G2

★‖2 − 1
8 ‖G 1

★ − G2
★‖2

=
1
2 (� ~ (G 1

★) + � ~ (G2
★)) − 1

8 ‖G 1
★ − G2

★‖2

thus � ~ (G0
★) < � ~ (G 1

★) = � ~ (G2
★) which contradicts G 1

★ ≠ G2
★ being two distinct

solutions. Hence, the projection on a convex set is unique. We have shown the
following lemma.
Lemma 1.3. Let � be a closed nonempty convex set. Then, for any ~ ∈ ℝ= , there is a
unique projection proj� (~), solution of (1.3).

In fact, this unique projection can be characterized more precisely.

Numerical Optimization 3

Theorem 1.4. Let � be a closed nonempty convex set. Then, for any ~ ∈ ℝ= , proj� (~)
is the projection of ~ onto � if and only if

〈~ − proj� (~), I − proj� (~)〉 ≤ 0 for all I ∈ �.

Proof. Left as an exercise. See (Hiriart-Urruty and Lemaréchal, 1993b, Th. 3.1.1). �

1.2 Convex functions

The notion of convexity is as important for functions as for sets. Notably, this is the
notion that will enable us to go from the (sub)gradient inequalities and local minimizers
above to global minimizers.

1.2.1 De�nition

A function is convex if and only if its epigraph3 3This is the set
epi� B {(G, C) : � (G) ≤ C }

is convex. However, the following
de�nition is much more direct.
De�nition 1.5. A function � : ℝ= → ℝ is convex if and only if for any G,D ∈ dom � ,
� ((1 − U)G + UD) ≤ (1 − U)� (G) + U� (D) for any U ∈ (0, 1).

More generally convex functions verify Jensen’s inequality. For any convex combi-
nation

∑#
8=1 U8G8 ,

�

(
#∑
8=1

U8G8

)
≤

#∑
8=1

U8� (G8).

Checking the de�nition directly may be possible but it is often simpler to rely on
convexity-preserving operations:

• all norms are convex;
• a sum of convex functions is convex;
• a�ne substitution of the argument (if � is convex, G ↦→ � (�G + 1) is convex for

any a�ne map �G + 1);
• the (pointwise) maximum of convex functions is convex.
The most striking point of convex functions is that local minimizers are actually

global.

Theorem 1.6. Let � : ℝ= → ℝ be a proper convex function. Then, every local minimizer
of � is a (global) minimizer.

Proof. Let � : ℝ= → ℝ be a proper convex function and let G be a local minimizer of
� . Then, there is a ball of radius d > 0 such that � (G) ≤ � (D) for all D ∈ B(G, d). Take
~ ∈ ℝ= \ B(G, d) and de�ne U = d/‖~ − G ‖. Since 0 < d < ‖~ − G ‖, we have U ∈ (0, 1).

Now, let I = (1 − U)G + U~, we have ‖I − G ‖ = U ‖G − ~‖ = d so I ∈ B(G, d).
Since � (G) ≤ � (D) for all D ∈ B(G, d), we have � (G) ≤ � (I) = � ((1 − U)G + U~) ≤

(1 − U)� (G) + U� (~) by convexity of � . Thus implies that � (G) ≤ � (~), thus G is a
minimizer for � in B(G, d) and outside of it, thus a global minimizer. �

4 Chap. 1 - Convexity

1.2.2 Proper lower-semicontinuous functions

Before studying di�erentiability, we will need to de�ne the notions of domain, opti-
mality, properness, and lower-semicontinuity.

For a function � : ℝ= → ℝ, we de�ne its domain as dom � B {G ∈ ℝ= : � (G) <
+∞}, and its in�mum

inf � B inf
G ∈ℝ=

� (G) = inf
G ∈dom �

� (G).

Whenever this in�mum is attained, ie. there is some G such that � (G) = inf � , then
it is called a minimum and is denoted by min � . We further de�ne

argmin � B {G ∈ ℝ= : � (G) = inf � } .

Additionally, a function � is lower semi-continuous if for any G ∈ ℝ= ,

lim inf
D→G

� (D) B min{C ∈ ℝ : ∃DA → G with � (DA) → C} = � (G).

Finally, a function � is said to be proper is � (G) < +∞ for at least one G ∈ ℝ=

and � (G) > −∞ for all G ∈ ℝ= . This means that the domain of a proper function is a
nonempty set over which � is �nite-valued.

1.2.3 (Sub)Gradients of convex functions

This class of functions comes with several interesting properties, for instance dom �

and argmin � are convex if � is convex, furthermore, every local minimum is a global
one. This is captured by the notion of subgradients.
Lemma 1.7 (Rockafellar and Wets 1998, Prop. 8.12). Consider a convex proper function
� : ℝ= → ℝ and a point G ∈ dom � . Then,

m� (G) = {{ : � (D) ≥ � (G) + 〈{,D − G〉 for all D ∈ ℝ=} ≠ ∅ (1.4)

and 0 ∈ m� (G) if and only if G ∈ argmin � .

An important point is thatD ↦→ � (G)+〈{,D−G〉 provides a linear under-approximation
of the whole function � .

When � is di�erentiable, then m� (G) = {∇� (G)} and convexity can be seen directly
as a property on the gradient mapping.
Theorem 1.8 (Bauschke and Combettes 2011, Prop. 17.10). Let 5 : ℝ= → ℝ be a proper
function with open domain.44typically here, dom 5 = ℝ= . Suppose that 5 is di�erentiable on dom 5 . Then the following
are equivalent:

i) 5 is convex;

ii) 5 (D) ≥ 5 (G) + 〈∇5 (G), D − G〉 for all G,D ∈ dom 5 ;

iii) 〈∇5 (G) − ∇5 (D), G − D〉 ≥ 0 for all G,D ∈ dom 5 , ie. ∇5 is monotone.
Furthermore, if 5 is twice di�erentiable on dom 5 , any of the above is equivalent to
iv) 〈D,∇2 5 (G)D〉 ≥ 0 for all G,D ∈ dom 5 , ie. ∇2 5 is positive semi-de�nite.

Numerical Optimization 5

1.2.4 Optimality conditions for convex functions on convex sets

Let us consider the problem of minimizing a convex function � over a convex set � .
The problem consists in �nding G★ ∈ � such that � (G★) ≤ � (G) for all G ∈ � , we note
this problem

G★ ∈ argmin� � ⇔ G★ is a solution of inf
G ∈�

� (G)

We directly note that if � is empty, the problem is impossible5 5infeasible in the optimization
language.

and if � is open it
may be impossible to �nd a solution. Hence, we will restrict our analysis to closed
nonempty convex sets as before.

The constrained variant of Fermat’s rule that links the gradient of the function
with local minimas writes as follows.
Theorem 1.9 (Rockafellar and Wets 1998, Th. 6.12, 8.15). Consider a proper lower-
semicontinuous convex function � : ℝ= → ℝ and a convex set � . Then, G ∈ argmin� �
if and only if G ∈ � and 0 ∈ m� (G) + #� (G) or,6 6The normal cone of a convex set�

at a point G ∈ � is de�ned as the set
#� (G) B {D : 〈~ − G,D 〉 ≤
0 for all ~ ∈ � }.

equivalently,

〈~ − G, {〉 ≥ 0

for any { ∈ m� (G) and all ~ ∈ � .
In particular, if � is di�erentiable, 0 ∈ ∇� (G) + #� (G) means that

〈~ − G,∇� (G)〉 ≥ 0

for all ~ ∈ � .

Note that if G belongs to the relative interior of � , then #� (G) = {0}.

�

G 1★
interior

#� (G 1★) = {0} = ∇� (G 1★)

−∇� (G2★)G2★

border #� (G2★)

1.2.5 Strict & strong convexity

Strict convexity is simply convexity but when every inequality is replaced with a strict
inequality: a function � : ℝ= → ℝ is strictly convex if and only if for any G,D ∈ � ,
� ((1 − U)G + UD) < (1 − U)� (G) + U� (D) for any U ∈ (0, 1). All results above then hold
with strict inequalities.
Lemma 1.10. Let � : ℝ= → ℝbe a strictly convex lower semi-continuous proper function
and � a convex set, then � has at most one minimizer on � . In particular, � has at most
one minimizer on ℝ= .

Strict convexity can be observed mathematically and from that we can ensure the
uniqueness of solutions. However, it is almost impossible to exploit numerically since it

6 Chap. 1 - Convexity

only grants us a strict inequality and not an exploitable knowledge about the function’s
local behavior. For this, we need a stronger condition: strong convexity. While
convexity provides a�ne lower bounds, strongly convex functions have quadratic
lower-bounds enable to get a better control that may have a great impact on the
convergence of optimization methods.
De�nition 1.11. For some ` > 0, a function � : ℝ= → ℝ is `-strongly convex if and
only if � − 1

2`‖ · ‖
2 is convex.

Using the fact that �̃ B � − 1
2`‖ · ‖

2 is convex and veri�es m�̃ = m� − `·, we get
that for any G ∈ ℝ= and any { ∈ m� (G)

� (D) ≥ � (G) + 〈{,D − G〉 + `2 ‖D − G ‖
2 for all D ∈ ℝ= (1.5)

which directly implies that a strongly convex function has at most one minimizer
by taking G such that 0 ∈ m� (G). The following lemma then adds the existence (see
(Bauschke and Combettes, 2011, Chap. 11.4) for a more general take).
Lemma 1.12. Let � : ℝ= → ℝ be a lower semi-continuous proper strongly convex
function and � a convex set, then � has exactly one minimizer on � . In particular, � has
exactly one minimizer on ℝ= .

Proof. ([★]) Let us consider the case where � = ℝ= , the other cases can be deduced
easily. From (1.5), we get that for all D ∈ ℝ= ,

� (D) ≥ � (G) + `2 ‖G ‖
2 − 〈{, G〉 + 〈{ + `G,D〉 + `2 ‖D‖

2

≥ � (G) + `2 ‖G ‖
2 − 〈{, G〉 − ‖{ + `G ‖‖D‖ + `2 ‖D‖

2

hence � (D)/‖D‖ → +∞when ‖D‖ → +∞, ie. � is supercoercive. Thus, this means that
for any C , the level set {G : � (G) ≤ C} is bounded (this is direct by contradiction, see
(Bauschke and Combettes, 2011, Chap. 11.11)). Since � is proper, we can take C su�ciently
large so that the corresponding level set is non-empty and bounded. Finally, since � is
lower semi-continuous, applying Lemma 1.1 to this compact set gives us the existence
of a minimal value, which is unique from the quadratic lower bound expressed in
(1.5). �

If a di�erentiable function is strongly convex, we have the following characteriza-
tions.
Theorem 1.13. Let 5 : ℝ= → ℝ be a proper function with open domain. Suppose that
5 is di�erentiable on dom 5 . Then the following are equivalent:

i) 5 is `-strongly convex;

ii) 5 (D) ≥ 5 (G) + 〈∇5 (G), D − G〉 + `

2 ‖D − G ‖
2 for all G,D ∈ dom 5 ;

iii) 〈∇5 (G) − ∇5 (D), G − D〉 ≥ `‖D − G ‖2 for all G,D ∈ dom 5 , ie. ∇5 is monotone.
Furthermore, if 5 is twice di�erentiable on dom 5 , any of the above is equivalent to
iv) 〈D,∇2 5 (G)D〉 ≥ `‖D‖2 for all G,D ∈ dom 5 , ie. ∇2 5 is positive de�nite.

BC

CHAPTER 2 GradientandSubgradientmeth-

ods

Gradient methods are the most simple optimization algorithm. They are
built upon, the idea that di�erentiating the function tells you in which

direction to go to minimize the function value. However, gradient heavily rely
on smoothness, and things can go awry in other situations.

2.1 Smoothness and gradient descent

The Gradient descent algorithm on a di�erentiable function function 5 consists in
taking G0 ∈ ℝ= and iterating

G:+1 = G: − W∇5 (G:) (Gradient descent)

for some W > 0.

2.1.1 Smoothness

There is slight discrepancy in the literature concerning the notion of smoothness for
functions. In (Rockafellar and Wets, 1998), it is used for continuously di�erentiable
functions, in Riemannian analysis it often refers to C∞ function, while in numerical
optimization and machine learning (see eg. (Bubeck et al., 2015)), it is used for functions
with Lipschitz-continuous gradients. We will adopt the latter viewpoint. The reason
for this is that it allows us to have a quadratic upper approximation of our function,
obtained directly from the fundamental theorem of calculus. This is the crucial point
for the use of gradient methods.
De�nition 2.1. We say that a function 5 : ℝ= → ℝ is !-smooth if it has a !-Lipschitz
continuous gradient, ie. if

‖∇5 (G) − ∇5 (D)‖ ≤ !‖G − D‖ for all G,D ∈ ℝ= .

From this property, we can derive this highly important lemma.
Lemma 2.2. Consider a function 5 : ℝ= → ℝwith a !-Lipschitz continuous gradient,
then for any G,D ∈ ℝ= , one has

|5 (D) − 5 (G) − 〈∇5 (G), D − G〉| ≤ !2 ‖G − D‖
2 .

8 Chap. 2 - Gradient and Subgradient methods

Thus, if we �x a point G , the function dG : D ↦→ 5 (G) + 〈∇5 (G), D − G〉 + !
2 ‖D − G ‖

2

is quadratic in its argument and majorizes 5 , that is to say dG (D) ≥ 5 (D) for any D.
Furthermore, the minimum of dG is attained at G★ = G − 1

!
∇5 (G).

G
G − 1

!
∇5 (G)

dG

5

Such a quadratic approximation can be leveraged using gradients steps, ie. taking

D = G − W∇5 (G)

for some W > 0. Indeed, in that case, Lemma 2.2 gives us

5 (D) ≤ 5 (G) −
(

1
W
− !2

)
‖G − D‖2 = 5 (G) −

(
W − !W

2

2

)
‖∇5 (G)‖2 . (2.1)

2.1.2 Gradient algorithm for convex functions

When 5 is !-smooth and convex, we can guarantee convergence and a O(1/:) rate.
Theorem 2.3. Let 5 : ℝ= → ℝ be a convex !-smooth function. Then, the iterates (G:)
generated by (Gradient descent) with W = 1/! satisfy:

• (convergence) G: → G★ for some minimizer G★ of 5 ;77ie. a point such that ∇5 (G★) = 0.

• (rate) 5 (G:) − 5 (G★) ≤
2!‖G0 − G★‖2

:
for any minimizer G★ of 5 .

In the above theorem, any W ∈ (0, 1/!) actually works for the convergence and
gets a similar complexity but W = 1/! is the optimal value in terms of rate.
Remark 2.4 (Lower bound). This is not the fastest way to minimize a convex smooth
function. Actually, one can show that the fastest attainable rate for this class of
functions is O(1/:2); see (Bubeck et al., 2015, Th. 3.14). This complexity is attained by
Nesterov’s fast gradient method (Nesterov, 1983). This method accelerates gradient
descent by adding an “inertial” step:

~:+1 = G: − W∇5 (G:) (Fast Gradient descent)
G:+1 = ~:+1 + U:+1 (~:+1 − ~:)

where W ∈ (0, 1/!) and U:+1 = (: + 2)/(: + 3).88Actually, the choice for U:+1 is a
bit more complicated but this
variant grants the same rate.

J

Numerical Optimization 9

2.1.3 Gradient algorithm for strongly convex functions

Now, if the function is additionally strongly convex, the quadratic lower bounds grants
us a better rate.
Theorem 2.5. Let 5 : ℝ= → ℝ be a `-strongly convex !-smooth function. Then, the
iterates (G:) generated by (Gradient descent) with W = 2

`+! satisfy:

• (convergence) G: → G★ for the minimizer G★ of 5 ;9 9unique by strong convexity

• (rate) 5 (G:) − 5 (G★) ≤
(
^ − 1
^ + 1

)2:
‖G0 − G★‖2 where ^ = !

`
≥ 1.

In the above theorem, any W ∈ (0, 2/(` + !)] actually works for the convergence
and gets a similar complexity but W = 2/(` + !) is the optimal value in terms of rate.

We note here that the term ^ = !
`
≥ 1 appears in the rate, this number is generally

called the conditioning of the number by analogy with matrices and linear systems.
Finally, the obtained rate is again not optimal for this class of functions, the optimal

rate beingO
((√

^−1√
^+1

)2:
)
, again attained by a modi�ed version of (Fast Gradient descent).

2.1.4 Projected Gradient algorithm

Now let us consider the problem of minimizing a smooth convex function 5 over a
nonempty closed convex set � . Thanks to the ability to project onto � , we can easily
de�ne a projected gradient method:

G:+1 = proj� (G: − W∇5 (G:)) (Projected gradient descent)

for some initialization G0 ∈ ℝ= and stepsize W > 0.
This algorithm has similar guarantees as gradient descent.

Theorem 2.6. Let 5 : ℝ= → ℝ be a convex !-smooth function. Then, the iterates (G:)
generated by (Gradient descent) with W = 1/! belong to � and satisfy:

• (convergence) G: → G★ for some minimizer G★ of 5 on � ;10 10ie. a point such that
−∇5 (G★) ∈ #� (G★) , ie.
〈~ − G★, ∇� (G★) 〉 ≥ 0 for all
~ ∈ � .

• (rate) 5 (G:) − 5 (G★) ≤
3!‖G0 − G★‖2 + 5 (G0) − 5 (G★)

: + 1 for any minimizer G★ of
5 on � .

2.2 Nonsmooth (sub)gradient descent

If our function is nonsmooth (which is one of the core topics of the course), things
change quite a lot. In this section, we see what happens when for (sub)gradient-
based algorithm when our function is i) non-di�erentiable; and ii) di�erentiable but
nonsmooth.

2.2.1 Non-di�erentiability & subgradient descent

A direct method to minimize a convex non-di�erentiable function 6 is to mimic the
gradient method and to do subgradient descent:

G:+1 = G: − W: {: with {: ∈ m6(G:) (Subgradient descent)

10 Chap. 2 - Gradient and Subgradient methods

Here, a �xed stepsize is not always possible. For instance, take 6 = | · |, then (G:)
will oscillate around 0 for any W > 0.

In fact, we have the following result.
Theorem 2.7. Let 6 : ℝ= → ℝ be a proper lower semi-continuous convex function with
a minimizer G★. Assume that ‖{‖ ≤ " for any G ∈ dom6 and any { ∈ m6(G). Then, the
Subgradient descent algorithm started with G0 generates iterates that verify:

a) for a constant stepsize W: = W ,

6

(∑:
ℓ=0 W ℓG ℓ∑:
ℓ=0 W ℓ

)
− 6(G★) ≤ ‖G0 − G★‖2

2:W + W"
2

2 .

b) for a stepsize sequence verifying
∑∞
:=0 W: = +∞ and

∑∞
:=0 W

2
:
< +∞,

6

(∑:
ℓ=0 W ℓG ℓ∑:
ℓ=0 W ℓ

)
− 6(G★) :→∞−−−−→ 0.

Proof. We assume here that 6 has a minimizer, say G★. Then, for any : ,

‖G:+1 − G★‖2 = ‖G: − W:{: − G★‖2

= ‖G: − G★‖2 − 2W: 〈{: ;G: − G★〉 + W2
:
‖{: ‖2

Now, since {: ∈ m6(G:), Lemma 1.7 with D = G★ tells us that 6(G★) ≥ W: + 〈{: , G★−G:〉
and thus

‖G:+1 − G★‖2 ≤ ‖G: − G★‖2 − 2W: (6(G:) − 6(G★)) + W2
:
‖{: ‖2

≤ ‖G0 − G★‖2 − 2
:∑
ℓ=0

W ℓ (6(G ℓ) − 6(G★)) +
:∑
ℓ=0

W2
ℓ ‖{ℓ ‖2 .

This enables us to get that∑:
ℓ=0 W ℓ (6(G ℓ) − 6(G★))∑:

ℓ=0 W ℓ
≤
‖G0 − G★‖2 +

∑:
ℓ=0 W

2
ℓ ‖{ℓ ‖2

2
∑:
ℓ=0 W ℓ

.

First, we notice that by convexity,

min
ℓ≤:

6(G ℓ) − 6(G★) ≤ 6
(∑:

ℓ=0 W ℓG ℓ∑:
ℓ=0 W ℓ

)
− 6(G★) ≤

∑:
ℓ=0 W ℓ (6(G ℓ) − 6(G★))∑:

ℓ=0 W ℓ
. (2.2)

As for the right hand size:
(a) if W: = W , then

6

(∑:
ℓ=0 W ℓG ℓ∑:
ℓ=0 W ℓ

)
− 6(G★) ≤ ‖G0 − G★‖2

2:W + W"
2

2 .

if
∑∞
:=0 W: = +∞ and

∑∞
:=0 W

2
:
< +∞, then

6

(∑:
ℓ=0 W ℓG ℓ∑:
ℓ=0 W ℓ

)
− 6(G★) ≤

‖G0 − G★‖2 +"2 ∑∞
ℓ=0 W

2
ℓ

2
∑:
ℓ=0 W ℓ

and the RHS’s numerator is �nite while the denominator is going to in�nity as : →∞,
the whole term thus goes to 0. �

Numerical Optimization 11

Note that the result above also holds for minℓ≤: 6(G ℓ) − 6(G★) by (2.2). However,
since the stepsize is decreasing, this limits the rate and the iterates convergence is out
of reach. Nevertheless, its rate in O(1/

√
:) is optimal on this class of functions.

It is also possible to add a projection to a convex set, the proof only changes in the
�rst line where the non-expansiveness of the projection has to be used. More precisely,
the algorithm

G:+1 = proj� (G: − W: {:) with {: ∈ m6(G:) (Projected Subgradient descent)

veri�es the following properties.
Theorem 2.8. Let 6 : ℝ= → ℝ be a proper lower semi-continuous convex function and
let � be a closed convex set. Assume that ‖{‖ ≤ " for any G ∈ � and any { ∈ m6(G).
Then, 6 has a minimizer G★ in� and the Projected Subgradient descent algorithm started
with G0 ∈ � generates iterates that verify:

a) for a constant stepsize W: = W ,

6

(∑:
ℓ=0 W ℓG ℓ∑:
ℓ=0 W ℓ

)
− 6(G★) ≤ ‖G0 − G★‖2

2:W + W"
2

2 .

b) for a stepsize sequence verifying
∑∞
:=0 W: = +∞ and

∑∞
:=0 W

2
:
< +∞,

6

(∑:
ℓ=0 W ℓG ℓ∑:
ℓ=0 W ℓ

)
− 6(G★) :→∞−−−−→ 0.

2.2.2 Nonsmoothness & gradient descent

When you function is di�erentiable, you still have that

6(G + C∇6(G)) = 6(G) − C ‖∇6(G)‖2 + > (C ‖∇6(G)‖)

which implies that

6(G + C∇6(G)) − 6(G)
C

= −‖∇6(G)‖2 + > (1)

and thus you can still �nd a small enough step C that will decrease you functional
value, for instance using line-search methods. Unfortunately, to translate this property
to some convergence result smoothness is needed.

Thus, we have two paths to overcome this problem:
a) Changing our algorithm. Taking a look at a gradient step, we notice that

~ = G − W∇6(G) ⇔ ∇6(G) + ~ − G
W

= 0

⇔ ~ = argminD
{
〈6(G);D〉 + 1

2W ‖D − G ‖
2
}

⇔ ~ = argminD
{
6(G) + 〈6(G);D − G〉 + 1

2W ‖D − G ‖
2
}

and if smoothness is lacking, maybe changing the �rst order approximation can
help. This is what we will do in Chapter 3.

12 Chap. 2 - Gradient and Subgradient methods

b) Changing our de�nition of smoothness. The smoothness property:

6(D) ≤ 6(G) + 〈∇6(G), D − G〉 + !2 ‖G − D‖
2

can be rewritten as(
!

2 ‖D‖
2 − 6(D)

)
−

(
!

2 ‖G ‖
2 − 6(G)

)
≤ 〈!G − ∇6(G), D − G〉

which is equivalent to saying that G ↦→ !
2 ‖G ‖

2 − 6(G) is convex.
This indicates that smoothness is intricately linked with the squared Euclidean
norm. To deal with functions that are not smooth, a good idea is thus to change
how we measure distances.

2.3 Non-Euclidean gradient descent

In this section, we focus on methods in which the Euclidean distance is replaced by a
Bregman divergence. We thus study how gradient methods translate in this case.

Our template problem for this section will be

min
G ∈�

5 (G)

where 5 : ℝ= → ℝ is a di�erentiable convex function and � ⊂ ℝ= is a closed convex
set with non-empty interior.

2.3.1 Bregman divergences

The core ingredient for de�ning divergences is the notion of Bregman regularizer – or
distance-generating function (DGF) – which we de�ne below as follows:
De�nition 2.9 (Bregman regularizers). A proper lower semi-continuous strictly con-
vex function ℎ : X → ℝ is said to be a Bregman regularizer on � if

(i) ℎ is supported on � , i.e., domℎ = � .
(ii) the subgradient of ℎ admits a continuous selection, i.e., there exists a continuous

mapping ∇ℎ such that ∇ℎ(G) ∈ mℎ(G) for all G ∈ dom mℎ.
(iii) ℎ is 1-strongly convex relative to ‖·‖, i.e., for all G ∈ dom mℎ,D ∈ domℎ, we have

ℎ(D) ≥ ℎ(G) + 〈∇ℎ(G), D − G〉 + 1
2 ‖D − G ‖

2 .

Note that the norm above is no longer necessarily the Euclidean one. An important
set is �ℎ B dom mℎ is called the prox-domain of ℎ; we have ri� ⊆ �ℎ ⊆ � .

From a regularizer, one can de�ne a divergence as follows.
De�nition 2.10 (Bregman divergence). From a Bregman regularizer ℎ, we de�ne the
associated Bregman divergence as

� (D, G) = ℎ(D) − ℎ(G) − 〈∇ℎ(G), D − G〉 for all G ∈ �ℎ , D ∈ �

Is is immediate to see that � (D, G) ≥ 1/2‖D − G ‖2 ≥ 0. However, these divergences
do not admit exactly developments like for the squared Euclidean norm but they verify
the following inequality.

Numerical Optimization 13

Lemma 2.11 (3-point identity). Let ℎ be a Bregman regularizer on � . For all D ∈ � and
all G, ? ∈ �ℎ , we have:

� (D, ?) = � (D, G) + � (G, ?) + 〈∇ℎ(?) − ∇ℎ(G), G − D〉

Example 2.12 (Euclidean regularization). Perhaps the most widely used DGF is the
quadratic regularizer ℎ(G) = G2/2 for G ∈ � . Concretely, taking � = [0,∞) and noting
that ℎ′(G) = G , we have:

0) Prox-domain: �ℎ = �

1) Bregman divergence: � (?, G) = (? − G)2/2
Example 2.13 (Entropic regularization). Another popular choice when � = [0,∞) is
the entropic regularizer ℎ(G) = G logG . In this case, we have ℎ′(G) = 1 + logG , which
gives the following:

0) Prox-domain: �ℎ = ri� = (0,∞)
1) Bregman divergence: � (?, G) = ? log(?/G) + G − ?

which is the Kullback-Liebler divergence.

2.3.2 Gradient descent with Bregman divergences

First, let us see precisely where the distance can appear when we are using projected
gradient descent. Recall that since � is a closed convex set

~ = proj� (G − W∇6(G))

⇔~ = argminD∈�
{

1
2 ‖D − (G − W∇6(G)) ‖

2
2

}
(by Lemma 1.3)

⇔~ = argminD∈�
{
〈−W∇6(G);G − D〉 + 1

2 ‖D − G ‖
2
2

}
We see that a Euclidean distance between D and G appears (coming from the

projection operator and the fact that in order to isolate the gradient in a scalar product,
developing the norm is needed). Naturally, we can replace this distance by the Bregman
divergence introduced above.
De�nition 2.14 (Bregman proximal mapping). From a Bregman regularizer ℎ, we
de�ne the induced Bregman proximal mapping as

%G (~) = argminD∈� {〈~, G − D〉 + � (D, G)} for all G ∈ �ℎ , ~ ∈ Y .

When the Bregman divergence amounts to the Euclidean distance, we obtain the
vanilla projected gradient for ~ = −W∇6(G).

However, the existence of this mapping is not for granted, it strongly relies on the
properties of the Bregman regularizer.
Lemma 2.15. Let ℎ be a Bregman regularizer, then for all G ∈ �ℎ , ~ ∈ Y, the proximal
mapping %G (~) is uniquely de�ned and belongs to �ℎ .

Proof. First, let develop the divergence:

%G (~) = argminD∈� {〈~, G − D〉 + � (D, G)}
= argminD∈� {〈~, G − D〉 + ℎ(D) − ℎ(G) − 〈∇ℎ(G), D − G〉}
= argminD∈� {ℎ(D) − 〈~ + ∇ℎ(G), D〉}

14 Chap. 2 - Gradient and Subgradient methods

Recalling that ℎ is strongly convex with respect to some norm, the reasoning of
Lemma 1.12 can adapted to show that %G (~) is well de�ned and unique.

Furthermore, noting { = ~ + ∇ℎ(G), we get that

ℎ(%G (~)) − 〈{, %G (~)〉 ≤ ℎ(D) − 〈{,D〉

for all D ∈ � . This means that

ℎ(D) ≥ ℎ(%G (~)) + 〈{,D − %G (~)〉

for all D, which implies that { is a subgradient of ℎ at %G (~). Thus, %G (~) ∈ dom mℎ =

�ℎ . �

Now, we can state and analyze our (sub)gradient descent with Bregman divergence,
also called Mirror descent.

G:+1 = %G: (−W:∇6(G:))) (Mirror Descent)

The analysis can be carried out in a similar way to the projected subgradient
descent.
Theorem 2.16. Let 6 be a convex proper lower-semicontinuous function and let � be
a closed convex set. Take ℎ a Bregman regularizer on � . Then, if 6 is di�erentiable on
dom mℎ and ! Lipschitz-continuous on with respect to ‖·‖, the iterates of Mirror Descent
verify

6

(∑:
ℓ=0 W ℓG ℓ∑:
ℓ=0 W ℓ

)
− 6(D) ≤

� (D, G0) +
∑:
ℓ=0 W

2
ℓ!

2

2
∑:
ℓ=0 W ℓ

for any D ∈ � .

Proof. From the optimality conditions of

G:+1 = %G: (−W:∇6(G:)))
= argminD∈� {ℎ(D) − 〈−W:∇6(G:) + ∇ℎ(G:), D〉},

we get that

〈∇ℎ(G:+1) + W:∇6(G:) − ∇ℎ(G:), D − G:+1〉 ≥ 0

for all D ∈ � . Thus,

W: 〈∇6(G:), G: − D〉 ≤ 〈∇ℎ(G:+1) + W:∇6(G:) − ∇ℎ(G:), D − G:+1〉 + W: 〈∇6(G:), G: − D〉
= W: 〈∇6(G:);G: − G:+1〉
+ 〈∇ℎ(G:+1) − ∇ℎ(G:), D − G:+1〉

= W: 〈∇6(G:);G: − G:+1〉
+ � (D, G:) − � (D, G:+1) − � (G:+1, G:)

≤ W:!‖G: − G:+1‖ −
1
2 ‖G:+1 − G: ‖

2

+ � (D, G:) − � (D, G:+1)

≤ max
B
{W:!B −

1
2B

2} + � (D, G:) − � (D, G:+1)

=
W2
:
!2

2 + � (D, G:) − � (D, G:+1)

Numerical Optimization 15

where we successively used the three point identity (Lemma 2.11), the strong convexity
of the Bregman regularizer, and the Lipschitz continuity of 6.

By summing for ℓ = 0, .., : , we get

6

(∑:
ℓ=0 W ℓG ℓ∑:
ℓ=0 W ℓ

)
− 6(D) ≤

∑:
ℓ=0 W ℓ (6(G ℓ) − 6(D))∑:

ℓ=0 W ℓ
≤
� (D, G0) +

∑:
ℓ=0 W

2
ℓ!

2

2
∑:
ℓ=0 W ℓ

.

and the rest of the proof is the same as for subgradient descent (Theorem 2.7). �

2.3.3 Application example: minimization over the simplex

The simplex is the set � = Δ= = {G ∈ ℝ= : G ≥ 0 and
∑=
8=1 G8 = 1}, for which a useful

regularizer is

ℎ(G) =
=∑
8=1

G8 log(G8)

which gives the KL divergence:

� (D, G) =
=∑
8=1
D8 log

(
D8

G8

)
−

=∑
8=1
(D8 − G8).

We can verify that domℎ = Δ= , ℎ is di�erentiable except when one of the coordi-
nates is null, ie. �ℎ = dom mℎ = riΔ= . Finally, ℎ is 1-strongly convex with respect to
the 1-norm ‖ · ‖1, this is known as Pinsker’s inequality.

Then, ? = %G (~) is easily computed since

? = %G (~) = argminD∈� {ℎ(D) − 〈~ + ∇ℎ(G), D〉}

⇔
=∑
8=1
[(1 + log(?8)) − ~8 − (1 + log(G8))] [B8 − G8] ≥ 0 for all B ∈ Δ=

⇔
=∑
8=1
[log(?8) − log(G8 exp(~8))] [B8 − G8] ≥ 0 for all B ∈ Δ=

It is possible to take 2 > 0 and set ?8 = 2.G8 exp(~8)) for all 8
∑=
8=1 B8 − G8 = 0. Since

G8 ≥ 0, the only 2 guaranteeing that ? ∈ Δ= is the one that veri�es

=∑
8=1

?8 =

=∑
8=1

2.G8 exp(~8) = 1

i.e., 2 = 1∑=
8=1 G8 exp(~8)) . Finally, we get that

?8 = %G (~)8 =
G8 exp(~8)∑=
8=1 G8 exp(~8))

.

A gradient step on the simplex with an entropic regularizer is called the multiplica-
tive weights updates and writes

~8 =
G8 exp(−W∇86(G))∑=
9=1 G 9 exp(−W∇96(G))

.

16 Chap. 2 - Gradient and Subgradient methods

2.3.4 What do we gain compared to projected (sub)gradient descent?

Easier projections and constants

For the simplex above, we completely avoided the projection step (which was handled
by the renormalization). In addition, the radius term in the error estimate is in � (D, G0)
instead of ‖D − G0‖2. For the simplex, the former is in log(=) while the latter is in =.

Smoothness with respect to the regularizer

Recall that if

G:+1 = %G: (−W:∇6(G:)))
= argminD∈� {ℎ(D) − 〈−W:∇6(G:) + ∇ℎ(G:), D〉},

we get that

W: (6(G:) − 6(D)) ≤ W: 〈∇6(G:), G: − D〉
≤ 〈∇ℎ(G:+1) + W:∇6(G:) − ∇ℎ(G:), D − G:+1〉 + W: 〈∇6(G:), G: − D〉
= W: 〈∇6(G:);G: − G:+1〉
+ 〈∇ℎ(G:+1) − ∇ℎ(G:), D − G:+1〉

= W: 〈∇6(G:);G: − G:+1〉 − � (G:+1, G:)
+ � (D, G:) − � (D, G:+1)

thus if we have some relative smoothness inequality:

6(D) ≤ 6(G) + 〈∇6(G), D − G〉 + !� (D, G)

then

〈∇6(G:);G: − G:+1〉 ≤ 6(G:) − 6(G:+1) + !� (G:+1, G:)

which gives

W: (6(G:) − 6(D)) ≤ W: (6(G:) − 6(G:+1)) − (1 − W:!)� (G:+1, G:)
+ � (D, G:) − � (D, G:+1)

which implies i) that (6(G:)) is non-increasing (takeD = G:); and ii) better convergence
rates can be obtained (typically in O(1/:)). For more details, see (Bauschke et al., 2017).

BC

CHAPTER 3 Proximal and Bundle methods

Going beyond �rst order can be highly bene�cial in nonsmooth optimization
in order not to rely on the rather loose local information brought by the

subgradient.

In the previous section, we investigated �rst-order methods that could be seen as
iterations of the type

G:+1 = G: − W {: with {: ∈ m� (G:)

⇔ G:+1 = argminD
{

1
2 ‖D − (G: − W {:) ‖

2
2

}
⇔ G:+1 = argminD

{
〈−W {: ;G: − D〉 +

1
2 ‖D − G: ‖

2
2

}
⇔ G:+1 = argminD

{
� (G:) + 〈{: ;D − G:〉 +

1
2W ‖D − G: ‖

2
2

}
.

Recalling that by de�nition (see (1.4))

m� (G:) = {{ : � (D) ≥ � (G:) + 〈{,D − G:〉 for all D ∈ ℝ=} ,

a subgradient step can be seen as:

G:+1 = argminD

� (G:) + 〈{: ;D − G:〉︸ ︷︷ ︸

(a)

+ 1
2W ‖D − G: ‖

2
2︸ ︷︷ ︸

(b)

.

where:
(a) is a linear/�rst-order model that under-approximates � ;
(b) is a quadratic recall/regularization/stabilization term controlled by W .

In this chapter, we will investigate algorithms that minimize stabilized approxima-
tions of the function.

3.1 The Proximity Operator

A central tool to tackle nonsmooth functions is the proximity operator, introduced by
(Moreau, 1965), and denoted proxW� for a step-size W > 0 and a nonsmooth function

18 Chap. 3 - Proximal and Bundle methods

� : ℝ= → ℝ; it is de�ned as the set-valued mapping

proxW� (~) B argminD∈ℝ=
{
� (D) + 1

2W ‖D − ~‖
2︸ ︷︷ ︸

Bd~ (D)

}
.

In the same �avor as for the gradient step, if one takes a proximal step, ie.

G = proxW� (~)

for some W > 0, the de�nition directly gives us

� (G) ≤ � (~) − 1
2W ‖G − ~‖

2 (3.1)

which mirrors (2.1) (the descent inequality of a gradient step on a smooth function)
but for a nonsmooth function.1111Actually, this link can be made

formal since a proximal step is
equivalent to a gradient step on the

Moreau envelope de�ned for all
~ ∈ ℝ= as

4W � (~) = infD∈ℝ= d~ (D) (Moreau,
1965; Yosida, 1988).

With this respect, the proximity operator provides a alternative to the use of
subgradients or nonsmooth gradients since they are not able to provide descent in-
equalities such as (2.1) and (3.1). However, this comes with the cost of having to solve a
minimization subproblem, which in turn question about the existence and uniqueness
of the subproblem solutions.

3.1.1 Properties

First, for convex functions the proximity operator exists and is unique.
Theorem 3.1. Let � : ℝ= → ℝ be a convex lower semi-continuous proper function, then
proxW� (~) is a singleton for any W > 0 and any ~ ∈ ℝ= .

Proof. Since � is convex, d~ is 1
W

-strongly convex. Then, Lemma 1.12 guarantees the
existence and uniqueness of the minimizers of d~ (D) for any D, which means that
proxW� (~) is well-de�ned and unique. �

In addition, we have the following identity which notably shows that

G = proxW� (~)

is equivalent to having

G = ~ − W{ with { ∈ � (G)

and thus the proximal operator can be seen as an implicit subgradient descent step.

Proposition 3.2. Let � : ℝ= → ℝ be a convex lower semi-continuous proper function,
then the following propositions are equivalent:

i) G = proxW� (~);
ii) (~ − G)/W ∈ m� (G);
iii) � (D) ≥ � (G) + 〈(~ − G)/W,D − G〉 for any D ∈ ℝ= .

Proof. This follow directly from Fermat’s rule and the de�nition of a convex subgradi-
ent. �

The above proposition also enables us to show that the proximity operator is
(�rmly) non-expansive.

Numerical Optimization 19

3.1.2 Convergence of the proximal point algorithm

Now, let us investigate the proximal point algorithm:

G:+1 = proxW� (G:) (Proximal Point)

The �rst thing to notice is that the �xed points of this algorithm correspond to the
minimizers of � .

Corollary 3.3. Let � : ℝ= → ℝ be a convex lower semi-continuous proper function,
then G★ is a minimizer of � if and only if G★ = proxW� (G★) (for any W > 0).

Proof. From Proposition 3.2, we have that G★ = proxW� (G★) if and only if 0 ∈ m� (G★)
which is equivalent to G★ being a minimizer of � since it is convex. �

Now, we can analyze the convergence of our proximal point method.

Theorem 3.4. Let � : ℝ= → ℝ be a convex lower semi-continuous proper function.
Then, the Proximal Point method with W > 0 veri�es � (G:+1) ≤ � (G:) and

• (convergence) G: → G★ for some minimizer G★ of � ;

• (rate) � (G:) − � (G★) ≤ ‖G
★−G0 ‖2
2W: .

Proof. We left the iterates convergence proof as an exercise, its reasoning is exactly
the same as the one for the gradient algorithm. For the rate, since G:+1 = proxW� (G:),

� (G:+1) +
1

2W ‖G:+1 − G: ‖
2 ≤ � (G:)

and thus � (G:+1) ≤ � (G:).
Since G:+1 = proxW� (G:), it is the minimum of the 1/W-strongly convex function

dG: ,12 12If G★ is the minimizer of a
`-strongly convex function � , then
0 ∈ m� (G★) and (1.5) gives us that
� (G★) ≤ � (D) − `

2 ‖D − G
★ ‖2.

thus

� (G:+1) +
1

2W ‖G:+1 − G: ‖
2 ≤ � (G★) + 1

2W ‖G
★ − G: ‖2 −

1
2W ‖G:+1 − G

★‖2

and by summing this inequality from C = 0, .., : − 1, we get

:−1∑
C=0

(
� (GC+1) − � (G★)

)
≤ 1

2W

:−1∑
C=0
(‖G★ − GC ‖2 − ‖GC+1 − G★‖2) −

:−1∑
C=0

1
2W ‖GC+1 − GC ‖

2

≤ 1
2W ‖G

★ − G0‖2 .

Now, since � (G:+1) ≤ � (G:), we get that

:
(
� (G:) − � (G★)

)
≤

:−1∑
C=0

(
� (GC) − � (G★)

)
≤ 1

2W ‖G
★ − G0‖2

which gives the result. �

20 Chap. 3 - Proximal and Bundle methods

3.1.3 Examples of closed form expressions

Example 3.5 (Squared norm). For � (G) = 1
2 ‖G ‖

2, the proximity operator can be com-
puted explicitly. Since d~ : D ↦→ � (D) + 1

2W ‖D − ~‖
2 is strongly convex, there is a

unique minimizer G and it veri�es ∇d~ (G) = 0. Thus G + 1
W
(G − ~) = 0 which implies

G = ~/(1 + W):

proxW 1
2 ‖ · ‖2
(~) = ~

1 + W .

Example 3.6 (Projection). In optimization, it is useful to de�ne the indicator of set
� ⊂ ℝ= as the function]� : ℝ= → ℝ such that1313This is di�erent from the

indicator �� in probability which is
equal to 1 if � is true and 0

elsewhere.
]� (G) =

{
0 if G ∈ �
+∞ else .

By noticing that the inner minimization in ℝ= amounts to minimizing only over �
since otherwise the inner value is +∞, this exactly gives the de�nition of the projection
operator. Thus, for � ⊂ ℝ= a non-empty closed convex set and any W > 0,

proxW]� (~) = proj� (~).

Note that the stepsize does not play any role here.
Example 3.7 (Absolute value). The proximity operator of the absolute value admits a
closed form expression: for ~ ∈ ℝ and W > 0,

proxW | · | (~) =

~ + W if ~ < −W
0 if − W ≤ ~ ≤ W
~ − W if ~ > W

A very useful calculus rule for the proximity operator is that if � is separable:1414By coordinates, or blocks of
coordinates.

� (G 1, G2, .., G<) =
<∑
8=1

� 8 (G8),

then the proximity operator of � can be obtained from those of the (� 8):

proxW� (~1, ~2, .., ~<) =

proxW� 1 (~1)
proxW� 2 (~2)

...

proxW�< (~<)

.

Example 3.8 (ℓ1 norm). The ℓ1-norm is de�ned on ℝ= as ‖G ‖1 =
∑=
8=1 |G8 |. Using this

separability, the proximity operator at ~ ∈ ℝ= and W > 0,

proxW ‖ · ‖1 (~) =

proxW | · | (~1)
proxW | · | (~2)

...

proxW | · | (~<)

.

For more examples, see (Beck, 2017, Chap. 6) and the website proximity-operator.net.

http://proximity-operator.net

Numerical Optimization 21

3.1.4 When no closed form is available

Computing the proximity operator amounts to solving a new problem at each iteration.
However, since the problem is made more strongly convex, this new subproblem may
be easier to solve. However, this leads to a bi-level implementation. In the following
section, we see an intermediate approach that allows not to compute a minimizer of
the full function but rather of a piecewise linear approximation.

3.2 Bundle methods

A whole class of method is based on approximating the function using a bundle of past
information and minimizing this approximation to provide a new point of query for
enriching our approximation.

3.2.1 Cutting planes

Essentially, the Subgradient descent uses only once the subgradient information. In
other words, the model of � used at iteration : is simply

�̌ : D ↦→ � (G:) + 〈{: ;D − G:〉.

An alternative is to use all the information before : , ie.

� ℓ = � (G ℓ) and {ℓ ∈ m� (G ℓ) for ℓ = 0, .., :

to form a cutting plane model

�̌: : D ↦→ max
ℓ=0,..,:

{� ℓ + 〈{ℓ ;D − G ℓ〉} .

The function �̌: is
• convex and piecewise linear since this is a maximum of linear functions
• always below � : �̌: (G) ≤ � (G) for all G
• increasing with : : �̌: (G) ≤ �̌:+1 (G) for all G
Thus, minimizing �̌: is equivalent to solving the linear problem

min
G,C

C

s.t. � ℓ + 〈{ℓ ;G − G ℓ〉 ≤ C for ℓ = 0, .., :

however, this problem may be unbounded, so we need to add a compact convex
constraint.

This leads to the cutting planes method

G:+1 = argminD∈� �̌: (D) (Cutting planes)
�:+1 = � (G:+1)
{:+1 ∈ m� (G:+1)

where at each iteration a constrained linear cutting plane problem has to be solved.
Theorem 3.9. Let � be a convex proper lower semi-continuous function and let � be a
compact convex set. Assume that � is" Lipschitz and that ‖m� (G)‖ ≤ " for all G ∈ � .

22 Chap. 3 - Proximal and Bundle methods

Then, for any tol > 0, after a �nite number : of iterations

� (G:) ≤ �̌:−1 (G:) + tol

and then,

� (G:) ≤ min
�
� + tol.

The theorem thus grants convergence to a minimizer up to some tolerance and
also provides a way to stop the algorithm.

Proof. Part 1: We know that �̌: (G:+1) ≤ min� � since G:+1 is the minimizer of the
lower model.

Assume for contradiction that �̌: (G:+1) ≤ min� � −� with� > 0 for all : . Since�
is compact, we can extract a converging subsequence (G: (ℓ)) from (G:). Take ℓ large
enough so that ‖G: (ℓ+1) − G: (ℓ) ‖ ≤ �/(2"). Then,

min
�
� −� ≥ �̌: (ℓ+1)−1 (G: (ℓ+1))

≥ �̌: (ℓ) (G: (ℓ+1)) (since �̌: is non-decreasing)
≥ �: (ℓ) + 〈{: (ℓ) ;G: (ℓ+1) − G: (ℓ)〉
≥ �: (ℓ) −" ‖G: (ℓ+1) − G: (ℓ) ‖
≥ min

�
� −�/2

which is a contradiction thus �̌: (G:+1) → min� � .
Part 2: Now, � (G:) ≥ min� � by de�nition.

Similarly, assume for contradiction that � (G:) ≥ min� � +� with � > 0 for all :
and use the same subsequence as above. Then,

min
�
� +� ≤ � (G: (ℓ))

= �̌: (ℓ) (G: (ℓ))
= �̌: (ℓ) (G: (ℓ)) − �̌: (ℓ) (G: (ℓ+1)) + �̌: (ℓ) (G: (ℓ+1))
≤ " ‖G: (ℓ) − G: (ℓ+1) ‖ + �̌: (ℓ+1)−1 (G: (ℓ+1)) (since �̌: (ℓ) ≤ �̌: (ℓ+1)−1)
≤ �/2 +min

�
� (since �̌: (G:+1) ≤ min

�
� for all :)

which is again a contradiction thus � (G: (ℓ)) → lim inf � (G:) = min� � .
Part 3: Finally, putting the two parts above together, we know that for any tol > 0,
by taking ℓ su�ciently large, we have

�̌: (ℓ)−1 (G: (ℓ)) ≥ min
�
� − tol2 and � (G: (ℓ)) ≤ min

�
� + tol2

and thus

� (G: (ℓ)) ≤ min
�
� + tol2 ≤ �̌: (ℓ)−1 (G: (ℓ)) + tol

which is our stopping criterion. Thus, the algorithm stops in �nite time.

Numerical Optimization 23

Now, we have

� (G: (ℓ)) ≤ �̌: (ℓ)−1 (G: (ℓ)) + tol
≤ �̌: (ℓ)−1 (G) + tol for any G ∈ � (by de�nition of G: (ℓ))
≤ � (G) + tol for any G ∈ � (since �̌: (ℓ)−1 is a lower-model)

which means that � (G: (ℓ)) ≤ min� � + tol, which is our result. �

Even though they o�er rather good convergence properties and can be very e�cient
if the function is V-shaped or polyhedral, the cutting planes methods also su�ers from
numerical instability, increasing computational complexity with the iterations, and
can be particularly bad at minimizing some functions.

For instance, consider the function � (G) = G2/2 in one dimension.15 15This example is taken from
(Hiriart-Urruty and Lemaréchal,
1993a, Chap. XV.1.1).

Then, if G0 = 1,
G 1 = −Y < 0, then G2 = (1 − Y)/2. This means that the closest G 1 to the solution, the
further G2. This is a typical instability behavior. It is also not a descent method since
the functional value can increase at each iteration.

The knowledge of the past values (� ℓ , G ℓ , {ℓ) is called a bundle of information and
gives its name to the general class of algorithms using them. We will now see how
these methods can be stabilized.

3.2.2 Proximal bundle

Now, we give an example of method that uses bundles of information but features:
• a quadratic recall term to take care of the instability behavior;
• a descent test to have a descent method.
The proximal bundle method can be written as

G:+1 = argminD∈� �̌: (D) +
1

2W ‖D − Ĝ: ‖
2 (Proximal Bundle)

X:+1 = � (Ĝ:) − �̌: (G:+1) −
1

2W ‖G:+1 − Ĝ: ‖
2

�:+1 = � (G:+1)
{:+1 ∈ m� (G:+1)

Ĝ:+1 =

{
G:+1 if � (G:+1) ≤ � (Ĝ:) − ^X:+1 (serious step)
Ĝ: otherwise (null step)

First, notice that since

−X:+1 = �̌: (G:+1) +
1

2W ‖G:+1 − Ĝ: ‖
2 − � (Ĝ:)

≤ �̌: (Ĝ:) +
1

2W ‖Ĝ: − Ĝ: ‖
2 − � (Ĝ:) = �̌: (Ĝ:) − � (Ĝ:) ≤ 0,

we indeed have X:+1 ≥ 0.
Using the same techniques as before, one can prove that i) there cannot be in�nitely

many consecutive null steps; and ii) the sequence (Ĝ:) minimizes � on � .
Theorem 3.10. Let � be a convex proper lower semi-continuous function and let � be
a closed convex set. Assume that � is" Lipschitz and that ‖m� (G)‖ ≤ " for all G ∈ � .

24 Chap. 3 - Proximal and Bundle methods

Then, for any W > 0, ^ ∈ (0, 1), and tol > 0, after a �nite number : of iterations

� (Ĝ:) ≤ min
�
� + tol.

BC

Bibliography

Heinz H Bauschke and Patrick L Combettes. Convex analysis and monotone operator
theory in Hilbert spaces. Springer Science & Business Media, 2011.

Heinz H Bauschke, Jérôme Bolte, and Marc Teboulle. A descent lemma beyond lipschitz
gradient continuity: �rst-order methods revisited and applications. Mathematics of
Operations Research, 42(2):330–348, 2017.

Amir Beck. First-order methods in optimization, volume 25. SIAM, 2017.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations
and Trends® in Machine Learning, 8(3-4):231–357, 2015.

J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms.
Springer Verlag, Heidelberg, 1993a. Two volumes.

J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms.
Springer Verlag, Heidelberg, 1993b. Two volumes.

Jean-Jacques Moreau. Proximité et dualité dans un espace Hilbertien. Bull. Soc. Math.
France, 93(2):273–299, 1965.

Yurii E Nesterov. A method for solving the convex programming problem with
convergence rate $ (1/:2). In Dokl. Akad. Nauk SSSR, volume 269, pages 543–547,
1983.

R.T. Rockafellar and R.J.-B. Wets. Variational Analysis. Springer Verlag, Heidelberg,
1998.

Kôsaku Yosida. Functional analysis, volume 123. springer, 1988.

	1 Convexity
	1.1 Convex sets
	1.2 Convex functions

	2 Gradient and Subgradient methods
	2.1 Smoothness and gradient descent
	2.2 Nonsmooth (sub)gradient descent
	2.3 Non-Euclidean gradient descent

	3 Proximal and Bundle methods
	3.1 The Proximity Operator
	3.2 Bundle methods

