
Refresher course on Numerical Matrix Analysis
and Optimization

Franck Iutzeler & Jérôme Malick

2021

Contents

Chapter 1 Introduction 1

Chapter 2 Matrix Analysis 5

2.1 Matrices . 5
2.2 Linear Systems . 7
2.3 Spectral Decompositions . 8
2.4 Matrix Norms . 10

Chapter 3 Optimization 11

3.1 Recalls on di�erentiation . 11
3.2 What is optimization? . 14
3.3 The gradient algorithm . 17
3.4 To go further . 19

Tutorial 1 Matrix Analysis 23

1.1 Decompositions . 23
1.2 Linear Systems Resolution with applications to Regression 23
1.3 PageRank . 24

Tutorial 2 Optimization 27

2.1 Using the de�nitions . 27
2.2 Smoothness and Optimization . 28

CHAPTER 1 Introduction

Why do we have this preliminary course in numerical matrix analysis and
optimization ?

Matrix and optimization are at the heart of computational mathematics, with
applications everywhere, e.g.

Machine Learning Energy Management Signal/Image Processing

Mix between

theory

meaning of a problem;
existence/uniqueness of
solution; math properties

and

practice

Computability, speed, and use
of standard libraries to solve
numerically these problems.

This short course focuses on matrix analysis and optimization in action with
exercises inspired from:

• Google PageRank, Image processing
• Machine learning applications (regression, classi�cation)

This course is not a standard course on linear algebra or optimization
• not a math course

basic knowledge is assumed (take a look to your undergraduate courses)

• not an algorithmic course
basic programming skills are expected (check-out the Python tutorial at https:
//github.com/iutzeler/refresher-course)

This course is

• a review of basics of matrix analysis – from numerical perspective
• a short overview of numerical optimization
• includes quick recalls from matrix calculus and di�erential calculus

https://github.com/iutzeler/refresher-course
https://github.com/iutzeler/refresher-course

2 Chap. 1 - Introduction

Contents

Matrix Analysis

1. Basics on matrices
• Matrices and operations between matrices
• Operations on matrices : transpose, trace, determinant
• Special matrices (triangular, symmetric, orthogonal, invertible, SDP)
• Decomposition : (P)LU, QR

2. Linear systems
• Invertible systems, linear least-squares, linear least-norm
• Easy systems for special matrices (triangular, orthogonal,...)
• Solving systems : by factorization, by iterative methods, by optimization
• Practical considerations (preconditioning, software,...)

3. Spectral decompostions
• Eigenvalues : real, complex, spectral radius
• Eigenvalue decomposition, geometric interpretation
• Singular value decomposition : SVD, compact SVD, link with eigenvalues

+ Note on matrix norms : standard norms, induced/operator norms, connection
with spectral radius

Numerical optimization

1. Introduction : what is optimization ?
• Optimization problems : de�nitions, examples, �rst properties
• How to solve an optimization problem : exact/approximate solutions, di�-

cult/impossible in general, "easy" for linear... and convex problems
2. Convexity and optimization

• Convex sets and functions, examples
• Convex optimization problems : global solutions, convex set of solutions
• Recognizing convexity: de�nition, convexity-preserving operations, Hes-

sian
3. The gradient algorithm

• Unconstrained convex di�erentiable problems, optimality conditions
• Convergence theory vs numerical experiments
• Beyond gradient : acceleration, 2nd order, Newton

+ Recalls on derivatives : gradient, Hessian, chain rule, examples.

3

Organization

Teachers

• Franck Iutzeler – Assistant Professor in Applied Maths
http://www.iutzeler.org – franck.iutzeler@univ-grenoble-alpes.fr

• Gilles Bareilles – TA, PhD Candidate in Applied Maths
http://gbareilles.fr – gilles.bareilles@univ-grenoble-alpes.fr

Course

This is mainly a blackboard course, with room for discussions and clari�cations.

The main points of the course are recalled in Chapters 2 and 3.

Exercise sessions

They are present to give you the opportunity to manipulate the notions on simple
examples. no fancy maths and no computations - they will be done on machines

You can �nd the exercises in Tutorials 1 and 2.

Practical sessions

In these, you will manipulate the objects seen in the course in Python.

The practical sessions are based on Jupyter notebooks available at https://
github.com/iutzeler/refresher-course

Useful links & References

• Horn, R. & Johnson, C.: Matrix analysis.
• Boyd, S. & Vandenberghe, L.: Convex optimization.
• Rockafellar, R.T. & Wets, J.-B.: Variational Analysis.
• Bubeck, S.: Convex Optimization: Algorithms and Complexity, https:
//arxiv.org/abs/1405.4980.

• Hiriart-Urruty J.-B., Lemaréchal C.: Fundamentals of convex analysis.
• Stephen’s Boyd website (check the courses, quizzes, and exercises) http://
web.stanford.edu/~boyd/

BC

http://www.iutzeler.org
http://gbareilles.fr
https://github.com/iutzeler/refresher-course
https://github.com/iutzeler/refresher-course
https://arxiv.org/abs/1405.4980
https://arxiv.org/abs/1405.4980
http://web.stanford.edu/~boyd/
http://web.stanford.edu/~boyd/

4 Chap. 1 - Introduction

CHAPTER 2 Matrix Analysis

Linear Algebra is at the core of most numerical methods. It plays an essen-
tial role in applied mathematics, especially in data science. In this chapter,

we review the basic notions of matrix analysis from a numerical perspective.

2.1 Matrices

2.1.1 Matrix operations

A matrix is an<(lines/rows) × =(columns) array of real1 1in this coursenumbers. The set of all< × =
real matrices is denoted by ℝ<×= (or sometimesM<×= (ℝ)). If< = =, the matrix is
said to be square.

� = (�8 9)8=1,..,<;9=1,..,=

Operations between matrices:
• Addition
• Product with a scalar
• Product between matrices
Special cases:
• Matrix/vector product
• Matrix powers
Operations on matrices:
• Transposition
• Trace
• Determinant

2.1.2 Special matrices

• Identity

� ∈ ℝ=×= : �88 = 1 and �8 9 = 0 for 8 ≠ 9

�� = � for any �; det(�) = 1; trace(�) = =

6 Chap. 2 - Matrix Analysis

• Diagonal

� ∈ ℝ=×= : �8 9 = 0 for 8 ≠ 9

det(�) = ∏
8 �88

• Triangular

) ∈ ℝ=×= :)8 9 = 0 for 8 > 9

det()) = ∏
8)88

• Symmetric

(∈ ℝ=×= : (= (>

e.g. �>� is symmetric.
• Orthogonal

& ∈ ℝ=×= : &>& = �

the column of & are unitary and orthogonal, e.g. permutation matrices.
• Invertible (a.k.a. nonsingular)

� ∈ ℝ=×= : ∃� s.t. �� = �� = �

if � exists, it is unique and called �−1 the inverse of �.
� invertible⇔ det(�) ≠ 0.
�, � invertible⇒ �� invertible with (��)−1 = �−1�−1.

• positive (semi-)de�nite

� ∈ ℝ=×= : symmetric + G>�G > 0 ∀G

semi-de�nite if the inequality is not strict. If � is positive de�nite, then it is
invertible.

2.1.3 Factorizations

• LU

For � invertible, � = %!*

with % a permutation, ! lower-triangular,* (upper-)triangular.
• Cholesky

For � positive de�nite, � = !!>

with ! lower-triangular.
• QR

For any �, � = &'

with & orthogonal, ' (upper-)triangular.

Numerical Optimization 7

2.2 Linear Systems

2.2.1 Linear equations

Let � ∈ ℝ<×= and 1 ∈ ℝ< , the problem of �nding G ∈ ℝ= such that �G = 1 appears as
a subproblem in virtually all branches of numerical mathematics (ODE, optimization,
statistics, etc.).

This problem can be seen as �nding the coe�cients G of a linear combination of
the columns of � giving 1.

Vocabulary reminder:

• The rank of � is the number of linearly independent columns
• The set �<(�) = {�G : G ∈ ℝ=} ⊂ ℝ< is called the image of �
• The set 4A (�) = {G ∈ ℝ= : �G = 0} ⊂ ℝ= is called the kernel of �
• If< = = and (rank(�) = = or �<(�) = ℝ= or 4A (�) = {0}), � is invertible i.e.

there is an inverse matrix �−1 such that ��−1 = �−1� = �

Di�erent situations can arise:

• There might might be no solutions (if �<(�) ≠ ℝ<)⇒ change the problem to
least-squares minG ‖�G − 1‖2

• There might might bemultiple solutions (if 4A (�) ≠ {0})⇒ change the problem
to least norm minG ‖G ‖ s.t. ‖�G − 1‖2

• If � is invertible, G = �−11 is the unique solution

How to compute a solution to one of the above problems?

2.2.2 “Easy” cases

The problem of �nding G such that �G = 1 is easy for certain matrices:

• If you have the inverse �−1; however computing �−1 is roughly = times harder
than solving �G = 1 so this should never be done numerically2 2Use solve(A,b) and not Ainv =

inv(A); Ainv.dot(b).
.

• Diagonal

• Triangular

• Orthogonal

If we are not in an easy case, we need to be a bit more inventive.

8 Chap. 2 - Matrix Analysis

2.2.3 3 types of algorithms for solving linear systems

1. using pre-computed factorizations
If � = �1�2 eg. LU or QR, then

�G = 1

⇔�1 �2 G︸︷︷︸
:=~

= 1

⇔
{
�1 ~ = 1

�2 G = ~

2. iterative methods (�xed-point algorithm)
Choose<,= such that � = " − #
eg. for � = �(diagonal) +! (lower part) +* (upper part), Jacobi takes " = �

and # = −! −* , Gauss-Siedel takes " = � + ! and # = −* .
Then

�G = 1

⇔(" − #)G = 1

⇔"G = #G + 1

Initialize G0 and iteratively set G:+1 as a solution of "G = #G: + 1 (" should be
easy)

3. optimization methods

�G = 1

⇔�G − 1 = 0

Find G that minimizes ‖�G − 1‖ (see in the second part).
So what to do in practice?
• In most cases, trust your solver !
• Preconditionning might help: solve "�G = "1 instead with " “reducing the

di�erence between columns/lines” (eg. standard scaler in ML)
• Otherwise, use optimization/iterative methods and use the structure of your

matrix

2.3 Spectral Decompositions

2.3.1 Eigenvalues

For a squared matrix � ∈ ℝ=×= , a scalar _ ∈ ℝ or ℂ is an eigenvalue of � if33eigenvalues are complex in
general even if � is real

∃G ≠ 0 �G = _G

and a vector G satisfying the above relation is called an eigenvector (associated with _).
It is not unique, and globally means that in the direction of G , � is simply a dilatation.
The set of all G such that �G = _G (0 included) is called the eigenspace associated with
_.

There are between 1 and = distinct eigenvalues; an important quantity being the
spectral radius de�ned as d (�) = max{|_ | : _ is an eigenvalue of �}.

Numerical Optimization 9

• There are many applications (dynamical systems, graphs, image processing, etc.)
and lot of theory surrounding eigenvalues

• �G = _G ⇔ (� − _�)G = 0⇔ G ∈ 4A (� − _�)

2.3.2 Eigenvalue decomposition for symmetric matrices

For a symmetric square matrix � ∈ ℝ=×= , one can say a bit more.
For each _, such that ∃G ≠ 0 �G = _G ⇔ G ∈ 4A (� − _�) the associated

eigenspace has dimension<_ = = − rank(� − _�), called the (geometric) multiplicity
of _, and thus one can extract<_ independent eigenvectors from it.

In the symmetric case, there are exactly = eigenvalues counting multiplicities4 4If � is not symmetric, the sum of
all (geometric) multiplicities may
not be = and such a decomposition
may not exist.

(that
take between 1 and = distinct values) and � admits an eigendecomposition, that is

� = %�%> =

=∑
8=1

_8?8?
>
8

where % ∈ ℝ=×= is orthogonal and � ∈ ℝ=×= is diagonal. � contains the = eigenval-
ues of � and % contains = associated eigenvectors (orthonormalized, with vector 1
corresponding to eigenvalue 1 etc., without any particular order for the eigenvalues).

• The eigenvalues of a symmetric matrix are real

Proof. _〈G ;G〉 = 〈_G ;G〉 = 〈�G ;G〉 = 〈G ;�G〉 = 〈G ; _G〉 = 〈_G ;G〉 = _〈G ;G〉 �

• If � is furthermore positive (semi-)de�nite, the eigenvalues are positive (non-
negative)

Proof. 0 < 〈�G ;G〉 = _‖G ‖2 �

• in the non-symmetric case, the singular value decomposition is often used, it is
linked to the eigendecomposition of the symmetric matrix �>�

2.3.3 Singular Value Decomposition (SVD)

A real matrix � ∈ ℝ<×= admits a singular value decomposition

� = *�+> =

min{<,=}∑
8=1

f8D8{
>
8

where* ∈ ℝ<×< and + ∈ ℝ=×= are orthogonal and � ∈ ℝ<×= (same dimension as �)
is “diagonal” with non-negative entries (f8).

• The (f8) are the singular values of �. Thy are related to the eigenvalues of �>�:

�>� = +�>* >*�+>

= +�>�+>

thus f8 (�)2 = _8 (�>�) (≥ 0 and real since �>� is positive semi-de�nite)
• The rank of � is equal to the number A of non-zero singular values of �, i.e.
A = rank(�) ≤ min{<,=}.

10 Chap. 2 - Matrix Analysis

• In practice, we do not need information (vectors) corresponding to null singular
values. It is common to use55In Python, this is done with the

option full_matrices=False
the reduced/compact SVD

� =

rank(�)∑
8=1

f8D8{
>
8 = *̃ �̃+̃>

where *̃ ∈ ℝ<×A and +̃ ∈ ℝA×= have orthonormal columns and �̃ ∈ ℝA×A is
diagonal with positive entries (f8).

2.4 Matrix Norms

• Norms in ℝ=

– ‖UG ‖ = |U |‖G ‖ (homogeneous)
– ‖G + ~‖ ≤ ‖G ‖ + ‖~‖ (triangle inequality or sub-additivity)
– ‖G ‖ ≥ 0 and ‖G ‖ = 0⇔ G = 0 (de�nition)

• Matrix Norms have to verify the additional property66One can also get norms on
matrices by taking the norm of its

entries viewed as a vector, but it
may not be sub-mutliplicative eg.

‖G ‖∞ = max8 |G8 |.

– ‖��‖ ≤ ‖�‖‖�‖ (sub-multiplicativity for squared matrices)
• Typical matrix norms include:

– the Frobenius norm

‖�‖� =

√√√<,=∑
8, 9=1
|�8, 9 |2 =

√
trace�>� =

√√√min{<,=}∑
8=1

f2
8
(�)

– Induced/Operator norms

‖�‖U,V = sup
{ ‖�G ‖V
‖G ‖U

: G ≠ 0
}

where for � ∈ ℝ<×= , ‖ · ‖U is a norm on ℝ= , ‖ · ‖V is a norm on ℝ< . For
such a norm, we have ‖�G ‖V ≤ ‖�‖U,V ‖G ‖U . The most common case is
‖�‖2,2 = fmax (�).

– Schatten norms

‖�‖∗? =

(min{<,=}∑
8=1

f
?

8
(�)

) 1
?

They are vector norms on the singular values of �. ‖�‖∗∞ = ‖�‖2,2 and
‖�‖∗1 (also called nuclear norm) are the most frequently used.

• Gelfand’s formula: For any matrix norm, d (�) = lim:→∞ ‖�: ‖1/:

BC

CHAPTER 3 Optimization

Optimization is everywhere in science and industry. It is at the core of the
most recent advances in Machine Learning

3.1 Recalls on differentiation

Di�erentiability plays a central role in optimization. This is somehow a special case of
the notion of subgradient de�ned above but the treatment of di�erentiable functions
will be rather di�erent algorithmically. In order to promote even more this di�erence,
we will adopt the following convention for the name of generic functions: (i) 5 if it is
di�erentiable; (ii) 6 if it is not assumed di�erentiable; and (iii) 5 if the di�erentiability
does not play a role in the result.

3.1.1 Derivative of a function from ℝ to ℝ

In this basic case, the notion of di�erentiability is quite direct.
De�nition 3.1. A function 5 : V ⊂ ℝ → ℝ de�ned on a open subset7 7At �rst read, you can take V as

the full space to �x ideas
V of ℝ is

di�erentiable at G ∈ V if the derivative (ie. the limit)

5 ′(G) := lim
ℎ→0

5 (G + ℎ) − 5 (G)
ℎ

exists. This function 5 is di�erentiable onV if it is di�erentiable at every point ofV .

This de�nition is equivalent to the existence of a real number 5 ′(G) such that

5 (G + ℎ) = 5 (G) + 5 ′(G)ℎ + > (|ℎ |).

Note that we now only consider an open subset of ℝ over which the function is
�nite-valued. If 5 takes in�nite values on any open set containing G , then it cannot be
di�erentiable at that point.

In addition, if 5 is di�erentiable at G , it is necessarily continuous at G . The derivative
5 ′ is itself a function fromV → ℝ and may also be continuous (onV), in which case,
we say that 5 is continuously di�erentiable, often denoted C1 (V) or simply C1.

The derivative of the derivative is called the second-order derivative, noted 5 ′′. If
it exists and is continuous, we say that 5 is C2. Iterating, we can easily de�ne higher
order derivatives and di�erentiability classes up to C∞.

12 Chap. 3 - Optimization

3.1.2 Gradient of a function from ℝ= to ℝ

Let us now consider a function de�ned over an open subsetV of ℝ=

5 : V ⊂ ℝ= −→ ℝ

G = [G1, .., G=] ↦−→ 5 (G) .

For every G ∈ V , the 8-th partial function is de�ned onV ′ ⊂ ℝ as

q8,G : V ′ −→ ℝ

D ↦−→ 5 (G1, .., G8−1, D, G8+1, .., G=)
,

and since this function falls into the case of the previous section, we can study its
di�erentiability. If for all 8 , q8,G is di�erentiable at G8 , then, we will say that 5 is
di�erentiable at G .
De�nition 3.2. A function 5 : V ⊂ ℝ= → ℝ de�ned on a open subset V of ℝ= is
di�erentiable at G ∈ V if for all 8 = 1, .., =, the derivative (ie. the limit)

m5

mG8
(G) := lim

ℎ→0

q8,G (G8 + ℎ) − q8,G (G8)
ℎ

exists. This function 5 is di�erentiable onV if it is di�erentiable at every point ofV .
Further, if 5 is di�erentiable on V , we de�ne its gradient as the V ⊂ ℝ= → ℝ=

mapping

∇5 (G) =

m5

mG1
(G)
...

m5

mG=
(G)

 .
Similar to what was obtained in the one-dimensional case, we have a �rst-order

development of 5 at a point G at which 5 is di�erentiable:

5 (G + ℎ) = 5 (G) + 〈∇5 (G), ℎ〉 + > (‖ℎ‖).

Remark 3.3. This development can actually be used to compute the gradient itself.
Indeed if one �nds a vector { such that

5 (G + ℎ) = 5 (G) + 〈{, ℎ〉 + > (‖ℎ‖),

then { is exactly the gradient of 5 at G : ∇5 (G). J

3.1.3 Jacobian of a mapping ℝ< to ℝ=

Now, let us consider the case of a mapping (ie. a multi-valued function) from ℝ< to ℝ=

2 : V ⊂ ℝ< −→ ℝ=

G = [G1, .., G<] ↦−→ 2 (G) = [21 (G), .., 2= (G)]
.

A mapping is di�erentiable if and only if each of its component functions is di�er-
entiable as formalized in the following de�nition.
De�nition 3.4. A mapping 2 : V ⊂ ℝ< → ℝ= de�ned on a open subset V of ℝ<
is di�erentiable at G ∈ V if for all 8 = 1, .., =, and all 9 ∈ 1, ..,<, the derivative m28

mG 9
(G)

exists. This mapping 2 is di�erentiable onV if it is di�erentiable at every point ofV .

Numerical Optimization 13

Further, if 2 is di�erentiable onV , we de�ne its Jacobian as theV ⊂ ℝ< → ℝ= ×ℝ<
mapping8 8The name comes from Carl Gustav

Jacob Jacobi (1804-1851), a German
mathematician.

�2 (G) =

∇21 (G)>

...

∇2= (G)>

 =

m21
mG1
(G) . . .

m21
mG<
(G)

...
. . .

...
m2=
mG1
(G) . . .

m2=
mG<
(G)

 .
While, we do not often di�erentiate mappings, we often di�erentiate compositions

of a function and mapping. For this, the chain rule gives a e�cient formula based on
the respective gradients and Jacobian of the functions.
Lemma 3.5 (Chain rule). Take a function 5 : V ′ ⊂ ℝ= → ℝ and a mapping 2 : V ⊂
ℝ< → ℝ= . If 2 is di�erentiable at G ∈ V and 5 is di�erentiable at 2 (G) ∈ V ′, then 5 ◦ 2
is di�erentiable at G and its gradient can be obtained by9 9

5 ◦ 2 (G) = 5 (2 (G))

∇5 ◦ 2 (G) = �2 (G)>∇5 (2 (G)). (Chain rule)

The �rst-order development of 5 ◦ 2 is thus

5 ◦ 2 (G + ℎ) = 5 ◦ 2 (G) + 〈�2 (G)>∇5 (2 (G)), ℎ〉 + > (‖ℎ‖).

3.1.4 Second-order di�erentiability

The derivative of the gradient, that is the second-order derivative of the function, is
often used in numerical optimization methods.
De�nition 3.6. A function 5 : V ⊂ ℝ= → ℝ de�ned on a open subset V of ℝ is
twice di�erentiable at G ∈ V if its gradient is di�erentiable at G ∈ V .
Further, if 5 is twice di�erentiable on V , we de�ne its Hessian as the V ⊂ ℝ= →
ℝ= ×ℝ= mapping10 10also denoted by � 5 , its name

comes from Ludwig Otto Hesse
(1811-1874), a German
mathematician.∇2 5 (G) = �∇5 (G) =

m2 5
(mG1)2 (G) . . .

m2 5
mG1mG=

(G)
...

. . .
...

m2 5
mG1mG=

(G) . . .
m2 5
(mG=)2 (G)

 .
This de�nition comes with the following important property.

Lemma 3.7. The Hessian of a function 5 : V ⊂ ℝ= → ℝ at G ∈ V is a symmetric
matrix.

Proof. This follows directly from Schwarz’s theorem.11 11Hermann Schwarz (1843-1921),
German mathematician, was the
�rst to propose a rigorous proof of
the symmetry of second derivatives
(also called the equality of mixed
partials).

�

3.1.5 Fréchet derivatives [★]
The notion of Fréchet derivatives generalizes the notion of gradient and Jacobian seen
above. A mapping 2 : V ⊂ ℝ< → ℝ= de�ned on a open subset V of ℝ< is Fréchet
di�erentiable at G ∈ V if there exists a linear operator

D 2 (G) : ℝ< −→ ℝ=

ℎ ↦−→ D 2 (G) [ℎ]

14 Chap. 3 - Optimization

called the (Fréchet) di�erential of 2 at G ,1212from Maurice René Fréchet
(1878-1973), a French

mathematician.

such that

2 (G + ℎ) = 2 (G) + D 2 (G) [ℎ] + > (‖ℎ‖)

or, equivalently lim
ℎ→0

‖2 (G + ℎ) − 2 (G) − D 2 (G) [ℎ] ‖
‖ℎ‖ = 0.

Then, if 5 is a V ⊂ ℝ= → ℝ function, the gradient of 5 can be de�ned as the
unique element of ℝ= that satis�es

D 5 (G) [ℎ] = 〈∇5 (G), ℎ〉 for all ℎ ∈ ℝ=

and thus, it can also be de�ned as

∇5 (G) = {{ : 5 (D) = 5 (G) + 〈{,D − G〉 + > (‖D − G ‖) for all D ∈ ℝ=} .

The same can be done for mappings and the Jacobian of 2 can be de�ned as the
unique ℝ= ×ℝ< operator �2 (G) such that D 2 (G) [ℎ] = �2 (G)ℎ.

Finally, the Chain rule for di�erentials is

D(5 ◦ 2) (G) [ℎ] = D 5 (2 (G)) [D 2 (G) [ℎ]] = 〈∇5 (2 (G)), �2 (G)ℎ〉 = 〈�2 (G)>∇5 (2 (G)), ℎ〉.

3.2 What is optimization?

3.2.1 Optimization problems

Given 5 : ℝ= → ℝ, the objective function, and� ⊂ ℝ= , the constraint set, the problem of
minimizing a function 5 over a set� consists in �nding G★ ∈ � such that 5 (G★) ≤ 5 (G)
for all G ∈ � . We note

G★ ∈ argmin� 5 ⇔ G★ is a solution of inf
G ∈�

5 (G)

for G★ a solution of the problem {
min 5 (G)
G ∈ � (P)

We directly note that if � is empty, the problem is impossible1313infeasible in the optimization
language.

and if � is open it
may be impossible to �nd a solution. Hence, we will restrict our analysis to closed sets.

How to solve optimization problems?

First, what does solving means? Finding 5 ★, G★, or an approximation of one/both? It is
extremely rare to have explicit/exact solutions so most of the time numerical methods
are used to approximate them.

In general, optimization is a (NP-)hard problem but there are situations that are
more favorable than others eg. linear programs, convex problems.

3.2.2 Convex sets

Let us now introduce the de�nition of a convex set.

Numerical Optimization 15

De�nition 3.8. A subset� ofℝ= is convex if and only if for any G,D ∈ � , (1−U)G+UD ∈
� for any U ∈ (0, 1).

The crucial property here is that any (weighted) average of points of a convex
set belongs stay in the set. Equivalently, the set � is convex if and only if for any
(G1, .., G#) ∈ �# ,

#∑
8=1

U8G8 ∈ � for any (U1, .., U#) ∈ ℝ#+ with
#∑
8=1

U8 = 1,

where
∑#
8=1 U8G8 is called a convex combination of (G1, .., G#).

Examples of convex sets:
• A�ne spaces {G : 〈B, G〉 = A }
• Balls {G : ‖G − B ‖ ≤ A }
• Half spaces {G : 〈B, G〉 ≤ A } and open half spaces {G : 〈B, G〉 < A }
• Simplices {G :

∑=
8=1 G8 = 1 and G8 ≥ 0 for all 8 = 1, .., =}

• Intersections of convex sets ∩#8=1�8

Examples of non-convex sets:
• Discrete sets (eg. {0} ∪ {1}) or disjoint sets
• Spheres {G : ‖G − B ‖ = A }
• Sets with “holes”

Theorem 3.9. Let � be a closed nonempty convex set. Then, for any ~ ∈ ℝ= , there is a
unique projection proj� (~), solution of minG ∈� ‖G − ~‖2.
Furthermore, proj� (~) is the projection of ~ onto � if and only if

〈~ − proj� (~), I − proj� (~)〉 ≤ 0 for all I ∈ �.

3.2.3 Minimization over convex sets

First, if � = ℝ= , Fermat’s rule indicates that critical points (ie. points at which the
gradient is null) are good candidates to be (local) minimizers.

Theorem 3.10 (Fermat’s rule). If a di�erentiable function 5 : ℝ= → ℝ has a local
minimum at G (ie. if there is a neighborhoodU of G such that 5 (G) ≤ 5 (D) for allD ∈ U)
then ∇5 (G) = 0.

The constrained variant of Fermat’s rule writes as follows.
Theorem 3.11 (Fermat’s rule – constrained case). If a di�erentiable function 5 : ℝ= →
ℝ has a local minimum at G then 0 ∈ ∇5 (G) + #� (G) or,14 14The normal cone of a convex set�

at a point G ∈ � is de�ned as the set
#� (G) := {D : 〈~ − G,D 〉 ≤
0 for all ~ ∈ � }.

equivalently,

〈~ − G,∇5 (G)〉 ≥ 0 for all ~ ∈ � .

Note that if G belongs to the relative interior of � , then #� (G) = {0}.

16 Chap. 3 - Optimization

�

G1
★

interior

#� (G1
★) = {0} = ∇5 (G1

★)

−∇5 (G2
★)G2

★

border #� (G2
★)

3.2.4 Convex functions

The notion of convexity is as important for functions as for sets. Notably, this is the
notion that will enable us to go from the (sub)gradient inequalities and local minimizers
above to global minimizers.

A function is convex if and only if its epigraph1515This is the set
epi5 := {(G, C) : 5 (G) ≤ C }

is convex. However, the following
de�nition is much more direct.
De�nition 3.12. A function 5 : ℝ= → ℝ is convex if and only if for any G,D ∈ dom 5 ,
5 ((1 − U)G + UD) ≤ (1 − U) 5 (G) + U 5 (D) for any U ∈ (0, 1).

More generally convex functions verify Jensen’s inequality. For any convex combi-
nation

∑#
8=1 U8G8 ,

5

(
#∑
8=1

U8G8

)
≤

#∑
8=1

U8 5 (G8).

Checking the de�nition directly may be possible but it is often simpler to rely on
convexity-preserving operations:

• all norms are convex;
• a sum of convex functions is convex;
• a�ne substitution of the argument (if 5 is convex, G ↦→ 5 (�G + 1) is convex for

any a�ne map �G + 1);
• the (pointwise) maximum of convex functions is convex.
The most striking point of convex functions is that local minimizers are actually

global.
Theorem 3.13. Consider a di�erentiable function 5 : ℝ= → ℝ and a convex set� . Then,
G ∈ argmin� 5 if and only if 0 ∈ ∇5 (G) + #� (G) which means that

〈~ − G,∇5 (G)〉 ≥ 0

for all ~ ∈ � .

In addition, for a di�erentiable 5 , convexity can be seen directly as a property on
the gradient mapping.
Theorem 3.14. Let 5 : ℝ= → ℝ be a di�erentiable function with open domain.1616typically here, dom 5 = ℝ= . Then
the following are equivalent:

Numerical Optimization 17

i) 5 is convex;

ii) 5 (D) ≥ 5 (G) + 〈∇5 (G), D − G〉 for all G,D ∈ dom 5 ;

iii) 〈∇5 (G) − ∇5 (D), G − D〉 ≥ 0 for all G,D ∈ dom 5 , ie. ∇5 is monotone.
Furthermore, if 5 is twice di�erentiable on dom 5 , any of the above is equivalent to
iv) 〈D,∇2 5 (G)D〉 ≥ 0 for all G,D ∈ dom 5 , ie. ∇2 5 is positive semi-de�nite.

3.3 The gradient algorithm

We are now given a (�rst-order) oracle G (5 (G);∇5 (G)) and want to construct
iteratively a sequence (G:) such that G: → G★ (in some sense).

3.3.1 Smoothness

In addition to di�erentiability, smoothness is important in terms of optimization since
it allows us to have a quadratic upper approximation of our function, obtained directly
from the fundamental theorem of calculus. This is the crucial point for the use of
gradient methods.
De�nition 3.15. We say that a function 5 : ℝ= → ℝ is !-smooth if it has a !-Lipschitz
continuous gradient, ie. if

‖∇5 (G) − ∇5 (D)‖ ≤ !‖G − D‖ for all G,D ∈ ℝ= .

From this property, we can derive this highly important lemma.

Lemma 3.16. Consider a function 5 : ℝ= → ℝ with a !-Lipschitz continuous gradient,
then for any G,D ∈ ℝ= , one has

|5 (D) − 5 (G) − 〈∇5 (G), D − G〉| ≤ !
2
‖G − D‖2 .

Thus, if we �x a point G , the function dG : D ↦→ 5 (G) + 〈∇5 (G), D − G〉 + !
2 ‖D − G ‖

2

is quadratic in its argument and majorizes 5 , that is to say dG (D) ≥ 5 (D) for any D.
Furthermore, the minimum of dG is attained at G★ = G − 1

!
∇5 (G).

G
G − 1

!
∇5 (G)

dG

5

18 Chap. 3 - Optimization

Such a quadratic approximation can be leveraged using gradients steps, ie. taking

D = G − W∇5 (G)

for some W > 0. Indeed, in that case, Lemma 3.16 gives us

5 (D) ≤ 5 (G) −
(

1
W
− !

2

)
‖G − D‖2 = 5 (G) −

(
W − !W

2

2

)
‖∇5 (G)‖2 .

Thus, taking a gradient step leads to a strict functional decrease (5 (D) < 5 (G)) as
soon as W < 2/!. This is the core idea behind the gradient descent algorithm.1717introduced by Louis Augustin

Cauchy (1789–1857), a French
mathematician, in his “Compte

Rendu à l’Académie des Sciences”
of October 18, 1847.

Take
G0 ∈ ℝ= and W > 0, the gradient descent algorithm consists in iterating

G:+1 = G: − W∇5 (G:) (Gradient descent)

and leads to the following guarantees.
Theorem 3.17. Consider a function 5 : ℝ= → ℝwith a !-Lipschitz continuous gradient
and such that inf 5 > −∞. Assume that (Gradient descent) is run with 0 < W < 2/!,
then (5 (G:)) converges and any limit point G of (G:) satis�es ∇5 (G) = 0.

Thus, the functional values are decreasing and all limit points are critical points of
5 . However, we had no convergence guarantee and no rate. Convexity will help us get
these rates.

3.3.2 Gradient algorithm for convex functions

When 5 is !-smooth and convex, we can guarantee convergence and a O(1/:) rate.
Theorem 3.18. Let 5 : ℝ= → ℝ be a convex !-smooth function. Then, the iterates (G:)
generated by (Gradient descent) with W = 1/! satisfy:

• (convergence) G: → G★ for some minimizer G★ of 5 ;

• (rate) 5 (G:) − 5 (G★) ≤
2!‖G0 − G★‖2

:
for any minimizer G★ of 5 .

In the above theorem, any W ∈ (0, 1/!) actually works for the convergence and
gets a similar complexity but W = 1/! is the optimal value in terms of rate.

3.3.3 Projected Gradient algorithm

Now let us consider the problem of minimizing a smooth convex function � over a
nonempty closed convex set � . Thanks to the ability to project onto � , we can easily
de�ne a projected gradient method:

G:+1 = proj� (G: − W∇5 (G:)) (Projected gradient descent)

for some initialization G0 ∈ ℝ= and stepsize W > 0.
Theorem 3.19. Let 5 : ℝ= → ℝ be a convex !-smooth function. Then, the iterates (G:)
generated by (Gradient descent) with W = 1/! belong to � and satisfy:

• (convergence) G: → G★ for some minimizer G★ of 5 on � ;

• (rate) 5 (G:) − 5 (G★) ≤
3!‖G0 − G★‖2 + 5 (G0) − 5 (G★)

: + 1
for any minimizer G★ of

5 on � .

Numerical Optimization 19

3.4 To go further

3.4.1 Beyond gradient descent

The gradient method, as the archetype of �rst-order methods, has several advantages
but also many drawbacks (slowness, global parameters), to get over them:

• More advanced methods
– Nesterov’s accelerated gradient
– Conjugate gradient for linear systems

• Second order methods
– Newton’s method
– Quasi-Newton (BFGS, etc.)

3.4.2 A classi�cation of optimization problems

• Convex problems
– smooth unconstrained problems (least-squares, logistic regression)
– smooth constrained (non-negative least-squares)

– non-smooth (SVM, Lasso)

• Non-Convex problems
– continuous problems (neural networks, Nash equilibrium �nding)

– discrete optimization (bandits)

• Other special cases
– stochastic optimization (signal processing, �nite-sums)

– in�nite dimension (optimal control, calculus of variations)

3.4.3 So in practice?

• There is an important work of modeling

• Rely on optimization software for medium-scale problems
• Use the structure of the problem

BC

20 Chap. 3 - Optimization

TUTORIALS

22 Chap. 3 - Optimization

TUTORIAL 1 Matrix Analysis

1.1 Decompositions

Exercise 1.1 (Rank 1 matrices).
a. Justify why a rank 1 matrix � can always be written � = D{>.

b. Express matrix � =

1 2 5
2 4 10
0 0 0

 as the product of two vectors: � = D{>.

c. Compute eigenvalues and associated eigenvectors of matrix �.

d. Justify why � is rank 1.

Exercise 1.2 (Projection). We call projection a real square matrix % such that % = %2.
a. Show that if ‖% ‖ < 1 for some operator norm, then % = 0.
b. Let % be a rank 1 matrix. Show that %G is the projection of G on the span of some

vector. Justify why if % is symmetric, the projection is said orthogonal.

Exercise 1.3 (Singular Value Decomposition). Let � =

2 1 0
0 2 0
0 0 3

a. Compute the eigenvalues of �. Is the matrix invertible?
b. Let � = ��>. Check that � is symmetric. What can you say about its eigenval-

ues? Compute the eigenvalues of �.
c. Without further computation, give the eigenvalues of � = �T�.
d. Give conditions for � to be invertible. Notably, show that if � is full column

rank, then � is also full column rank.
e. Show that�−1 is symmetric whenever it exists. What can you then say about its

eigenvalues?

1.2 Linear SystemsResolutionwithapplications toRegres-

sion

In this example, that we will also study in the Labs, we use linear algebra to extract
information from data; more precisely, we predict �nal notes of a group of student

24 Tuto. 1 - Matrix Analysis

from their pro�les1818The Student Performance data
can be found at https://archive.
ics.uci.edu/ml/datasets/

Student+Performance; it include
secondary education students of

two Portuguese schools.

.
Pro�les include features such as student grades, demographic, social and school

related features and were collected by using school reports and questionnaires. We
wish to predict the �nal grade by a good linear combination of the features.

Mathematically, from the learning matrix � of size = × 3 , = ≥ 3 , comprising of the
features values of each training student in line, and the vector of the values of the
target features 1; we seek a regression vector that minimizes the squared error between
�G and 1. This problem boils down to the following least square problem:

min
G
‖�G − 1‖22 . (1.1)

Exercise 1.4. Using basic analysis1919this will be quickly covered in the
optimization part.

, one can prove that any solution of Pb (1.1) veri�es
the following relation:

�T�G = �T1.

a. Assume that � has full rank, show that there is a unique solution to Pb (1.1).
b. Express this solution using the singular value decomposition of �.

In the Lab, we are going to learn a linear predictor using linear regression over a
part of the data called the learning set and we will check our prediction by comparing
the results for the rest of the data, the testing set.

1.3 PageRank

The problem of ranking webpages is of the utmost importance for search engines. To
this end, a very popular approach is to represent webpages as a graph where the nodes
are the pages themselves and the edges are the links between them (if page 8 contains
a links pointing toward page 9 , there is a directed edge from node 8 to node 9 in the
graph). Then, a page/node has a high score (it is ranked high) if there are many links
pointing toward it, especially coming from highly ranked pages. This approach is at
the core of the PageRank algorithm developed in 1996 by Larry Page and Sergey Brin,
the founders of Google. This exercise illustrates the mathematics used in this process
by working on a simple example.

1
2

3

4

5

� =

0 1 1 0 1
0 0 0 1 1
1 0 0 1 0
0 0 1 0 1
0 1 0 0 0

Figure 1.1: a simple graph and its incidence matrix

More formally, consider the graph of Fig. 1.1. We could choose as a score the
number of incoming links; node 1 is ranked �rst with 3, nodes 2, 3, 4 are second with
2, 5 is last with 1. The limits of this scoring is that 2, 3, 4 have the same score but are
very di�erent in nature as 3 is pointed by the most important page. To correct this

https://archive.ics.uci.edu/ml/datasets/Student+Performance
https://archive.ics.uci.edu/ml/datasets/Student+Performance
https://archive.ics.uci.edu/ml/datasets/Student+Performance

Numerical Optimization 25

phenomenon, the following scoring was introduced: the score G8 of page 8 is equal to
the sum over the pages 9 pointing toward 8 of the scores (G 9) divided by their number
of outgoing links = 9 . Mathematically, the (implicit) score of page 8 is

G8 =
∑
9 ∈P8

G 9

= 9
(1.2)

where P8 is the set of nodes pointing toward 8 (8 itself is not in P8).

Exercise 1.5 (Some algebraic graph theory). The graph of Fig. 1.1 can be represented
by its incidence matrix � which veri�es �8, 9 = 1 if there is a link pointing towards 8 in
page 9 , and �8, 9 = 0 elsewhere.

a. Let G ∈ ℝ5 be the vector of the pages scores. Write the score equation (1.2) as
a linear equation G = 'G where ' is a matrix to de�ne. Does a solution to this
equation exist? Is it unique?

b. Show that matrix ' is column stochastic, that is, its elements are non negative
and its column sum is equal to one.

c. Deduce that 1 is an eigenvalue of '. (hint: one can show that it is an eigenvalue
for 'T.)

d. Show that ‖'‖ = 1 for some matrix norm. Deduce that the sequence ('=)= stays
bounded and that the spectral radius of ' is equal to 1.

e. Demonstrate that one can �nd an eigenvector for eigenvalue 1 with non-negative
entries.
Hint: show that the sequence de�ned by {:+1 = �{: and {0 ≥ 0 give non-negative
vectors.

The above questions have led you to prove parts of a fundamental theorem in
matrix analysis called the Perron-Frobenius theorem.
Theorem 1.1 (Perron-Frobenius theorem). Let � be a non-negative = ×= matrix. Then,

(i) the spectral radius d = d (�) is an eigenvalue;

(ii) there is a non-negative eigenvector G ∈ ℝ=+ such that �G = dG ;

(iii) if in addition �: has all its entries (strictly) positive for some : > 0, then d is
an eigenvalue of simple multiplicity and it is the only one of maximal modulus.
Furthermore, there is a unique non-negative eigenvector G such that �G = dG and
‖G ‖1 = 1. This vector is called the Perron vector.

The additional condition of (iii) is often called primitivity.

BC

26 Tuto. 1 - Matrix Analysis

TUTORIAL 2 Optimization

2.1 Using the definitions

Exercise 2.1 (Basic Di�erential calculus). Use the composition lemma to compute the
gradients of:

a. 51 (G) = ‖�G − 1‖22 .
b. 52 (G) = ‖G ‖2 .

Exercise 2.2 (Fundamentals of convexity). This exercise proves and illustrates some
results seen in the course.

a. Let 5 and 6 be two convex functions. Show that <(G) = max(5 (G), 6(G)) is
convex.

b. Show that 51 (G) = max(G2 − 1, 0) is convex.
c. Let 5 be a convex function and 6 be a convex, non-decreasing function. Show

that 2 (G) = 6(5 (G)) is convex.
d. Show that 52 (G) = exp(G2) is convex. What about 53 (G) = exp(−G2)
e. Justify why the 1-norm, the 2 norm, and the squared 2-norm are convex.

Exercise 2.3 (Strict and strong convexity). A function 5 : ℝ= → ℝ is said
• strictly convex if for any G ≠ ~ ∈ ℝ= and any U ∈]0, 1[

5 (UG + (1 − U)~) < U 5 (G) + (1 − U) 5 (~)

• strongly convex if there exists V > 0 such that 5 − V

2 ‖ · ‖
2
2 is convex.

a. For a strictly convex function 5 , show that the problem{
min 5 (G)
G ∈ �

where � is a convex set admits at most one solution.
b. Show that a strongly convex function is also strictly convex.

Hint: use the identity ‖UG + (1−U)~‖2 = U ‖G ‖2 + (1−U)‖~‖2 −U (1−U)‖G −~‖2.
c. Let 5 be a twice di�erentiable function. Show that 5 is strongly convex if and

only if there exists V > 0 such that the eigenvalues of ∇2 5 (G) are larger than V
for all G .

28 Tuto. 2 - Optimization

d. Discuss the strict and strong convexity of function 51 and 52 of Exercise 2.2.

Exercise 2.4 (Optimality conditions). Let 5 : ℝ= → ℝ be a twice di�erentiable
function and Ḡ ∈ ℝ= . We suppose that 5 admits a local minimum at Ḡ that is 5 (G) ≥
5 (Ḡ) for all G in a neighborhood2020Formally, one would write

∀G ∈ ℝ= such that ‖G − Ḡ ‖ ≤ Y for
Y > 0 and some norm ‖ · ‖.

of Ḡ .
a. For any direction D ∈ ℝ= , we de�ne the ℝ → ℝ function @(C) = 5 (Ḡ + CD).

Compute @′(C).
b. By using the �rst order Taylor expansion of @ at 0, show that ∇5 (Ḡ) = 0.
c. Compute @′′(C). By using the second order Taylor expansion of @ at 0, show that
∇2 5 (Ḡ) is positive semi-de�nite.

2.2 Smoothness and Optimization

Exercise 2.5 (Descent lemma). A function 5 : ℝ= → ℝ is said to be !-smooth if it is
di�erentiable and its gradient ∇5 is !-Lipchitz continuous, that is

∀G,~ ∈ ℝ=, ‖∇5 (G) − ∇5 (~)‖ ≤ !‖G − ~‖ .

The goal of the exercise is to prove that if 5 : ℝ= → ℝ is !-smooth, then for all
G,~ ∈ ℝ= ,

5 (G) ≤ 5 (~) + (G − ~)T∇5 (~) + !
2
‖G − ~‖2

a. Starting from fundamental theorem of calculus stating that for all G,~ ∈ ℝ= ,

5 (G) − 5 (~) =
∫ 1

0
(G − ~)T∇5 (~ + C (G − ~))dC

prove the descent lemma.
b. Give a function for which the inequality is tight and one for which it is not.

Exercise 2.6 (Smooth functions). Consider the constant stepsize gradient algorithm
G:+1 = G: − W∇5 (G:) on an !-smooth function 5 with some minimizer (i.e. some G★
such that 5 (G) ≥ 5 (G★) for all G).

a. Use the descent lemma to prove convergence of the sequence (5 (G:)) when
W ≤ 2/!.

b. Does the sequence (G:) converge? To what?

BC

	1 Introduction
	2 Matrix Analysis
	2.1 Matrices
	2.2 Linear Systems
	2.3 Spectral Decompositions
	2.4 Matrix Norms

	3 Optimization
	3.1 Recalls on differentiation
	3.2 What is optimization?
	3.3 The gradient algorithm
	3.4 To go further

	1 Matrix Analysis
	1.1 Decompositions
	1.2 Linear Systems Resolution with applications to Regression
	1.3 PageRank

	2 Optimization
	2.1 Using the definitions
	2.2 Smoothness and Optimization

