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5 Proximal and Bundle methods

Going beyond first order can be highly beneficial in nonsmooth optimization in order not to rely on
the rather loose local information brought by the subgradient.

In the previous section, we investigated first-order methods that could be seen as iterations of the type

xk+1 = xk − γ vk with vk ∈ ∂F (xk)

⇔ xk+1 = argminu

{
1

2
∥u− (xk − γ vk) ∥22

}
⇔ xk+1 = argminu

{
⟨−γ vk;xk − u⟩+ 1

2
∥u− xk∥22

}
⇔ xk+1 = argminu

{
F (xk) + ⟨vk;u− xk⟩+

1

2γ
∥u− xk∥22

}
.

Recalling that by definition (see Lecture 4)

∂F (xk) = {v : F (u) ≥ F (xk) + ⟨v, u− xk⟩ for all u ∈ Rn} ,

a subgradient step can be seen as:

xk+1 = argminu

F (xk) + ⟨vk;u− xk⟩︸ ︷︷ ︸
(a)

+
1

2γ
∥u− xk∥22︸ ︷︷ ︸

(b)

 .

where:
(a) is a linear/first-order model that under-approximates F ;
(b) is a quadratic recall/regularization/stabilization term controlled by γ.

In this chapter, we will investigate algorithms that minimize stabilized approximations of the function.

5.1 The Proximity Operator
A central tool to tackle nonsmooth functions is the proximity operator, introduced by [3], and denoted proxγF

for a step-size γ > 0 and a nonsmooth function F : Rn → R; it is defined as the set-valued mapping

proxγF (y) := argminu∈Rn

{
F (u) +

1

2γ
∥u− y∥2︸ ︷︷ ︸

:=ρy(u)

}
.

In the same flavor as for the gradient step, if one takes a proximal step, i.e.,

x = proxγF (y)

for some γ > 0, the definition directly gives us

F (x) ≤ F (y)− 1

2γ
∥x− y∥2 (1)

which mirrors the descent inequality of a gradient step on a smooth function.1
With this respect, the proximity operator provides a alternative to the use of subgradients or nonsmooth

gradients since they are not able to provide descent inequalities such as (1). However, this comes to the cost of
having to solve a minimization subproblem, which in turn question about the existence and uniqueness of the
subproblem solutions.

1Actually, this link can be made formal since a proximal step is equivalent to a gradient step on the Moreau envelope defined
for all y ∈ Rn as eγF (y) = infu∈Rn ρy(u) [3, 4].
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5.1.1 Properties

First, for convex functions the proximity operator exists and is unique.
Theorem 1. Let F : Rn → R be a convex lower semi-continuous proper function, then proxγF (y) is a singleton
for any γ > 0 and any y ∈ Rn.

Proof. (⋆) Since F is convex, ρy is 1
γ -strongly convex. Then, we have the existence and uniqueness of the

minimizers of ρy(u) for any u, which means that proxγF (y) is well-defined and unique.

In addition, we have that

x = proxγF (y) ⇔ x = y − γv with v ∈ F (x)

and thus the proximal operator can be seen as an implicit subgradient descent step.

Proposition 2. Let F : Rn → R be a convex lower semi-continuous proper function, then the following propo-
sitions are equivalent:

i) x = proxγF (y);
ii) (y − x)/γ ∈ ∂F (x);
iii) F (u) ≥ F (x) + ⟨(y − x)/γ, u− x⟩ for any u ∈ Rn.

Proof. This follow directly from Fermat’s rule and the definition of a convex subgradient.

5.1.2 Convergence of the proximal point algorithm

Now, let us investigate the proximal point algorithm:

xk+1 = proxγF (xk) (Proximal Point)

The first thing to notice is that the fixed points of this algorithm correspond to the minimizers of F .

Corollary 3. Let F : Rn → R be a convex lower semi-continuous proper function, then x⋆ is a minimizer of F
if and only if x⋆ = proxγF (x

⋆) (for any γ > 0).

Proof. From Proposition 2, we have that x⋆ = proxγF (x
⋆) if and only if 0 ∈ ∂F (x⋆) which is equivalent to x⋆

being a minimizer of F since it is convex.

Now, we can analyze the convergence of our proximal point method.
Theorem 4. Let F : Rn → R be a convex lower semi-continuous proper function. Then, the Proximal Point
method with γ > 0 verifies F (xk+1) ≤ F (xk) and

• (convergence) xk → x⋆ for some minimizer x⋆ of F ;

• (rate) F (xk)− F (x⋆) ≤ ∥x⋆−x0∥2

2γk .

Proof. We left the iterates convergence proof as an exercise, its reasoning is exactly the same as the one for the
gradient algorithm. For the rate, since xk+1 = proxγF (xk),

F (xk+1) +
1

2γ
∥xk+1 − xk∥2 ≤ F (xk)

and thus F (xk+1) ≤ F (xk).
Since xk+1 = proxγF (xk), it is the minimum of the 1/γ-strongly convex function ρxk

,2 thus

F (xk+1) +
1

2γ
∥xk+1 − xk∥2 ≤ F (x⋆) +

1

2γ
∥x⋆ − xk∥2 −

1

2γ
∥xk+1 − x⋆∥2

2If x⋆ is the minimizer of a µ-strongly convex function F , then F (x⋆) ≤ F (u)− µ
2
∥u− x⋆∥2.
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and by summing this inequality from t = 0, .., k − 1, we get

k−1∑
t=0

(F (xt+1)− F (x⋆)) ≤ 1

2γ

k−1∑
t=0

(∥x⋆ − xt∥2 − ∥xt+1 − x⋆∥2)−
k−1∑
t=0

1

2γ
∥xt+1 − xt∥2

≤ 1

2γ
∥x⋆ − x0∥2.

Now, since F (xk+1) ≤ F (xk), we get that

k (F (xk)− F (x⋆)) ≤
k−1∑
t=0

(F (xt)− F (x⋆)) ≤ 1

2γ
∥x⋆ − x0∥2

which gives the result.

5.1.3 Examples of closed form expressions

Example 5 (Squared norm). For F (x) = 1
2∥x∥

2, the proximity operator can be computed explicitly. Since
ρy : u 7→ F (u) + 1

2γ ∥u− y∥2 is strongly convex, there is a unique minimizer x and it verifies ∇ρy(x) = 0. Thus
x+ 1

γ (x− y) = 0 which implies x = y/(1 + γ):

proxγ 1
2∥·∥2(y) =

y

1 + γ
.

Example 6 (Projection). In optimization, it is useful to define the indicator of set C ⊂ Rn as the function
ιC : Rn → R such that3

ιC(x) =

{
0 if x ∈ C
+∞ else .

By noticing that the inner minimization in Rn amounts to minimizing only over C since otherwise the inner
value is +∞, this exactly gives the definition of the projection operator. Thus, for C ⊂ Rn a non-empty closed
convex set and any γ > 0,

proxγιC (y) = projC(y).

Note that the stepsize does not play any role here.
Example 7 (Absolute value). The proximity operator of the absolute value admits a closed form expression: for
y ∈ R and γ > 0,

proxγ|·|(y) =


y + γ if y < −γ

0 if − γ ≤ y ≤ γ

y − γ if y > γ

A very useful calculus rule for the proximity operator is that if F is separable:4

F (x1, x2, .., xm) =

m∑
i=1

Fi(xi),

then the proximity operator of F can be obtained from those of the (Fi):

proxγF (y1, y2, .., ym) =


proxγF1

(y1)
proxγF2

(y2)
...

proxγFm
(ym)

 .

3This is different from the indicator IA in probability which is equal to 1 if A is true and 0 elsewhere.
4By coordinates, or blocks of coordinates.
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Example 8 (ℓ1 norm). The ℓ1-norm is defined on Rn as ∥x∥1 =
∑n

i=1 |xi|. Using this separability, the proximity
operator at y ∈ Rn and γ > 0,

proxγ∥·∥1
(y) =


proxγ|·|(y1)

proxγ|·|(y2)
...

proxγ|·|(ym)

 .

For more examples, see [1, Chap. 6] and the website proximity-operator.net.

5.1.4 When no closed form is available

Computing the proximity operator amounts to solving a new problem at each iteration. However, since the
problem is made strongly convex (or better conditioned), this new subproblem may be easier to solve. However,
this leads to a bi-level implementation. In the following section, we see an intermediate approach that allows
not to compute a minimizer of the full function but rather of a piecewise linear approximation.

5.2 Bundle methods
A whole class of method is based on approximating the function using a bundle of past information and mini-
mizing this approximation to provide a new point of query for enriching our approximation.

5.2.1 Cutting planes

Essentially, (sub)-gradient methods use only once the (sub)gradient information. In other words, the model of
F used at iteration k is simply

F̌ : u 7→ F (xk) + ⟨vk;u− xk⟩.

An alternative is to use all the information before k, ie.

Fℓ = F (xℓ) and vℓ ∈ ∂F (xℓ) for ℓ = 0, .., k

to form a cutting plane model

F̌k : u 7→ max
ℓ=0,..,k

{Fℓ + ⟨vℓ;u− xℓ⟩} .

The function F̌k is
• convex and piecewise linear since this is a maximum of linear functions
• always below F : F̌k(x) ≤ F (x) for all x
• increasing with k: F̌k(x) ≤ F̌k+1(x) for all x
Thus, minimizing F̌k is equivalent to solving the linear problem

min
x,t

t

s.t. Fℓ + ⟨vℓ;x− xℓ⟩ ≤ t for ℓ = 0, .., k

however, this problem may be unbounded, so we need to add a compact convex constraint.
This leads to the cutting planes method

xk+1 = argminu∈C F̌k(u) (Cutting planes)
Fk+1 = F (xk+1)

vk+1 ∈ ∂F (xk+1)

where at each iteration a constrained linear cutting plane problem has to be solved.

42

http://proximity-operator.net


Efficient Methods in Optimization Fall 2022

Theorem 9. Let F be a convex proper lower semi-continuous function and let C be a compact convex set.
Assume that F is M Lipschitz and that ∥∂F (x)∥ ≤ M for all x ∈ C. Then, for any tol > 0, after a finite
number k of iterations

F (xk+1) ≤ F̌k(xk+1) + tol

and then,

F (xk+1) ≤ min
C

F + tol.

The theorem thus grants convergence to a minimizer up to some tolerance and also provides a way to stop
the algorithm.

Proof. Part 1: We know that F̌k(xk+1) ≤ minC F since xk+1 is the minimizer of the lower model.
Assume for contradiction that F̌k(xk+1) ≤ minC F − b with b > 0 for all k. Since C is compact, we can

extract a converging subsequence (xk(ℓ)) from (xk). Take ℓ large enough so that ∥xk(ℓ+1) − xk(ℓ)∥ ≤ b/(2M).
Then,

min
C

F − b ≥ F̌k(ℓ+1)−1(xk(ℓ+1))

≥ F̌k(ℓ)(xk(ℓ+1)) (since F̌k is non-decreasing)
≥ Fk(ℓ) + ⟨vk(ℓ);xk(ℓ+1) − xk(ℓ)⟩
≥ Fk(ℓ) −M∥xk(ℓ+1) − xk(ℓ)∥
≥ min

C
F − b/2

which is a contradiction thus F̌k(xk+1) → minC F (as the sequence is non-decreasing).
Part 2: Now, F (xk) ≥ minC F by definition.

Similarly, assume for contradiction that F (xk) ≥ minC F+b with b > 0 for all k and use the same subsequence
as above. Then,

min
C

F + b ≤ F (xk(ℓ))

= F̌k(ℓ)(xk(ℓ))

= F̌k(ℓ)(xk(ℓ))− F̌k(ℓ)(xk(ℓ+1)) + F̌k(ℓ)(xk(ℓ+1))

≤ M∥xk(ℓ) − xk(ℓ+1)∥+ F̌k(ℓ+1)−1(xk(ℓ+1)) (since F̌k(ℓ) ≤ F̌k(ℓ+1)−1 )

≤ b/2 + min
C

F (since F̌k(xk+1) ≤ min
C

F for all k)

which is again a contradiction thus F (xk(ℓ)) → lim inf F (xk) = minC F .
Part 3: Finally, putting the two parts above together, we know that for any tol > 0, by taking ℓ sufficiently
large, we have

F̌k(ℓ)−1(xk(ℓ)) ≥ min
C

F − tol

2
and F (xk(ℓ)) ≤ min

C
F +

tol

2

and thus

F (xk(ℓ)) ≤ min
C

F +
tol

2
≤ F̌k(ℓ)−1(xk(ℓ)) + tol

which is our stopping criterion. Thus, the algorithm stops in finite time.
Now, we have

F (xk(ℓ)) ≤ F̌k(ℓ)−1(xk(ℓ)) + tol

≤ F̌k(ℓ)−1(x) + tol for any x ∈ C (by definition of xk(ℓ))

≤ F (x) + tol for any x ∈ C (since F̌k(ℓ)−1 is a lower-model)

which means that F (xk(ℓ)) ≤ minC F + tol, which is our result.
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Even though they offer rather good convergence properties and can be very efficient if the function is V-shaped
or polyhedral, the cutting planes methods also suffers from numerical instability, increasing computational
complexity with the iterations, and can be particularly bad at minimizing some functions.

For instance, consider the function F (x) = x2/2 in one dimension.5 Then, if x0 = 1, x1 = −ε < 0, then
x2 = (1 − ε)/2. This means that the closest x1 to the solution, the further x2. This is a typical instability
behavior. It is also not a descent method since the functional value can increase at each iteration.

The knowledge of the past values (Fℓ, xℓ, vℓ) is called a bundle of information and gives its name to the
general class of algorithms using them. We will now see how these methods can be stabilized.

5.2.2 Proximal bundle

Now, we give an example of method that uses bundles of information but features:
• a quadratic recall term to take care of the instability behavior;
• a descent test to have a descent method.
The proximal bundle method can be written as

xk+1 = argminu∈C F̌k(u) +
1

2γ
∥u− x̂k∥2 (Proximal Bundle)

δk+1 = F (x̂k)− F̌k(xk+1)−
1

2γ
∥xk+1 − x̂k∥2

Fk+1 = F (xk+1)

vk+1 ∈ ∂F (xk+1)

x̂k+1 =

{
xk+1 if F (xk+1) ≤ F (x̂k)− κδk+1 (serious step)
x̂k otherwise (null step)

First, notice that since

−δk+1 = F̌k(xk+1) +
1

2γ
∥xk+1 − x̂k∥2 − F (x̂k)

≤ F̌k(x̂k) +
1

2γ
∥x̂k − x̂k∥2 − F (x̂k) = F̌k(x̂k)− F (x̂k) ≤ 0,

we indeed have δk+1 ≥ 0.
Using the same techniques as before, one can prove that i) there cannot be infinitely many consecutive null

steps; and ii) the sequence (x̂k) minimizes F on C.
Theorem 10. Let F be a convex proper lower semi-continuous function and let C be a closed convex set.
Assume that F is M Lipschitz and that ∥∂F (x)∥ ≤ M for all x ∈ C. Then, for any γ > 0, κ ∈ (0, 1), and
tol > 0, after a finite number k of iterations

F (x̂k) ≤ min
C

F + tol.

Exercises
Exercise 1. Show that the proximity operator of h : x 7→ |x− 1| is given for some stepsize γ as

proxγh(y) =

 y + γ if y < 1− γ
1 if y ∈ [1− γ, 1 + γ]

y − γ if y ∈ [1− γ, 1 + γ]

Exercise 2. Compute the proximity operator of the R → R function

F (x) =

n∑
i=1

|x− i|

for some positive integer n.
5This example is taken from [2, Chap. XV.1.1].
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Exercise 3. Let us consider the R → R function

F (x) =
a

2
x2 + |x− 1|

for some a > 0.
We wish to use a modified cutting-plane method to minimize F . Given Fℓ = F (xℓ) and vℓ ∈ ∂F (xℓ) for

ℓ = 1, .., k, we form the function

F̌k : u 7→ max
ℓ=1,..,k

{
Fℓ + ⟨vℓ, u− xℓ⟩+

a

2
(u− xℓ)

2
}

and wish to apply the algorithm

xk+1 = argminu∈R F̌k(u)

Fk+1 = F (xk+1) , vk+1 ∈ ∂F (xk+1)

1. Show that F̌k is i) convex and ii) always below F (hint: show first that F is a-strongly convex ).
2. Do you think the algorithm converges (no formal proof is expected, only high level arguments)? What are

the most striking differences between this and the standard cutting-planes method?
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