
CHAPTER 1 S������� G���� T�����

T��� ������� is devoted to the study of eigenvalues/vectors of matrices
associated with graphs.

Why?
• Combinatorial properties of graphs are linked to eigenelements
• Nice (and useful!) mathematical results
This part is mainly based on:
• The course of Dan Spielman at Yale: http://www.cs.yale.edu/homes/spielman
• The “Horn & Johnson” book (Horn and Johnson, 2012)

1.1 G�����

A graph G is a collection of nodes/vertices 𝑉 linked by edges/links 𝐸; so we note
G = (𝑉 , 𝐸):

• 𝑉 is usually {1, ..,𝑛} where 𝑛 is the number of vertices.
• 𝐸 has the form {(𝑖𝑘 , 𝑗𝑘 )}𝑘 where (𝑖𝑘 ∈ 𝑉 , 𝑗𝑘 ∈ 𝑉 ) represents the (ordered) edge
between 𝑖𝑘 and 𝑗𝑘 . The edges may also have weights and thus write (𝑖𝑘 ∈ 𝑉 , 𝑗𝑘 ∈
𝑉 ,𝑤𝑘 ∈ ℝ+). In none are precised, these weights are implicitly assumed to be
equal to 1.

The edges set represents the connections and is thus the most signi�cative part of
the graph. If all edges are bi-directionals (i.e. (𝑖, 𝑗) ∈ 𝐸 ⇔ ( 𝑗, 𝑖) ∈ 𝐸), the graph is said
undirected, as opposed to the general, directed case (the word digraph is sometimes
used).

For a vertex 𝑖 ∈ 𝑉 , we de�ne its neighbors as N 𝑖 := { 𝑗 ∈ 𝑉 : (𝑖, 𝑗) ∈ 𝐸} and its
degree 𝑑𝑖 = |N 𝑖 |. Also, we say that there is a path from 𝑖 to 𝑗 if there is a sequence of
connected edges {(𝑖, 𝑙1), (𝑙1, 𝑙2), (𝑙2, 𝑙3), .., (𝑙𝑘 , 𝑗)} ∈ 𝐸𝑘 .
De�nition 1.1 (Connected Graph). An undirected graph is said to be connected if for
any pair (𝑖, 𝑗) there is a path from 𝑖 to 𝑗 .
A directed graph is said to be strongly connected if for any pair (𝑖, 𝑗) there is a path
from 𝑖 to 𝑗 and path from 𝑗 to 𝑖 .

Examples of graphs:
• Social Networks: people are vertices, friendship/follow are links; typical problem:
cluster communities.
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• Power Grid: producers/consumers are vertices, cables are links (with their
capacity as weight); typical problem: optimize the �ow.

• Protein interaction, etc.

1.2 T�� A�j������ ������

A graph can be equivalently represented by its adjacency matrix.
De�nition 1.2. For a graph G = (𝑉 , 𝐸) with 𝑛 = |𝑉 | vertices, the adjacency matrix is
the 𝑛 × 𝑛 matrix de�ned as

𝐴𝑖 𝑗 =

�
1 if ( 𝑗, 𝑖) ∈ 𝐸
0 otherwise .

and in the case of a weighted graph

𝐴𝑖 𝑗 =

�
𝑤 if ( 𝑗, 𝑖,𝑤) ∈ 𝐸
0 otherwise .

Example 1.3.

We can directly observe some properties:
• 𝐴 is symmetric if and only if the graph is undirected.
• 𝐴 is non-negative.
• The position of the zeros is important.
Goal: Investigate the spectral properties of Adjacency matrices (and related ones).

Most of the content is valid for any non-negative matrix but the graph interpretation
sheds some light on the developed notions.

1.2.1 Power of Adjacency Matrices

Example 1.4.

𝐴 =



0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0


𝐴2 =



2 1 1 1
1 2 1 1
1 1 3 0
1 1 0 1


𝐴3 =



2 3 4 1
3 2 4 1
4 4 2 3
1 1 3 0


𝐴4 =



12 13 17 6
13 12 17 6
17 17 14 11
6 6 11 2


then all 𝐴𝑘 (𝑘 ≥ 4) have positive coe�cients.
The eigenvalues of 𝐴 are −1.45,−1, 0.31, 2.17.
Proposition 1.5.

�
𝐴𝑘

�
𝑖, 𝑗 is the number of paths that go from 𝑖 to 𝑗 in exactly 𝑘 steps.
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Proof. as an exercise. �

Example 1.6.

𝐴 =


0 1 0
0 0 1
1 0 0


𝐴2 =


0 0 1
1 0 0
0 1 0


𝐴3 =


1 0 0
0 1 0
0 0 1


𝐴4 =


0 1 0
0 0 1
1 0 0


= 𝐴

The eigenvalues of 𝐴 are −0.5 + 0.86𝑖,−0.5 − 0.86𝑖, 1, notice the pair of complex eigen-
values with magnitude 1.

If we add a small modi�cation:

𝐴 =


1 1 0
0 0 1
1 0 0


𝐴2 =


1 1 1
1 0 0
1 1 0


𝐴3 =


2 1 1
1 1 0
1 1 1


𝐴4 =


3 2 1
1 1 1
2 1 1


then all 𝐴𝑘 (𝑘 ≥ 4) have positive coe�cients.
The eigenvalues of 𝐴 are 1.46,−0.23 + 0.8𝑖,−0.23 + 0.8𝑖 , notice the pair of complex
eigenvalues with magnitude < 1.

Intuition: Power of adjacency matrices enable to investigate the connectedness of
a graph.

1.2.2 First Spectral Results: Non-negative Matrices

[Cor. 8.1.19](Horn and Johnson, 2012)

Proposition 1.7. Let 𝐴,𝐵 ∈ M𝑛 . If 0 ≤ 𝐴 ≤ 𝐵, then 𝜌 (𝐴) ≤ 𝜌 (𝐵).
Proof. as an exercise. �

This means that by adding new links, we increase the spectral radius.
Lemma 1.8. Let 𝐴 ∈ M𝑛 > 0, then

a) if the row sum is constant; 𝜌 (𝐴) = � |𝐴� |∞ =
�

𝑗 𝐴𝑖 𝑗 ;

b) if the column sum is constant; 𝜌 (𝐴) = � |𝐴� |1 =
�

𝑖 𝐴𝑖 𝑗 ;

c) min𝑖
�

𝑗 𝐴𝑖 𝑗 ≤ 𝜌 (𝐴) ≤ max𝑖
�

𝑗 𝐴𝑖 𝑗 ;

d) min𝑗
�

𝑖 𝐴𝑖 𝑗 ≤ 𝜌 (𝐴) ≤ max𝑗
�

𝑖 𝐴𝑖 𝑗 .

Proof. TODO �

If the number of (outgoing/ingoing) edges, i.e. the degree, is constant across
vertices, then it is equal to the spectral radius of 𝐴.

1.2.3 Perron-Frobenius theorem for positive matrices

When a matrix is positive1 1positive elementwise, not positive
de�nite

, we have the well-known Perron-Frobenius theorem (1907
and 1912).
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Theorem 1.9 (Perron-Frobenius). Let 𝐴 ∈ M𝑛 > 0, then
a) 𝜌 (𝐴) is an eigenvalue (called Perron/leading/dominating eigenvalue) with multi-

plicity one, and all the other eigenvalues have a smaller modulus;

b) there is a positive eigenvector 𝑣 (called Perron vector) associated with 𝜌 (𝐴) and no
positive eigenvectors for the other eigenvalues;

c) lim𝑘→∞ 𝐴𝑘

𝜌 (𝐴)𝑘 = 𝑣𝑤� where


𝐴𝑣 = 𝜌 (𝐴)𝑣
𝐴�𝑤 = 𝜌 (𝐴)𝑤
𝑤�𝑣 = 1

.

Proof. See wikipedia or Chap. 8.5 in (Horn and Johnson, 2012). �

Example 1.10 (Application: PageRank). A method to rank webpages designed in 1997
by Larry Page, co-founder of Google.

Graph of webpage connections:
• not strongly connected;
• 𝐴 is not irreducible.
PageRank:
1. Normalize 𝐴 so that the columns sum to 1;
2. 𝑀 = (1 − 𝛼)𝐴 + 𝛼 1

𝑛 11
� with 𝛼22𝛼 = 0.15 in the original version ∈ (0, 1) is a positive matrix;

3. Eigenvalues of 𝑀 : 1,−0.85, 0.425𝑖,−0.425𝑖, 0. 𝜌 (𝑀) = � |𝑀 � |1 = 1 since the
columns sum to 1;

4. The Perron vector33Can be computed with the power
method for instance.

(associated with 1) is 0.29, 0.12, 0.36, 0.19, 0.03 hence the order
3, 1, 4, 2, 5.

1.2.4 Primitivity and irreducibility

De�nition

De�nition 1.11. A matrix 𝐴 ∈ M𝑛 ≥ 0 is said to be
• irreducible if (𝐼 +𝐴)𝑛−1 > 0;
• primitive if 𝐴𝑚 > 0 for some𝑚.

Proposition 1.12. A matrix 𝐴 ∈ M𝑛 ≥ 0 is primitive if and only is 𝜌 (𝐴) is the unique
eigenvalue of maximal modulus.

Example 1.13. See before

Theorem 1.14. Let 𝐴 ∈ M𝑛 ≥ 0, the following are equivalent:
a) 𝐴 is irreducible;

b) The graph G associated with 𝐴 is strongly connected;

c) The mask of 𝐴 is irreducible.

Proof. Since 𝐼 +𝐴 is the adjacency matrix of G to which we added self-edges (𝑖 to 𝑖).
For any 𝑖, 𝑗 , (𝐼 + 𝐴)𝑛−1𝑖 𝑗 > 0 means that there is a path of length 𝑛 between 𝑖 and 𝑗
(since we allowed self edges, and a path of size 𝑛 would contain two identical vertices,
it just means a path); which is the de�nition of strong connectivity. The converse is
immediate. Finally, the weights of the edges play no role hence the last point. �
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Perron-Frobenius theorem for irreducible matrices

Observing De�nition 1.11 and Theorem 1.14, it is natural to ask for a version of Perron-
Frobenius for irreducible matrices.
Theorem 1.15 (Perron-Frobenius for irreducible matrices). Let 𝐴 ∈ M𝑛 ≥ 0 be
irreducible, then

a) 𝜌 (𝐴) is an eigenvalue with multiplicity one;

b) there is a positive eigenvector 𝑣 associated with 𝜌 (𝐴).

Proof. See wikipedia or Chap. 8.5 in (Horn and Johnson, 2012). �

Most important change: 𝜌 (𝐴) may not be the only eigenvalue of maximal modulus.
But how many eigenvalues with maximal modulus can there be?
De�nition 1.16. The period ℎ of an irreducible matrix 𝐴 is the greatest common
divisor of {𝑚 : (𝐴𝑚)𝑖𝑖 > 0} i.e. the lengths of the directed paths in G.

Proposition 1.17. Let𝐴 ∈ M𝑛 ≥ 0 be irreducible with period ℎ. There are ℎ eigenvalues
of modulus 𝜌 (𝐴):

{exp2𝑖𝜋𝑝/ℎ : 𝑝 = 1, ..,ℎ}.
Remark 1.18. If you add a self-loop (i.e. 𝐴𝑖𝑖 > 0 for some 𝑖), then ℎ = 1, thus 𝜌 (𝐴) is
the unique eigenvalue of modulus 𝜌 (𝐴). This means that 𝐴 is primitive! ⊳
Example 1.19. Cycle of 3: eigenvalues −0.5 + 0.86𝑖,−0.5 − 0.86𝑖, 1 all of modulus 1.
Adding one self-loop we get 1.46,−0.23 + 0.8𝑖,−0.23 − 0.8𝑖 (the complex eigenvalues
have a modulus of 0.8).

Power method

As already seen in the PageRank example, the power method consists in iteratively
applying a square matrix 𝐴:

𝑥𝑘+1 =
𝐴𝑥𝑘
�𝐴𝑥𝑘 �

. (Power method)

This method will converge to an eigenvector of the maximal eigenvalue provided
that it is i) the unique eigenvalue of maximal modulus; and ii) positive and real. The
second point is true for irreducible or primitive matrices. However, the �rst is only
veri�ed for primitive matrices. We thus have the following result.
Theorem 1.20. Let 𝐴 ∈ M𝑛 ≥ 0 be a primitive matrix. Then, the Power method
initialized with 𝑥0 ∼ N(0, 𝐼 ) converges to an eigenvector for the eigenvalue 𝜌 (𝐴).

Proof. See wikipedia for instance. The general idea is to use the eigendecomposition
(or the Jordan form) and observe that apart from the top left coe�cients, everything
else vanishes. �

• The initialization is important: less than the distribution, the initial vector shall
not be orthogonal to the sought eigenvector. Thus, might as well initialize
randomly to be sure.

• If the matrix is only irreducible the power method will oscillate between the
eigenspaces corresponding to the ℎ eigenvalues of modulus 𝜌 (𝐴) (see Proposi-
tion 1.17).
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1.3 A�����������

1.3.1 Markov Chains

A (discrete-time homogeneous) Markov chain is a sequence of random variables (𝑋𝑘 )
where the distribution 𝑥𝑘+1 ∈ ℝ𝑛 at time 𝑘 + 1 only depends on the distribution at time
𝑘 and a transition matrix between the 𝑛 states of the chain.

Mathematically, 𝑥𝑘 (𝑖) is the probability that 𝑋𝑘 is at state 𝑖 (𝑋𝑘 = 𝑖) at time 𝑘 . And
𝑀 ∈ M𝑛 ≥ 0 is de�ned as𝑀𝑖 𝑗 = ℙ[𝑋𝑘+1 = 𝑖 |𝑋𝑘 = 𝑗] ∈ [0, 1].

A Markov chain is said to be irreducible if it is possible to get to any state from any
state. This is exactly the same thing as saying that the underlying graph is strongly
connected;𝑀 is indeed irreducible as in our de�nition above.

We say that a state 𝑖 has period ℎ if any return to state 𝑖 must occur in multiples
of ℎ time steps. This coincides with the notion of periodicity in graphs and with the
number of eigenvalues in Proposition 1.17. Thus, a Markov chain is aperiodic if and
only if𝑀 is primitive.

The distribution of probability at time 𝑘 + 1 follows the recursion

𝑥𝑘+1 = 𝑀𝑥𝑘

with 𝑥0 the initial distribution.
Since𝑀 is Markov transition, it is stochastic: the sum of the columns is equal to 1.

This means that 1 is an eigenvalue of maximum modulus. The equation above is then
equivalent to the Power method and thus 𝑥𝑘 → 𝜋 where 𝜋 = 𝑀𝜋 is the stationary
distribution of the Markov chain.
Example 1.21 (Guinea Pig).

1.3.2 Gossipping

Every node is given a real, this gives a vector 𝑥0, we want to exchange with our
neighbors to compute the mean over the network.

Let𝑀 be a matrix with the same support (non-zero elements as 𝐴). We consider
the iterations

𝑥𝑘+1 = 𝑀𝑥𝑘 .

What can we do to converge to the average?
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If𝑀 is doubly-stochastic (row and column sum equal to 1), 𝜌 (𝑀) = 1, 𝑣 = (1, .., 1),
𝑤 = (1, .., 1)/𝑛. Thus

𝑥𝑘 → 𝑥𝑎𝑣𝑒

where 𝑥𝑎𝑣𝑒 is the age of the values of 𝑥0.

1.4 T�� G���� L��������

1.4.1 Introduction

The adjacency matrix captures well the information of the graph and enables to prove
a lot of results. But complementary results can be derive by considering operators on
the graph such as the Laplacian.

Suppose the 𝜙𝑖 is the amount of heat at node 𝑖; according to Newton’s law of
cooling, the heat transferred from 𝑖 to 𝑗 is proportional to 𝜙𝑖 − 𝜙 𝑗 . Thus, the heat
evolution follows:

for all 𝑖, d𝜙𝑖
d𝑡 = −𝜅

�
𝑗 ∈N𝑖

(𝜙𝑖 − 𝜙 𝑗 )

= −𝜅
�
𝑗 ∈𝑉

𝐴𝑖 𝑗 (𝜙𝑖 − 𝜙 𝑗 )

= −𝜅
�
𝑑𝑖𝜙𝑖 −

�
𝑗 ∈𝑉

𝐴𝑖 𝑗𝜙 𝑗

�

= −𝜅
�
𝑗 ∈𝑉

�
𝐼𝑖 𝑗𝑑𝑖 −𝐴𝑖 𝑗𝜙 𝑗

�
����������������������������

:=𝐿𝑖 𝑗

𝜙 𝑗

with 𝐼 the identity matrix.
By introducing the diagonal degree matrix 𝐷 = diag(𝑑1, ..,𝑑𝑛), we get

d𝜙
d𝑡 = −𝜅 (𝐷 −𝐴)𝜙

= −𝜅𝐿Φ
and hence 𝐿 control the evolution/mixing over the graph.
De�nition 1.22 (Laplacian matrix). For an undirected unweighted4 4most properties developed after

are also true for directed and
weighted graphs but the de�nition
has to be de�ned more carefully to
maintain the semi-de�nite
structure.

graph G = (𝑉 , 𝐸),
the Laplacian is the 𝑛 × 𝑛 matrix de�ned as

𝐿𝑖 𝑗 =



𝑑𝑖 if 𝑖 = 𝑗
−1 if 𝑖 ≠ 𝑗 and 𝑗 ∈ N 𝑖

0 otherwise.
.

De�nition 1.23 (Incidence matrix). For an undirected unweighted graph G = (𝑉 , 𝐸),
the incidence matrix is the |𝐸 | × 𝑛 matrix de�ned as

𝐸 (𝑖, 𝑗)𝑣 =



1 if 𝑣 = 𝑖
−1 if 𝑣 = 𝑗
0 otherwise.

.

It is direct to show that 𝐿 = 𝐸�𝐸, thus 𝐿 is positive semi-de�nite. The study of
Laplacian matrices is thus based on the positive semi-de�nite matrix theory.
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1.4.2 Spectral Properties of Positive Semi-De�nite matrices

We recall that a symmetric55The symmetry is sometimes
eluded in textbooks, but it is often a

source of problems.

matrix is positive semi-de�nite if and only if
• 𝑥∗𝐿𝑥 ≥ 0 for all 𝑥 ≠ 0;
• or (equivalently) if it can be written as 𝑀∗𝑀 ; in which case 𝑀 is called the
squared root.

Lemma 1.24. All the eigenvalues, the trace, the determinant, of a positive semi-de�nite
matrix are non-negative.

Proof. As an exercise. �

An important tool to investigate eigenvalues is the formulation of the eigenvalue
problem as an optimization program.
Theorem 1.25 (Rayleigh quotient). Let𝑀 be a symmetric matrix and let 𝑥 be a non-zero
vector that maximizes the Rayleigh quotient of𝑀

R𝑀 (𝑥) := �𝑀𝑥 ;𝑥�
�𝑥 ;𝑥� .

Then, 𝑥 is an eigenvector of 𝑀 associated with eigenvalue R𝑀 (𝑥), which is the largest
eigenvalue of𝑀 .

Proof. Let us consider without loss of generality the set of unit vectors; since it is
a closed compact set, the maximum of R𝑀 (𝑥) is attained. Let us look at optimality
conditions:

∇ �𝑀𝑥 ;𝑥�
�𝑥 ;𝑥� =

2𝑀𝑥 �𝑥 ;𝑥� − �𝑀𝑥 ;𝑥�(2𝑥)
�𝑥 �2 = 0

⇔𝑀𝑥 =
�𝑀𝑥 ;𝑥�
�𝑥 �����������
∈ℝ

𝑥

�

This can be further generalized by the following result.
Theorem 1.26 (Courant-Fisher theorem). Let 𝑀 be a 𝑛 × 𝑛 symmetric matrix with
eigenvalues 𝜆1 ≤ 𝜆2 ≤ .. ≤ 𝜆𝑛 and associated eigenvectors𝜓1,𝜓2, ..,𝜓𝑛 . Then,

𝜆𝑘 = min
𝑆⊆ℝ𝑛,dim(𝑆)=𝑘

max
𝑥 ∈𝑆

�𝑀𝑥 ;𝑥�
�𝑥 ;𝑥�

or equivalently, 𝜆𝑘 = min
𝑥⊥𝜓1,𝜓2,..,𝜓𝑘−1

�𝑀𝑥 ;𝑥�
�𝑥 ;𝑥�

for any 𝑘 = 1, ..,𝑛.

1.4.3 Spectral Properties of the Laplacian

Now let us look at the spectral properties of the Laplacian of a graph.
Theorem 1.27. Let G = (𝑉 , 𝐸) be an undirected unweighted graph and denote by
𝜆1 ≤ 𝜆2 ≤ .. ≤ 𝜆𝑛 the eigenvalues of the Laplacian 𝐿 of G. Then,
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a. 𝜆1 = 0;
b. 𝜆2 > 0 if and only if the graph is connected.

Proof. a. Since 𝐿 is positive semi-de�nite, 𝜆1 ≥ 0. As
�

𝑗 𝐿𝑖 𝑗 = 0 for all 𝑖 , (1, 1, .., 1) is an
eigenvector for the eigenvalue 0. Hence, 𝜆1 = 0.
b. By Courant-Fisher theorem, we have 𝜆2 = min𝑥⊥(1,1,..,1)

�𝐿𝑥 ;𝑥 �
�𝑥 ;𝑥 � .

[𝐿𝑥]𝑖 =
�
𝑗

𝐿𝑖 𝑗𝑥 𝑗 = 𝑑𝑖𝑥𝑖 −
�
𝑗 ∈N𝑖

𝑥 𝑗 =
�
𝑗 ∈N𝑖

(𝑥𝑖 − 𝑥 𝑗 )

�𝐿𝑥 ;𝑥� =
�
𝑖∈𝑉

𝑥𝑖 [𝐿𝑥]𝑖 =
�
𝑖∈𝑉

𝑥𝑖
�
𝑗 ∈N𝑖

(𝑥𝑖 − 𝑥 𝑗 )

=
�

(𝑖, 𝑗)∈𝐸
𝑥𝑖 (𝑥𝑖 − 𝑥 𝑗 ) + 𝑥 𝑗 (𝑥 𝑗 − 𝑥𝑖 ) =

�
(𝑖, 𝑗)∈𝐸

(𝑥𝑖 − 𝑥 𝑗 )2 .

Take �𝑥 � = 1 without loss of generality. Suppose that there is an 𝑥 ⊥ (1, 1, .., 1)
such that �𝐿𝑥 ;𝑥 �

�𝑥 ;𝑥 � = 0, then,
�

(𝑖, 𝑗)∈𝐸 (𝑥𝑖 − 𝑥 𝑗 )2 and thus 𝑥𝑖 = 𝑥 𝑗 for all (𝑖, 𝑗) ∈ 𝐸. If the
graph is connected this obviously means that 𝑥𝑖 = 𝑥 𝑗 for all 𝑖, 𝑗 ∈ 𝑉 and thus that
𝑥 ∝ (1, 1, .., 1) which contradicts 𝑥 ⊥ (1, 1, .., 1). �

The second (smallest) eigenvalue of the Laplacian is often called the Fiedler value
or algebraic connectivity of the graph. Intuitively, the higher 𝜆2, the more connected
the graph.

Exercise: Prove that is G has 𝑘 connected components, 𝜆1 = 𝜆2 = .. = 𝜆𝑘 = 0 and
𝜆𝑘+1 > 0.

1.4.4 Special Graphs

The Complete graph 𝐾𝑛
Lemma 1.28. The eigenvalues of the Laplacian of the Complete graph 𝐾𝑛 are

𝜆1 = 0
𝜆2 = .. = 𝜆𝑛 = 𝑛.

Proof. 0 is associated with (1, 1, .., 1) as before. If 𝑥 ⊥ (1, 1, .., 1), this means that 𝑥𝑖 =
−�

𝑗≠𝑖 𝑥 𝑗 . Then,

[𝐿𝑥]𝑖 = (𝑛 − 1)𝑥𝑖 −
�
𝑗≠𝑖

𝑥 𝑗

����������
=𝑥𝑖

= 𝑛𝑥𝑖

thus 𝐿𝑥 = 𝑛𝑥 for all 𝑥 ⊥ (1, 1, .., 1). �

The Star graph 𝑆𝑛
Lemma 1.29. The eigenvalues of the Laplacian of the Star graph 𝑆𝑛 are

𝜆1 = 0
𝜆2 = .. = 𝜆𝑛−1 = 1

𝜆𝑛 = 𝑛

Proof. Exercise. �
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The Ring graph 𝑅𝑛
Lemma 1.30. The eigenvalues of the Laplacian of the Ring graph 𝑅𝑛 are

𝜆𝑘 = 2 − 2 cos
�
2𝜋𝑘
𝑛

�

for 𝑘 = 1, ..,𝑛.

The Path graph 𝑃𝑛
Lemma 1.31. The eigenvalues of the Laplacian of the Path graph 𝑃𝑛 are

𝜆𝑘 = 2 − 2 cos
�
𝜋𝑘

𝑛

�

for 𝑘 = 1, ..,𝑛.

Thus they have a smaller algebraic connectivity than the ring.

1.5 I�������� ������� �� G���� ������

1.5.1 Bottlenecks in Networks

Example 1.32.

A proportion 𝑝 ∈ (0, 0.5) of the nodes is (dangerously) loosely connected to the
rest!
De�nition 1.33 (Isoperimetry number). Let G = (𝑉 , 𝐸) be an undirected unweighted
graph and let

• 𝑆 be a subset of vertices 𝑉 ;
• 𝜕𝑆 = {(𝑖, 𝑗) ∈ 𝐸 : 𝑖 ∈ 𝑆, 𝑗 ∉ 𝑆};.

The isoperimetry number (or Cheeger constant) of the graph is de�ned as

𝜃G = min
𝑆⊂𝑉 : |𝑆 |≤𝑛/2

|𝜕𝑆 |
|𝑆 | .

The lower 𝜃G , the more failure possible failures in the graph.
Example 1.34. On the graphs seen before, we have:

• Complete: 𝜃𝐾𝑛 = 𝑛
2 → +∞

• Star: 𝜃𝑆𝑛 = 1
• Ring: 𝜃𝑅𝑛 = 4

𝑛 → 0
• Above: 𝜃𝐴𝑛 = 1

𝑝𝑛 → 0
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Theorem 1.35 (Cheeger). Let G = (𝑉 , 𝐸) be an undirected unweighted graph. Then for
any 𝑆 ⊂ 𝑉 ,

|𝜕𝑆 | ≥ 𝜆2 (𝐿) |𝑆 |
�
1 − |𝑆 |

|𝑉 |

�

and thus, 𝜃G ≥ 𝜆2 (𝐿)
2 .

Proof. De�ne 𝜒 as 𝜒𝑖 =
�
1 if 𝑖 ∈ 𝑆
0 elsewhere and 𝜒 = 𝜒 − |𝑆 |

|𝑉 | .

Since
�

𝑖 𝜒 = 0, 𝜒 ⊥ (1, .., 1). Then, we have:

�𝜒 ;𝐿𝜒� = �𝜒 ;𝐿𝜒� (since 𝜒 ⊥ (1, .., 1))
= |𝜕𝑆 | (since for all 𝑖 ∈ 𝑆 , [𝐿𝜒]𝑖 = 𝑑𝑖 −

�
𝑖∈𝑆∩N𝑖

1 )

and

�𝜒 ; 𝜒� = |𝑆 |
�
1 − |𝑆 |

|𝑉 |

�
.

Finally,

𝜆2 (𝐿) ≤ �𝜒 ;𝐿𝜒�
�𝜒 ; 𝜒� =

|𝜕𝑆 |
|𝑆 |

�
1 − |𝑆 |

|𝑉 |
�

which directly gives the �rst part. To get the second part, observe that

𝜃G = min
𝑆⊂𝑉 : |𝑆 |≤𝑛/2

|𝜕𝑆 |
|𝑆 | ≥ min

𝑆⊂𝑉 : |𝑆 |≤𝑛/2
𝜆2 (𝐿)

�
1 − |𝑆 |

|𝑉 |

�
,

then the right hand side is minimal whenever |𝑆 | = |𝑉 |/2 which gives the second
part. �

Example 1.36. On the graphs seen before, we have:
• Complete: 𝜃𝐾𝑛 = 𝑛

2 , 𝜆2 (𝐿) = 𝑛, this is tight.
• Star: 𝜃𝑆𝑛 = 1, 𝜆2 (𝐿) = 1, o� by 1/2.
• Ring: 𝜃𝑅𝑛 = 4

𝑛 , 𝜆2 (𝐿) = 2 − 2 cos(2𝜋/𝑛) ≡ 4𝜋2/𝑛2, o� by 𝑛𝜋2/2.

1.5.2 Planar Graph

If one want to draw a graph or to design a routing without crossings, we need to
ensure that the graph at hand is planar.
De�nition 1.37 (Planar graphs). A graph G = (𝑉 , 𝐸𝑑𝑔) is said to be planar it it can
be drawn without the edges crossing.
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Example 1.38 (3 utilities problem of Dudeney, 1917). Also known as gas, electricity, &
water distribution problem.

It shows that the bipartite graph with 3 + 3 nodes, denoted by 𝐾3,3, is not planar.

Example 1.39 (Complete graphs). For 𝑛 = 2, 3, it is obvious.
• 𝐾4 is planar
• 𝐾5 is not planar.

These two examples actually describe all non-planar graphs by Kuratowski’s
theorem(Kuratowski, 1930).
Theorem 1.40 (Kuratowski, 1930). A graph is planar if and only if it does not contains
𝐾3,3 or 𝐾5 as its minors.

Example 1.41. Peterson graph is transformable into the 𝐾5 graph.

Once a graph is drawn in the plan (whenever, it is drawn with curves, it can always
be drawn by straight lines), its edges delimit zones for which be have Euler’s formula.

Proposition 1.42. Let G be a planar graph with 𝑛 vertices, 𝑒 edges, and 𝑓 faces, then

𝑛 − 𝑒 + 𝑓 = 2.

Graphical sketch of proof.
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�

1.5.3 Coloring

The goal is to assign one color to each vertex so that each edge links two di�erent
colors.
De�nition 1.43 (Coloring). Let G = (𝑉 , 𝐸) be an undirected unweighted graph. A
𝑘-coloring is a function 𝑐 : 𝑉 → {1, ..,𝑘} such that 𝑐 (𝑖) ≠ 𝑐 ( 𝑗) for all (𝑖, 𝑗) ∈ 𝐸. If such
a function exists for G, we say that it is 𝑘-colorable. The minimal integer for which G
is colorable is called its chromatic number 𝜒G .

A graph can be
• 2-colorable, i� it is bipartite;
• 3-colorable, �nding out is an NP-problem;
• 4-colorable, e.g. if it is planar (famous 4 colors theorem proven by Appel &
Haken in 1977 by investigating 1478 critical cases)

• etc.
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