
CHAPTER 2 G��� T�����

G��� ������ is a set of analytical tools to understand the phenomena
observed when decision-makers interact.

The players pursue well-de�ned objectives (they are rational) and take into account
what they know of the other players’ behavior.

A game is the description of the players, their possible actions, and their interest.
The modelling/formalization is very important.

A bit of history:
• Traces since 1713 by Waldegrave, for the analysis of a card game;
• Renewed interest in the 1920s with chess analysis;
• Von Neumann’s “On the theory of Games of Strategy”(von Neumann, 1928) in
1928 kickstarted the �eld;

• Nobel prizes (economy mostly) in 1994 (inc. John Nash), 2005, 2007, 2012, and
2015 (Jean Tirole).

This part is mainly based on:
• The “course in game theory” by Obsborne and Rubinstein (Osborne and Rubin-
stein, 1994)

2.1 D���������� ��� V���������

2.1.1 Normal form

There is a �nite set of players P = {1, ..,𝑁 }.
Each player 𝑖 has a set of actions S𝑖 and a payo� function g𝑖 : S1 × .. × S𝑁 → ℝ.

De�nition 2.1. A game in normal form is a tuple Γ = (𝑁 , S = {S𝑖 }, g = {g𝑖 }).

2.1.2 Pure/Mixed Strategy

In a pure strategy, each player 𝑖 chooses one action s𝑖 ∈ S𝑖 . Then, it receives the payo�
g𝑖 (s1, .., s𝑁 ).

If instead each player chooses randomly an action in S𝑖 , it is called amixed strategy.
Mixed strategies will be considered later.
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2.1.3 Di�erent types of games

We will illustrate several types of fundamental games that capture the diversity of
normal games. Each time, we will exhibit a two players game (𝑁 = 2) as they can
easily be represented graphically and are the most basic and insightful examples in
game theory.

They are typically represented as a table:

Player 2
s2 s�2

Player 1 s1 (g1 (s1, s2), g2 (s1, s2)) (g1 (s1, s�2), g2 (s1, s�2))
s�1 (g1 (s�1, s2), g2 (s�1, s2)) (g1 (s�1, s�2), g2 (s�1, s�2))

Common interest A game where the players have the same payo�: g𝑖 = g𝑗 for all
𝑖, 𝑗 ∈ P.
Example 2.2 (Activity in Grenoble). Alice and Bob want to do something together,
either trail 𝑇 or ski 𝑆 with no preference.

S𝐴 = S𝐵 = {𝑇 , 𝑆} and g𝐴 = g𝐵 =

�
1 if s𝐴 = s𝐵
0 else

Zero-sum games A game where the player are antagonist:
�𝑁

𝑖=1 g𝑖 ≡ 0
Example 2.3 (Matching pennies). Alice and Bob both have a penny; they secretly turn
it to heads or tails. If the pennies match, Alice wins 1E and Bob loses 1E (Bob gives 1E
to Alice). If they are di�erent Alice gives 1E to Bob.

S𝐴 = S𝐵 = {𝐻 ,𝑇 } and g𝐴 = −g𝐵 =

�
1 if s𝐴 = s𝐵
−1 else

Battle of the sexes Mix between common interest and zero-sum.
Example 2.4 (Meetup). Alice and Bob want to meet tonight; Alice prefers to meet at a
bar; Bob prefers to meet at home.

S𝐴 = S𝐵 = {𝐵,𝐻 }, g𝐴 =




3 if s𝐴 = s𝐵 = 𝐵
1 if s𝐴 = s𝐵 = 𝐻
0 else

, g𝐵 =




1 if s𝐴 = s𝐵 = 𝐵
3 if s𝐴 = s𝐵 = 𝐻
0 else

Prisonner’s dilemma It is a classic game where Alice and Bob are arrested and
individually given the possibility to stay silent or cooperate.

S𝐴 = S𝐵 = {𝑆,𝐶},

g𝐴 =




−1 if s𝐴 = 𝑆 and s𝐵 = 𝑆
−3 if s𝐴 = 𝑆 and s𝐵 = 𝐶
0 if s𝐴 = 𝐶 and s𝐵 = 𝑆
−2 if s𝐴 = 𝐶 and s𝐵 = 𝐶

g𝐵 =




−1 if s𝐴 = 𝑆 and s𝐵 = 𝑆
0 if s𝐴 = 𝑆 and s𝐵 = 𝐶
−3 if s𝐴 = 𝐶 and s𝐵 = 𝑆
−2 if s𝐴 = 𝐶 and s𝐵 = 𝐶

It is a fundamental game in economy, notably for the creation of rules enabling
the denunciation of coalitions between companies.
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Game of chicken A lot like the prisonner’s dilemma but penalizing a lot mutual
cooperation.

S𝐴 = S𝐵 = {𝑆,𝐶},

g𝐴 =




−1 if s𝐴 = 𝑆 and s𝐵 = 𝑆
−3 if s𝐴 = 𝑆 and s𝐵 = 𝐶
0 if s𝐴 = 𝐶 and s𝐵 = 𝑆
−20 if s𝐴 = 𝐶 and s𝐵 = 𝐶

g𝐵 =




−1 if s𝐴 = 𝑆 and s𝐵 = 𝑆
0 if s𝐴 = 𝑆 and s𝐵 = 𝐶
−3 if s𝐴 = 𝐶 and s𝐵 = 𝑆
−20 if s𝐴 = 𝐶 and s𝐵 = 𝐶

It is the game modeling mutually assured destruction: cuban missile crisis, evolu-
tionary biology, etc.

Cournot competition Antoine Cournot (1801–1871) analyzed the spring water
duopoly:

• Two �rms produce an equivalent product (𝑁 = 2);
• Each �rm decides of a production level s𝑖 ∈ ℝ for a cost 𝑐𝑖 (s𝑖 );
• The selling price result from the demand vs o�er, it is common to both �rms
and depend on the total production 𝑝 (s1 + s2).

The pro�t/payo� for company 1 is g1 (s1, s2) = s1𝑝 (s1 + s2) − 𝑐1 (s1); the one for
company 2 is g2 (s1, s2) = s2𝑝 (s1 + s2) − 𝑐2 (s2).

The question is which quantity to produce?

2.1.4 Target of Game Theory

Analyze these games and more precisely:
• Which strategies are best?
• Are there equilibriums?

2.2 A������� ��� ���� ����������

Notations:
S = S1 × S2 × .. × S𝑁
S−𝑖 =

�

𝑗≠𝑖 S𝑗
g = (g𝑖 )𝑖

2.2.1 Dominating strategies

De�nition 2.5. A strategy s𝑖 ∈ S𝑖 is dominated if there is 𝑡𝑖 ∈ S𝑖 such that

∀s−𝑖 ∈ S−𝑖 , g𝑖 (𝑡𝑖 ; s−𝑖 ) ≥ g𝑖 (𝑠𝑖 ; s−𝑖 ).

It is strictly dominated if the inequality is strict.
A rational player never plays a strictly dominated strategy.

De�nition 2.6. A strategy s𝑖 ∈ S𝑖 is dominating if for all 𝑡𝑖 ∈ S𝑖

∀s−𝑖 ∈ S−𝑖 , g𝑖 (s𝑖 ; s−𝑖 ) ≥ g𝑖 (𝑡𝑖 ; s−𝑖 ).
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It is strictly dominating if the inequality is strict.

It is unique from de�nition. If it exists, it is the only rational action.
Example 2.7. What should player 1 play in the following game?

Player 2
𝐴 𝐵

Player 1 𝐴 (0,−2) (−10,−1)
𝐵 (−1,−10) (−5,−5)

• What will play Player 2?
• Deduce what should play Player 1.
• Is it the best payment both player could have had?
If there exists dominated strategies, they can be eliminated successively from the

game.

2.2.2 Nash Equilibrium

De�nition 2.8. A strategy pro�le s = s1 × s2 × .. × s𝑁 ∈ S is a Nash Equilibrium (NE)
if

∀𝑖,∀𝑡𝑖 ∈ S𝑖 , g𝑖 (s𝑖 ; s−𝑖 ) ≥ g𝑖 (𝑡𝑖 ; s−𝑖 ).
It is a global equilibrium (contrary to the local ones seen before). No player has

a singular interest to deviate from his action. It is thus a good way to conclude an
agreement.

2.2.3 Back to the examples

Are there Nash equilibriums in the following games?

Common Interest

Bob
T S

Alice T (1, 1) (0, 0)
S (0, 0) (1, 1)

Zero Sum

Bob
H T

Alice H (1,−1) (−1, 1)
T (−1, 1) (1,−1)

Battle of the sexes

Bob
B H

Alice B (3, 2) (0, 0)
H (0, 0) (2, 3)
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Prisonner’s dilemma

Bob
Silent Cooperate

Alice Silent (−1,−1) (−3, 0)
Cooperate (0,−3) (−2,−2)

Game of Chicken

Bob
Silent Cooperate

Alice Silent (−1,−1) (−3, 0)
Cooperate (0,−3) (−20,−20)

2.2.4 Nash Equilibriums and dominating strategies

• There can be no, one, or several NEs.
• If there is a strictly dominating strategy matching each player, it is the unique
NE.

• By eliminating successively strictly dominated strategies, NEs are preserved.
• A pro�le of dominating strategies is a NE.

2.2.5 Equilibrium Selection

a)

Player 2
𝐴 𝐵

Player 1 𝐴 (9, 9) (−15, 8)
𝐵 (8,−15) (7, 7)

(A,A) and (B,B) are two NEs. If the player are risk-averse, they may prefer (B,B)
even though the payo� is smaller. Indeed, if the other player does not play the NE, the
loss is smaller with (B,B).

b)

Player 2
𝐴 𝐵

Player 1 𝐴 (2, 2) (1, 1)
𝐵 (1, 1) (1, 1)

(A,A) and (B,B) are two NEs but B is dominated for each player while A is strictly
dominating. So (A,A) seems better.

c)

Player 2
𝐴 𝐵

Player 1 𝐴 (2, 2) (1, 2)
𝐵 (2, 1) (1, 1)
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All states are NEs!

2.2.6 Application: Vickrey auctions (1961)

They are sealed-bid, second price auctions. There are 𝑁 players, and player 𝑖:
• estimates the price of the object at 𝑣𝑖
• its action set is S𝑖 = ℝ+ and corresponds to its bidding
• if he wins the auction (his bid is the greatest), he will make a pro�t based on the
di�erence between his estimation and his bid, otherwise he will make 0 pro�t

• mathematically, its payo� if g𝑖 (s𝑖 , s−𝑖 ) = 𝑣𝑖 − max𝑗≠𝑖 s𝑗 if s𝑖 > max𝑗≠𝑖 s𝑗 and 0
else

Such auctions are used for instance in advertisement bidding (eg. Google Ads), for
mobile bandwidth acquisition (eg. FCC), etc.

Exercise: Show that (𝑣1, .., 𝑣𝑁 ) is a Nash Equilibrium.

2.3 M���� ����������

For some games, NEs with pure strategies do not exist; for instance, in Rock-Paper-
Scissors.
Example 2.9.

2.3.1 Mixed games

Mixed Strategies Let Γ = (𝑁 , S = {S𝑖 }, g = {g𝑖 }) be a game in normal form and let
us suppose that each S𝑖 is a �nite set.
De�nition 2.10. A mixed strategy 𝜎𝑖 for player 𝑖 is a probability distribution on S𝑖 .

𝜎𝑖 = (𝜎𝑖 (S𝑖 [1]), ..,𝜎𝑖 (S𝑖 [𝑛𝑖 ])) ∈ Δ(S𝑖 )

where 𝜎𝑖 (S𝑖 [ 𝑗]) = ℙ[𝑖 plays the 𝑗-th action in his set] and Δ(S𝑖 ) is the simplex on S𝑖 .

Interpretation:
• Random strategy (eg in Rock Paper Scissors)
• Model for a large number of players
We note Σ =

�

𝑖 Δ(S𝑖 ) and Σ−𝑖 =
�

𝑗≠𝑖 Δ(S𝑗 ).

Mixed game
• Each player plays a mixed strategy 𝜎𝑖 ∈ Δ(S𝑖 ) .
• The probability that the global strategy s = (s1, .., s𝑁 ) is played is

�
𝑗 𝜎 𝑗 (s𝑗 ).

• For a global strategy 𝜎 ∈ Σ, the expected payo� for player 𝑖 is

g𝑖 (𝜎) =
�
s∈S

��
𝑗

𝜎 𝑗 (s𝑗 )
�
g𝑖 (𝑠).

With these de�nitions, Γ = (𝑁 , Σ = {𝜎𝑖 }, g = {g𝑖 }) is a mixed game:
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• The players simultaneously choose a pure strategy s𝑖 ∼ 𝜎𝑖

• They get payo� g𝑖 (s)
• Each player tries to maximize its expected payo�

2.3.2 Nash Equilibriums for Mixed Games

De�nition
De�nition 2.11. A mixed strategy pro�le 𝜎 = 𝜎 1 × 𝜎2 × .. × 𝜎𝑁 ∈ Σ is a Nash
Equilibrium (NE) if

∀𝑖,∀𝜏𝑖 ∈ Σ𝑖 = Δ(S𝑖 ), g𝑖 (𝜎𝑖 ;𝜎−𝑖 ) ≥ g𝑖 (𝜏𝑖 ;𝜎−𝑖 ).

Example 2.12 (Rock-Paper-Scissors). (1/3,1/3,1/3) is a NE.

Nash’s Theorem (1950)
Theorem 2.13. All �nite6 6with �nite number of actionsgames have (mixed) Nash Equilibriums.

Proof. To follow �

2.3.3 Dominated Mixed Strategies

De�nition 2.14. A mixed strategy 𝜎𝑖 ∈𝑖 is dominated if there is 𝜏𝑖 ∈ Σ𝑖 = Δ(S𝑖 ) such
that

∀𝜎−𝑖 ∈ Σ−𝑖 , g𝑖 (𝜏𝑖 ;𝜎−𝑖 ) ≥ g𝑖 (𝜎𝑖 ;𝜎−𝑖 ).

It is strictly dominated if the inequality is strict.

Example 2.15.
While we could remove strictly dominated mixed strategy, this does not lead to

a reduction of the states of the game. However, we are still able to remove strictly
dominated pure strategies.

Proposition 2.16. Let (Γ𝑘 ) be the sequence of games produced by eliminating strictly
dominated pure strategies in Γ. Then, for all 𝑘 , 𝑁𝐸 (Γ𝑘 ) = 𝑁𝐸 (Γ) .
Example 2.17.

2.3.4 Looking for mixed equilibriums

De�nition 2.18. For player 𝑖 , 𝜎𝑖 ∈ Σ𝑖 is a best response to 𝜎−𝑖 ∈ Σ−𝑖 if

∀𝜏𝑖 ∈ Σ𝑖 = Δ(S𝑖 ), g𝑖 (𝜎𝑖 ;𝜎−𝑖 ) ≥ g𝑖 (𝜏𝑖 ;𝜎−𝑖 ).

The set of all best responses for an adversarial strategy 𝜎−𝑖 ∈ Σ−𝑖 is denoted by BR(𝜎−𝑖 )
The following result is obvious from the de�nitions.

Proposition 2.19. 𝜎 ∈ Σ is a (mixed) Nash Equilibrium if and only if for all 𝑖 , 𝜎𝑖 ∈
BR(𝜎−𝑖 ).
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There is a nice relation between pure and mixed strategies in terms of best response.
To study it, let use denote the support of a mixed strategy as supp(𝜎𝑖 ) = {s𝑖 ∈ S𝑖 :
𝜎𝑖 (s𝑖 ) > 0}, i.e. the pure strategies that have a positive probability to be played.

Proposition 2.20 (Weak Indi�erence). For player 𝑖 , an adversarial strategy 𝜎−𝑖 ∈ Σ−𝑖 ,
and 𝜎𝑖 ∈ BR(𝜎−𝑖 ), then

∀s𝑖 ∈ supp(𝜎𝑖 ), g𝑖 (s𝑖 ;𝜎−𝑖 ) = g𝑖 (𝜎𝑖 ;𝜎−𝑖 ).

This mean that all pure strategies in support have the same payo�, equal to the
payo� of the mixed strategy.

Proof.

g𝑖 (𝜎𝑖 ;𝜎−𝑖 ) =
�
s𝑖 ∈S𝑖

𝜎𝑖 (s𝑖 )g𝑖 (s𝑖 ;𝜎−𝑖 ) =
�

s𝑖 ∈supp(𝜎𝑖 )
𝜎𝑖 (s𝑖 )g𝑖 (s𝑖 ;𝜎−𝑖 )

Then:
1) g𝑖 (s𝑖 ;𝜎−𝑖 ) ≤ g𝑖 (𝜎𝑖 ;𝜎−𝑖 ) since 𝜎𝑖 ∈ BR(𝜎−𝑖 );
2) Suppose that there is 𝑡𝑖 ∈ supp(𝜎𝑖 ) such that g𝑖 (𝑡𝑖 ;𝜎−𝑖 ) < g𝑖 (𝜎𝑖 ;𝜎−𝑖 ). Then,

g𝑖 (𝜎𝑖 ;𝜎−𝑖 ) =
�
s𝑖 ∈S𝑖

𝜎𝑖 (s𝑖 )g𝑖 (s𝑖 ;𝜎−𝑖 )

<
�

s𝑖 ∈supp(𝜎𝑖 )
𝜎𝑖 (s𝑖 )g𝑖 (𝜎𝑖 ;𝜎−𝑖 ) (by our supposition)

= g𝑖 (𝜎𝑖 ;𝜎−𝑖 ) (since 𝜎𝑖 is a probability vector)

which is a absurd.
Hence, g𝑖 (s𝑖 ;𝜎−𝑖 ) ≤ g𝑖 (𝜎𝑖 ;𝜎−𝑖 ) for all s𝑖 ∈ supp(𝜎𝑖 ). �

The notion of indi�erence can be strengthened as follows.

Proposition 2.21 (Strong Indi�erence). For player 𝑖 and an adversarial strategy 𝜎−𝑖 ∈
Σ−𝑖 ,

𝜎𝑖 ∈ BR(𝜎−𝑖 ) ⇐⇒
� (1) ∀s𝑖 , 𝑡𝑖 ∈ supp(𝜎𝑖 ), g𝑖 (s𝑖 ;𝜎−𝑖 ) = g𝑖 (𝑡𝑖 ;𝜎−𝑖 )

(2) ∀s𝑖 ∉ supp(𝜎𝑖 ), g𝑖 (s𝑖 ;𝜎−𝑖 ) ≤ g𝑖 (𝜎𝑖 ;𝜎−𝑖 ) .

Proof. The forward way is direct from the previous proof. The other way comes from
noticing that (1) + (2) imply that g𝑖 (s𝑖 ;𝜎−𝑖 ) ≤ g𝑖 (𝜎𝑖 ;𝜎−𝑖 ) for all s𝑖 ∈ S𝑖 and thus 𝜎𝑖 is a
best response to 𝜎−𝑖 . �

Using once again the link between best responses and Nash Equilibriums, we have
the following result.

Corollary 2.22. The strategy 𝜎 ∈ Σ is a (mixed) Nash Equilibrium if and only if for
each player 𝑖 : � (1) ∀s𝑖 , 𝑡𝑖 ∈ supp(𝜎𝑖 ), g𝑖 (s𝑖 ;𝜎−𝑖 ) = g𝑖 (𝑡𝑖 ;𝜎−𝑖 )

(2) ∀s𝑖 ∉ supp(𝜎𝑖 ), g𝑖 (s𝑖 ;𝜎−𝑖 ) ≤ g𝑖 (𝜎𝑖 ;𝜎−𝑖 ) .

Thus, in order to �nd Nash Equilibriums:
• Remove strictly dominated pure strategies
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• Try all possible supports
• Find probabilities leading to indi�erent payo�s

Example 2.23.
Example 2.24.
Example 2.25 (Braess’s paradox).

2.3.5 A proof of Nash’s theorem

Exercise

2.4 T�� ������ �����

In this section, we focus on the important case when 𝑁 = 2. Then the game writes in
normal form Γ = {2; (Σ1, Σ2); (g1, g2)}.

2.4.1 Max-Mix strategies

De�nition 2.26. Let 𝜔 ∈ ℝ. We say that player 𝑖 guarantees a payment 𝜔 if he has a
mixed strategy that pays at least 𝜔 against any adversarial strategy:

∃𝜎𝑖 ∈ Σ𝑖 : ∀𝜎−𝑖 ∈ Σ−𝑖 , g𝑖 (𝜎𝑖 ;𝜎−𝑖 ) ≥ 𝜔

that is to say

max
𝜎𝑖 ∈Σ𝑖

min
𝜎−𝑖 ∈Σ−𝑖

g𝑖 (𝜎𝑖 ;𝜎−𝑖 ) ≥ 𝜔 .

In fact, by linearity of the expectation of the payo�, we can consider only pure
strategies.

Proposition 2.27. The maximal payo� that player 𝑖 can guarantee is

𝑣𝑖 = max
𝜎𝑖 ∈Σ𝑖

min
𝜎−𝑖 ∈Σ−𝑖

g𝑖 (𝜎𝑖 ;𝜎−𝑖 ) = max
𝜎𝑖 ∈Σ𝑖

min
s−𝑖 ∈S−𝑖

g𝑖 (𝜎𝑖 ;𝜎−𝑖 )

De�nition 2.28. A (mixed) strategy 𝜎𝑖 ∈ Σ𝑖 is max-min if min𝜎−𝑖 ∈Σ−𝑖 g𝑖 (𝜎𝑖 ;𝜎−𝑖 ) = 𝑣𝑖

A max-min policy is not necessarily a NE but it can be a sensible policy if player 𝑖
is risk-averse or if the other player is not rational.
Example 2.29.

2.4.2 Zero-sum games

In zero sum two players games, g1 = −g2.
Theorem 2.30. Let Γ be a zero sum two players game. A strategy (𝜎 1,𝜎2) is a (mixed)
Nash Equilibrium if and only if it is max-min. Furthermore,

𝑣1 = g1 (𝜎 1,𝜎2) = max
𝜎𝑖 ∈Σ𝑖

min
𝜎−𝑖 ∈Σ−𝑖

g𝑖 (𝜎𝑖 ;𝜎−𝑖 )

= min
𝜎−𝑖 ∈Σ−𝑖

max
𝜎𝑖 ∈Σ𝑖

g𝑖 (𝜎𝑖 ;𝜎−𝑖 )

= −𝑣2 .
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The payment of a Nash Equilibrium is thus (𝑣1,−𝑣1); 𝑣1 is then called the value of the
game.

2.4.3 Link with linear programming

Max-Min means taking one player side and optimizing against the other. Let 𝐴 be a
matrix such that 𝐴𝑖, 𝑗 = g1 (S1 [𝑖], S2 [ 𝑗]).

Then, if player 1 plays 𝑥 and 2 plays 𝑦, the gain for player 1 is 𝑥�𝐴𝑦. The max min
solution of this game is then

𝑥★ = argmax𝑥 ∈Δ min
𝑦∈Δ

𝑥�𝐴𝑦

Example 2.31.


