CHAPTER 2 GAME THEORY

GAME THEORY is a set of analytical tools to understand the phenomena

observed when decision-makers interact.

The players pursue well-defined objectives (they are rational) and take into account
what they know of the other players’ behavior.

A game is the description of the players, their possible actions, and their interest.
The modelling/formalization is very important.

A bit of history:
« Traces since 1713 by Waldegrave, for the analysis of a card game;
» Renewed interest in the 1920s with chess analysis;

5«

« Von Neumann’s “On the theory of Games of Strategy”(von Neumann, 1928) in
1928 kickstarted the field;

« Nobel prizes (economy mostly) in 1994 (inc. John Nash), 2005, 2007, 2012, and
2015 (Jean Tirole).

This part is mainly based on:

« The “course in game theory” by Obsborne and Rubinstein (Osborne and Rubin-
stein, 1994)

2.1 DESCRIPTION AND VOCABULARY

2.1.1 Normal form

There is a finite set of players P = {1,., N}.
Each player i has a set of actions S; and a payoff function g; : S; X .. X Sy = R.

Definition 2.1. A game in normal formisatupleT = (N,S = {S;}, g = {gi}).

2.1.2 Pure/Mixed Strategy

In a pure strategy, each player i chooses one action s; € S;. Then, it receives the payoff
gi(sl’ vey SN).

If instead each player chooses randomly an action in S;, it is called a mixed strategy.
Mixed strategies will be considered later.
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2.1.3 Different types of games

We will illustrate several types of fundamental games that capture the diversity of
normal games. Each time, we will exhibit a two players game (N = 2) as they can
easily be represented graphically and are the most basic and insightful examples in
game theory.

They are typically represented as a table:

Player 2
Sy Sy

st | (21051, 52), 82(51,52))  (€1(51,55), 82 (51, 5))

Player 1
Y (21051, 52), 22(57,82))  (21(s, 85), g2(s], 83))

o’
51

Common interest A game where the players have the same payoff: g; = g; for all
i,jeP.

Example 2.2 (Activity in Grenoble). Alice and Bob want to do something together,
either trail T or ski S with no preference.

1 ifsa=s
SA=SB={T,S}andgA=gB={ o else
Zero-sum games A game where the player are antagonist: ¥ g; = 0

Example 2.3 (Matching pennies). Alice and Bob both have a penny; they secretly turn
it to heads or tails. If the pennies match, Alice wins 1E and Bob loses 1E (Bob gives 1E
to Alice). If they are different Alice gives 1E to Bob.

1 if sy =sp
Sa=Sp={HT =—pp=
A p={H,T}and ga B { 1 else
Battle of the sexes Mix between common interest and zero-sum.

Example 2.4 (Meetup). Alice and Bob want to meet tonight; Alice prefers to meet at a
bar; Bob prefers to meet at home.

3 ifsqy=sg=B 1 ifsy=sg=B
Sa=Sp={B,H},ga=11 ifsa=sp=H ,gp=49 3 ifsa=sp=H
0 else 0 else

Prisonner’s dilemma It is a classic game where Alice and Bob are arrested and
individually given the possibility to stay silent or cooperate.
Sa=Sg={S,C},
-1 ifsy=Sandsg=3S
-3 ifsAzSandsB:C
g4 0 ifsp=Candsg=3S
-2 ifspy=Candsg=C
-1 ifsy=Sandsg=3S
0 ifsA:SandsB:C
&8 -3 ifsA=CandsB=S
-2 ifspy=Candsg=C
It is a fundamental game in economy, notably for the creation of rules enabling
the denunciation of coalitions between companies.
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Game of chicken A lot like the prisonner’s dilemma but penalizing a lot mutual
cooperation.
Sa=5p={S,C},
-1 ifsAzSandsBzS
) -3 ifspy=Sandsg=C
A 0 ifsy=Candsg =S
—-20 ifsy=Candsg=C
-1 ifsy=Sandsg=3S
0 ifsy =Sandsg=C
-3 ifsy=Candsg=3S
—-20 ifsy=Candsg=C
It is the game modeling mutually assured destruction: cuban missile crisis, evolu-
tionary biology, etc.

B

Cournot competition Antoine Cournot (1801-1871) analyzed the spring water
duopoly:

« Two firms produce an equivalent product (N = 2);

« Each firm decides of a production level s; € R for a cost ¢;(s;);

« The selling price result from the demand vs offer, it is common to both firms
and depend on the total production p(s; + s2).

The profit/payoff for company 1is gi(s1, s2) = sip(s1 + s2) — ¢1(s1); the one for

company 2 is gz(sg, s2) = s2p (s + s2) — ¢2(s2).
The question is which quantity to produce?

2.14 Target of Game Theory

Analyze these games and more precisely:
« Which strategies are best?

« Are there equilibriums?

2.2 ANALYSIS FOR PURE STRATEGIES

Notations:
S=5;XSyX..XSy
S = ><j¢i Sj

g = (g

2.2.1 Dominating strategies
Definition 2.5. A strategy s; € S; is dominated if there is t; € S; such that
Vs_; € S_y, gitiss—i) = gi(si;s—i)-

It is strictly dominated if the inequality is strict.

A rational player never plays a strictly dominated strategy.
Definition 2.6. A strategy s; € S; is dominating if for all t; € S;

Vs_; € S_i, gi(siss—i) = gi(ti;s—i).
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It is strictly dominating if the inequality is strict.

It is unique from definition. If it exists, it is the only rational action.

Example 2.7. What should player 1 play in the following game?

Player 2
A B
A | (0,-2) (-10,-1)
B | (-1,-10) (-5,-5)

Player 1

« What will play Player 27
« Deduce what should play Player 1.
« Is it the best payment both player could have had?

If there exists dominated strategies, they can be eliminated successively from the
game.

2.2.2 Nash Equilibrium
Definition 2.8. A strategy profile s = s; X s X .. X sy € S is a Nash Equilibrium (NE)
if

Vi,Vt; € Si, gi(siss—i) = gi(ti;s—1).

It is a global equilibrium (contrary to the local ones seen before). No player has
a singular interest to deviate from his action. It is thus a good way to conclude an
agreement.

2.2.3 Back to the examples

Are there Nash equilibriums in the following games?

Common Interest

Bob
T S
. T | (1) (0,0)
Alice s | (0.0) (L)
Zero Sum
Bob
H T
. H| (-1 (-1
Alice T| (Z11)  (1-1)
Battle of the sexes
Bob
B H
Alice B (32 (0,0

H | (0,0) (2,3)
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Prisonner’s dilemma

Bob
Silent  Cooperate
. Silent (-1,-1) (-3,0)
Alice Cooperate | (0,-3) (-2,-2)
Game of Chicken
Bob
Silent  Cooperate
Alice Silent (-1,-1) (-3,0)

Cooperate | (0,-3)  (—20,-20)

2.2.4 Nash Equilibriums and dominating strategies

« There can be no, one, or several NEs.

« If there is a strictly dominating strategy matching each player, it is the unique
NE.

+ By eliminating successively strictly dominated strategies, NEs are preserved.

« A profile of dominating strategies is a NE.

2.2.5 Equilibrium Selection

a)

Player 2
A B
(9,9) (-158)
B | (8-15) (7,7)

Player 1

(A,A) and (B,B) are two NEs. If the player are risk-averse, they may prefer (B,B)
even though the payoff is smaller. Indeed, if the other player does not play the NE, the
loss is smaller with (B,B).

b)
Player 2
A B
Al (22 1D
Player 1 B| (L) (L1)

(A,A) and (B,B) are two NEs but B is dominated for each player while A is strictly
dominating. So (A,A) seems better.

c)

A B
Al (22 (12

Player 2

Player 1 Bl (21 L1
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All states are NEs!

2.2.6 Application: Vickrey auctions (1961)

They are sealed-bid, second price auctions. There are N players, and player i:

« estimates the price of the object at v;
« its action set is S; = Ry and corresponds to its bidding

« if he wins the auction (his bid is the greatest), he will make a profit based on the
difference between his estimation and his bid, otherwise he will make 0 profit

+ mathematically, its payoff if g;(s;, s-;) = v; — max;4; s; if s; > max;4;s; and 0
else

Such auctions are used for instance in advertisement bidding (eg. Google Ads), for

mobile bandwidth acquisition (eg. FCC), etc.

Exercise: Show that (vy, ..,vy) is a Nash Equilibrium.

2.3 MIXED STRATEGIES

For some games, NEs with pure strategies do not exist; for instance, in Rock-Paper-
Scissors.

Example 2.9.

2.3.1 Mixed games

Mixed Strategies LetT = (N,S = {S;},g = {gi}) be a game in normal form and let
us suppose that each S; is a finite set.

Definition 2.10. A mixed strategy o; for player i is a probability distribution on S;.

o; = (0:(S;[1]), .., 0:(Si[mi])) € A(S;)

where 0;(S;[j]) = P[i plays the j-th action in his set] and A(S;) is the simplex on S;.

Interpretation:

« Random strategy (eg in Rock Paper Scissors)
+ Model for a large number of players

We note > = )X; A(S;) and 2_; = X 4; A(S)).

Mixed game

« Each player plays a mixed strategy o; € A(S;) .
« The probability that the global strategy s = (sy, .., s) is played is []; o;(s;).
« For a global strategy o € 2, the expected payoff for player i is

gi(0) =) []‘[ oj(sj)l ils).

seS Jj

With these definitions, I' = (N, 2 = {0}, g = {g:}) is a mixed game:
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« The players simultaneously choose a pure strategy s; ~ o;
« They get payoff g;(s)

« Each player tries to maximize its expected payoff
2.3.2 Nash Equilibriums for Mixed Games
Definition
Definition 2.11. A mixed strategy profile ¢ = 0y X 03 X .. X o € X is a Nash
Equilibrium (NE) if
Vi,V € 3 = A(S;), gi(oi;0-1) = gi(Ti;0-4).
Example 2.12 (Rock-Paper-Scissors). (1/3,1/3,1/3) is a NE.

Nash’s Theorem (1950)
Theorem 2.13. All finite® games have (mixed) Nash Equilibriums.

Proof. To follow O

2.3.3 Dominated Mixed Strategies

Definition 2.14. A mixed strategy o; €; is dominated if there is 7; € 3; = A(S;) such
that

Vo_; € 3y, gi(rizo-1) 2 gi(0150-4).
It is strictly dominated if the inequality is strict.

Example 2.15.

While we could remove strictly dominated mixed strategy, this does not lead to
a reduction of the states of the game. However, we are still able to remove strictly
dominated pure strategies.

Proposition 2.16. Let (I*) be the sequence of games produced by eliminating strictly
dominated pure strategies in T. Then, for allk, NE(T'*¥) = NE(T) .

Example 2.17.

2.3.4 Looking for mixed equilibriums
Definition 2.18. For player i, 0; € ¥; is a best response to o_; € >_; if
V1 € ;= A(Sy), gilois0-) 2 gi(i; 0-1).
The set of all best responses for an adversarial strategy o_; € >_; is denoted by BR(0_;)
The following result is obvious from the definitions.

Proposition 2.19. ¢ € ¥ is a (mixed) Nash Equilibrium if and only if for all i, o; €
BR(O'_,').

6withﬁnite number of actions
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There is a nice relation between pure and mixed strategies in terms of best response.
To study it, let use denote the support of a mixed strategy as supp(o;) = {s; € S; :
oi(s;) > 0}, i.e. the pure strategies that have a positive probability to be played.

Proposition 2.20 (Weak Indifference). For player i, an adversarial strategy o_; € >_;,
and o; € BR(o_;), then

Vs; € supp(oy), gi(si;o—i) = gi(oi;0-4).

This mean that all pure strategies in support have the same payoff, equal to the
payoff of the mixed strategy.

Proof.

gi(oi;0-4) = Z oi(s)gi(sis o) = Z ai(si)gi(si; o)
S; €S s;esupp(o;)
Then:
1) gi(si;o-i) < gi(oy;0-;) since 0; € BR(0_;);
2) Suppose that there is t; € supp(o;) such that g;(#;; 0-;) < gi(o;;0-;). Then,
gi(op0-4) = Z oi(si)gi(si; 0-i)
s; €S;
< Z oi(si)gi(oi; 0-;) (by our supposition)
siesupp(o;)

= g;(0y; 0-;) (since o; is a probability vector)
which is a absurd.
Hence, g;(s;;0-;) < gi(os;0-;) for all s; € supp(o;). m]
The notion of indifference can be strengthened as follows.

Proposition 2.21 (Strong Indifference). For player i and an adversarial strategy o_; €
2y

(1) Vsit; € supp(o;), gi(si;o-i) = gi(ti;0-4)

€ BR(0_;) =
7 (o=2) { (2) Vs; ¢supp(oy), gi(si;o-i) < gioi;0-4)

Proof. The forward way is direct from the previous proof. The other way comes from
noticing that (1) + (2) imply that g;(s;;0-;) < gi(o;;0-;) for all s; € S; and thus o; is a
best response to o_;. O

Using once again the link between best responses and Nash Equilibriums, we have
the following result.

Corollary 2.22. The strategy o € X is a (mixed) Nash Equilibrium if and only if for
each player i:

(1) Vsit; € supp(o;), gi(si;o-i) = gi(ti; o)
(2) Vs; ¢ supp(oy), gi(sizo—) < gi(oi;0-5)

Thus, in order to find Nash Equilibriums:

« Remove strictly dominated pure strategies
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« Try all possible supports

« Find probabilities leading to indifferent payoffs
Example 2.23.
Example 2.24.
Example 2.25 (Braess’s paradox).

2.3.5 A proof of Nash’s theorem

Exercise

2.4 Two PLAYER GAMES

In this section, we focus on the important case when N = 2. Then the game writes in
normal form T" = {2; (34, 22); (g1, 22) }-

2.4.1 Max-Mix strategies

Definition 2.26. Let » € R. We say that player i guarantees a payment o if he has a
mixed strategy that pays at least » against any adversarial strategy:

do; €3 :Vo_; € X, gl‘((fi;(f_i) > w
that is to say

max min g;(o;0-;) = .
05 EX ) 0=; EXZ;

In fact, by linearity of the expectation of the payoff, we can consider only pure
strategies.

Proposition 2.27. The maximal payoff that player i can guarantee is

v; =max min g;(o;;0-;) = max min g;(os;0-;)
Oj€X; O_j€EX_; O;€X; S_;E€S_;

Definition 2.28. A (mixed) strategy o; € 2; is max-min if min, _,es_, g;(0s;0-;) = v;

A max-min policy is not necessarily a NE but it can be a sensible policy if player i
is risk-averse or if the other player is not rational.

Example 2.29.

2.4.2 Zero-sum games

In zero sum two players games, g; = —g.

Theorem 2.30. Let T be a zero sum two players game. A strategy (o1, 02) is a (mixed)
Nash Equilibrium if and only if it is max-min. Furthermore,

v1=gi(01,02) = max min g;(a30-)
Oj<4j O—j —i

min max g;(o;;0-;)
T=p@p a2

= —Uj.
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The payment of a Nash Equilibrium is thus (v1, —v1); v is then called the value of the
game.

2.4.3 Link with linear programming

Max-Min means taking one player side and optimizing against the other. Let A be a
matrix such that A; ; = g1(S1[i], S2[j]).

Then, if player 1 plays x and 2 plays y, the gain for player 1is x" Ay. The max min
solution of this game is then

x* = argmax, ., minx' Ay
yeA

Example 2.31.



