
CHAPTER 3 Numerical Optimal Transport

Optimal Transport studies the cost of moving quantities from one place
to another and aims at finding the optimal way to do it, that is minimizing

the cost of the displacement. Its applications can go from moving heaps of sand
to holes (Monge, 1781), reorganizing military troops and cargo (Kantorovich,
1942), correcting an image histogram to a prescribed values (Haker et al., 2004),
finding the origin of seismic events (Métivier et al., 2016), or transferring a
learning model over a new data distribution (Courty et al., 2016).
Its study dates back to Monge in 1781, had a renewed interest in the beginning
of the XX-th century, and is still today a very active field of mathematics both
pure (Villani, 2008) and applied (Santambrogio, 2015), notably in relation with
machine learning (Peyré and Cuturi, 2019). The book Computational optimal
transport by Gabriel Peyré and Marco Cuturi will serve as the main reference
for this chapter, and is to be credited for some of the illustrations of this chapter.

3.1 Introduction

3.1.1 Measuring the mass

Let us consider a set X. To measure the mass, it is convenient to define a positive
(so-called Radon) measure 𝜇 on X which associates at each point 𝑥 ∈ X a positive
number 𝜇 (𝑥).
Example 3.1 (Measure in continuous and discrete spaces).

3.1.2 Transporting the mass

Example 3.2 (Original Monge problem).
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Let us define a starting set X and a target set Y, endowed with measures 𝜇 and 𝜈 .
A transport operation is a mapping from X to Y

T : X → Y
implying that 𝜈 (𝐴) = 𝜇 (T−1 (𝐴)) for all 𝐴 ⊂ Y

We note 𝜈 = T♯𝜇 with T♯ called the push-forward operator.
Example 3.3.

But, intuitively, all transportation maps are not equivalent, we thus need define
the cost 𝑐 (𝑥,𝑦) of moving (a unit of mass) from 𝑥 ∈ X to 𝑦 ∈ Y.

With these definitions, we can formulate the Monge problem of minimizing the
transportation cost:

min
T:𝜈=T♯𝜇

∫
X
𝑐 (𝑥, T(𝑥)) d𝜇 (𝑥) (Monge problem)

We know from Brenier (Brenier, 1991) that this problem has a unique solution when
𝑐 (𝑥,𝑦) = ∥𝑥 − 𝑦∥2 and 𝜇,𝜈 have densities. Furthermore, the optimal transport plan T★

is the gradient of a convex function.

3.1.3 The discrete Monge problem

Let us denote a discrete measure 𝛼 =
Í𝑛

𝑖=1 𝑎𝑖𝛿𝑥𝑖 as a sum of diracs at positions (𝑥𝑖 )
weighted by non-negative coefficients (𝑎𝑖 ).
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The problem of transporting 𝛼 =
Í𝑛

𝑖=1 𝑎𝑖𝛿𝑥𝑖 to 𝛽 =
Í𝑚

𝑗=1 𝑏 𝑗𝛿𝑦 𝑗 amounts to finding
a Monge transport map T that associates to each point 𝑥𝑖 , a single point 𝑦 𝑗 so that

for all 𝑗 ∈ {1, ..,𝑚}, 𝑏 𝑗 =
∑︁

𝑖:𝑦 𝑗=T(𝑥𝑖 )
𝑎𝑖 .

This equation, sometimes called mass transportation, defines the set of valid trans-
port maps from 𝛼 to 𝛽 by imposing that the mass of a target point 𝑦 𝑗 (i.e. 𝑏 𝑗 ) is equal
to the mass that is transported from all 𝑥𝑖 such that 𝑦 𝑗 = T(𝑥𝑖 ).

An important point is that in this problem, the mass of point 𝑥𝑖 cannot be split:
even though two input points can go to the same target point, the mass 𝑎𝑖 of an input
point cannot be split into several target points13 13following this remark, we can say

that the discrete Monge problem is
actually an assignment problem

. This means that there may not exist a
Monge transport plan.

When Monge transport maps exists, it is possible to evaluate their cost defined
as the sum of the costs of transport for all input point, that is

Í𝑛
𝑖=1 𝑐 (𝑥𝑖 , T(𝑥𝑖 )). The

associated optimal transport problem thus writes:

min
T

𝑛∑︁
𝑖=1

𝑐 (𝑥𝑖 , T(𝑥𝑖 )) s.t. ∀𝑗, 𝑏 𝑗 =
∑︁

𝑖:𝑦 𝑗=T(𝑥𝑖 )
𝑎𝑖 .

In this case, we notice that the transport plan T can be simply rewritten as an 𝑛×𝑚
matrix 𝑇 with 𝑇𝑖 𝑗 = 1 if T(𝑥𝑖 ) = 𝑦 𝑗 and 0 elsewhere; we can also define a cost matrix C
as C𝑖 𝑗 = 𝑐 (𝑥𝑖 ,𝑦 𝑗 ). Then:

• A transport matrix 𝑇 must have i) exactly one 1 per row (all others coefficients
are null); and ii) verify the mass transportation equality which rewrites 𝑏 𝑗 =Í𝑛

𝑖=1𝑇𝑖 𝑗𝑎𝑖 ;
• The transport cost is equal to ⟨𝑇 ;C⟩ where ⟨𝐴;𝐵⟩ =

Í
𝑖, 𝑗 𝐴𝑖 𝑗𝐵𝑖 𝑗 is called the

Frobenius scalar product.
It is thus a highly combinatorial problem (maybe with no solution).

3.1.4 Kantorovitch’s relaxation
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Monge’s problem may not have a feasible solution due to the impossibility of
splitting mass. Allowing such a mass splitting is at the core of Kantorovitch’s relaxation
(Kantorovich, 1942). Instead of considering a mapping transport matrix 𝑇 as in Monge
problem (see above), we consider a coupling matrix 𝑃 where 𝑃𝑖 𝑗 ≥ 0 represents the
quantity NOT the proportion of mass going from 𝑥𝑖 to 𝑦 𝑗 . In order for the transport to
be valid, one must have for all 𝑗 that 𝑎 𝑗 =

Í𝑚
𝑖=1 𝑃 𝑗𝑖 and 𝑏 𝑗 =

Í𝑛
𝑖=1 𝑃𝑖 𝑗 .

Monge transport Kantorovitch relaxation
T is a surjective mapping X → Y T is a coupling matrix 𝑃 ∈ ℝ𝑛×𝑚+
∀𝑗, 𝑏 𝑗 =

Í𝑛
𝑖=1𝑇𝑖 𝑗𝑎𝑖 ∀𝑗, 𝑎 𝑗 =

Í𝑚
𝑖=1 𝑃 𝑗𝑖 and 𝑏 𝑗 =

Í𝑛
𝑖=1 𝑃𝑖 𝑗

In order to work properly on such transport couplings, it is interesting to define
the set of admissible couplings

U(𝑎,𝑏) = �
𝑃 ∈ ℝ𝑛×𝑚

+ : 𝑃1𝑚 = 𝑎, 1⊤𝑛 𝑃 = 𝑏⊤
	

where 1𝑑 is the size-𝑑 vector with unit unit entries.

Lemma 3.4. For any pair of probability vectors 𝑎 ∈ Δ𝑛,𝑏 ∈ Δ𝑚 , U(𝑎,𝑏) is a convex
non-empty linear polytope.

Proof. As an exercise. □

Using a cost matrix C (defined as above as C𝑖 𝑗 = 𝑐 (𝑥𝑖 ,𝑦 𝑗 )) and the Frobenius scalar
product, Kantorovitch’s optimal transport problem writes

min
𝑃∈U(𝑎,𝑏 )

⟨C; 𝑃⟩

which is a linear program!
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Remark 3.5 (Continuous version). For two measures 𝛼, 𝛽 over X,Y, Kantorovitch’s
optimal transport problem writes

min
𝛾 ∈Γ (𝛼,𝛽 )

∫
X×Y

𝑐 (𝑥,𝑦)d𝛾 (𝑥,𝑦)

where Γ(𝛼, 𝛽) is the set of measures on X ×Y admitting 𝛼 and 𝛽 as marginals. ⊳

3.2 Computing the optimal transport

In this section, we will be looking into the numerical computation of Kantorovitch’s
discrete optimal transport problem:

min
𝑃 ∈U(𝑎,𝑏 )

⟨C; 𝑃⟩ (K)

3.2.1 Primal problem

Since U(𝑎,𝑏) is a convex non-empty linear polytope (See Lemma 3.4) and (K) is a
linear program, we have some information about the localization of the solutions.

Theorem 3.6. There is a solution 𝑃★ of (K) which is an extremal point of U(𝑎,𝑏).
Proof. U(𝑎,𝑏) is a non-empty convex polytope; thus the solution of a Linear Program
on such a set is necessary on the boundary by the maximum principle (see e.g. Chap.
32 in (Rockafellar, 1970)). □

In terms of optimization:
• Kantorovitch’s problem and Dantzig’s simplex algorithm are concomitant;
• Direct LP may be hard due to the polytope constraints;
• When𝑚 = 𝑛 and 𝑎 = 𝑏 = 1/𝑛, the Hungarian/Auction algorithm is in O(𝑛3);
• In 1D, sorting is in O(𝑛 log(𝑛)).

3.2.2 Dual Problem

Let us dualize of the linear program (K):

min
𝑃 ∈U(𝑎,𝑏 )

⟨C; 𝑃⟩ (K)

⇔ min
𝑃 ∈ℝ𝑛×𝑚+ ,𝑃1𝑚=𝑎,1⊤𝑛𝑃=𝑏⊤

⟨C; 𝑃⟩

(Lagrange) ⇔ min
𝑃 ∈ℝ𝑛×𝑚+

max
𝑓 ∈ℝ𝑛,𝑔∈ℝ𝑚

⟨C; 𝑃⟩ − ⟨𝑓 ; 𝑃1𝑚 − 𝑎⟩ − ⟨𝑔; 1⊤𝑛 𝑃 − 𝑏⊤⟩

(Strong duality) ⇔ max
𝑓 ∈ℝ𝑛,𝑔∈ℝ𝑚

min
𝑃 ∈ℝ𝑛×𝑚+

⟨C; 𝑃⟩ − ⟨𝑓 ; 𝑃1𝑚 − 𝑎⟩ − ⟨𝑔; 1⊤𝑛 𝑃 − 𝑏⊤⟩

⇔ max
𝑓 ∈ℝ𝑛,𝑔∈ℝ𝑚

⟨𝑓 ;𝑎⟩ + ⟨𝑔;𝑏⟩ + min
𝑃∈ℝ𝑛×𝑚+

⟨C − 𝑓 1⊤ − 1𝑔⊤; 𝑃⟩.

Since 𝑃 ∈ ℝ𝑛×𝑚+ , the solution of the right part is attained if and only if

C − 𝑓 1⊤ − 1𝑔⊤ ≥ 0

where the inequality is meant elementwise.
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In this case, ⟨C − 𝑓 1⊤ − 1𝑔⊤; 𝑃★⟩ = 0 and we have

min
𝑃 ∈U(𝑎,𝑏 )

⟨C; 𝑃⟩ (K)

⇔ max
𝑓 ∈ℝ𝑛,𝑔∈ℝ𝑚 ;𝑓 1⊤+1𝑔⊤≤C

⟨𝑓 ;𝑎⟩ + ⟨𝑔;𝑏⟩. (D)

Remark 3.7 (Interpretation). Consider 𝑚 warehouses producing 𝑎 and 𝑛 factories
needing 𝑏.
Primal: Find 𝑃★ and pay ⟨C; 𝑃★⟩ to transport.
Dual: Find 𝑓 ★,𝑔★, 𝑓 ★𝑖 is the price to take resource from warehouse 𝑖 , 𝑔★𝑗 is the price to
deliver resource at factory 𝑗 , thus the price is ⟨𝑓 ;𝑎⟩ (to take) + ⟨𝑔;𝑏⟩ (to deliver) . ⊳
Remark 3.8 (Complementary Slackness). ⟨C − 𝑓 ★1⊤ − 1𝑔★⊤; 𝑃★⟩ = 0 and thus for all
(𝑖, 𝑗) �

either 𝑃★𝑖 𝑗 > 0 and 𝑓 ★𝑖 + 𝑔★𝑗 = C𝑖 𝑗

or 𝑃★𝑖 𝑗 = 0 and 𝑓 ★𝑖 + 𝑔★𝑗 < C𝑖 𝑗

⊳

3.2.3 Associated Metric

The cost of moving from a distribution to another distribution naturally defines a
distance between them when they are are defined on the same space.

Proposition 3.9. Let 𝑛 =𝑚. Take 𝑝 ≥ 1 and let C = 𝐷𝑝 where 𝐷 defines a distance1414that is:
i) 𝐷 is symmetric;

ii) 𝐷𝑖 𝑗 = 0 if and only if 𝑖 = 𝑗 ;

iii) 𝐷𝑖𝑘 ≤ 𝐷𝑖 𝑗 +𝐷 𝑗𝑘

on
{1, ..,𝑛}. Then,

𝑊
𝑝
𝑝 (𝑎,𝑏) := min

𝑃 ∈U(𝑎,𝑏 )
⟨𝐷𝑝 ; 𝑃⟩

defines the (𝑝-th power of the) 𝑝-Wasserstein distance on the simplex of size 𝑛.

𝑊𝑝 (𝑎,𝑏) is a distance (without the power 𝑝) and thus for all𝑎,𝑏, 𝑐 ∈ Δ𝑛 ,𝑊𝑝 (𝑎,𝑏) = 0
if and only if 𝑎 = 𝑏,𝑊𝑝 (𝑎, 𝑐) ≤𝑊𝑝 (𝑎,𝑏) +𝑊𝑝 (𝑏, 𝑐).

Applications:
• bag of words distance for text classification;
• histogram distance.

3.3 Entropic Regularization

The problems we just saw are typically hard to compute numerically. There was a
renewed interest towards these problems (especially in machine learning) following the
introduction of an entropy-based regularization leading to more efficient computations.
Example 3.10 (Regularization leads to more stable solutions).

3.3.1 Entropy

The entropy function for a matrix 𝑃 ∈ ℝ𝑚×𝑛+ writes

𝐻 (𝑃) = −
∑︁
𝑖, 𝑗

𝑃𝑖 𝑗
�
log(𝑃𝑖 𝑗 ) − 1

�
.
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The entropy-regularized optimal transport problem (Cuturi, 2013; Wilson, 1969)
then writes for some 𝜀 > 0

min
𝑃 ∈U(𝑎,𝑏 )

⟨C; 𝑃⟩ − 𝜀𝐻 (𝑃) (P𝜀 )

and promotes more “uniform/smoothed” transport maps. This means that now every
point is transported to every other point (with potentially very small values), which
allows the transport plan to vary smoothly whenever the weights or the cost is evolving,
which is very intersting in practice.

3.3.2 Regularized Transport

Proposition 3.11. The problem (P𝜀 ) has a unique solution 𝑃★𝜀 which verifies

• 𝑃★𝜀
𝜀→0−→ argmin𝑃sol. of (K) −𝐻 (𝑃)

• 𝑃★𝜀
𝜀→+∞−→ 𝑎𝑏⊤

𝑃★𝜀 = argmin𝑃 ∈U(𝑎,𝑏 ) ⟨C; 𝑃⟩ − 𝜀𝐻 (𝑃)
= argmin𝑃 ∈U(𝑎,𝑏 ) ⟨C; 𝑃⟩ − 𝜀

∑︁
𝑖, 𝑗

𝑃𝑖 𝑗 log(𝑃𝑖 𝑗 ) − 𝜀
∑︁
𝑖, 𝑗

𝑃𝑖 𝑗

| {z }
constant in U(𝑎,𝑏 )

= argmin𝑃∈U(𝑎,𝑏 ) −𝜀
∑︁
𝑖, 𝑗

𝑃𝑖 𝑗
1
𝜀
log(exp(−C𝑖 𝑗 )) − 𝜀

∑︁
𝑖, 𝑗

𝑃𝑖 𝑗 log(𝑃𝑖 𝑗 )

= argmin𝑃 ∈U(𝑎,𝑏 )
∑︁
𝑖, 𝑗

𝑃𝑖 𝑗 log
�
𝑃𝑖 𝑗

𝐾𝑖 𝑗

�
with 𝐾𝑖 𝑗 = exp(−C𝑖 𝑗/𝜀) called the Gibbs Kernel

= argmin𝑃 ∈U(𝑎,𝑏 ) KL (𝑃 |𝐾) with KL called the Kullback-Liebler divergence

3.3.3 Computational Interest

Proposition 3.12. The problem (P𝜀 ) has a unique solution 𝑃★𝜀 and this solution writes

𝑃★𝑖 𝑗,𝜀 = 𝑢𝑖𝐾𝑖 𝑗𝑣 𝑗

with 𝐾𝑖 𝑗 = exp(−C𝑖 𝑗/𝜀) called the Gibbs Kernel and two unknown vectors 𝑢, 𝑣.

Proof. The solution is unique since the entropy is strictly concave.
Dualizing the constraints as in Section 3.2.2, the optimal 𝑃 is obtained as the

minimum of ⟨C − 𝑓 1⊤ − 1𝑔⊤; 𝑃⟩ − 𝜀𝐻 (𝑝). Taking the first order optimality conditions,
we obtain that for all 𝑖, 𝑗

C𝑖 𝑗 − 𝑓𝑖 − 𝑔 𝑗 + 𝜀 log(𝑃★𝑖 𝑗,𝜀) = 0
⇔𝑃★𝑖 𝑗,𝜀 = exp(𝑓𝑖/𝜀)|     {z     }

:=𝑢𝑖

exp(−C𝑖 𝑗/𝜀)|         {z         }
:=𝐾𝑖 𝑗

exp(𝑔 𝑗/𝜀)|     {z     }
:=𝑣𝑗
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or, rewriting that in matrix form

𝑃★𝜀 = diag(𝑢)𝐾 diag(𝑣).

□

Unfortunately, 𝑢 and 𝑣 are not explicit1515They depend on 𝑓 and 𝑔 which
are the solutions to the dual

problem, so no computational gain
there.

but since 𝑃★𝜀 ∈ U(𝑎,𝑏) we have

𝑃★𝜀 1 = diag(𝑢)𝐾 diag(𝑣)1 = diag(𝑢)𝐾𝑣 = 𝑢 ⊙ 𝐾𝑣 = 𝑎

and 1⊤𝑃★𝜀 = 1⊤ diag(𝑢)𝐾 diag(𝑣) = 𝑢⊤𝐾 diag(𝑣) = (𝐾⊤𝑢 ⊙ 𝑣)⊤ = 𝑏⊤

where ⊙ represents the Hadamard (entrywise) product.
Thus, we have to scale the matrix 𝐾 to precribed row and column sums, ie to get�

𝑢 ⊙ 𝐾𝑣 = 𝑎
𝑣 ⊙ 𝐾⊤𝑣 = 𝑏

.

Sinkhorn’s algorithm solves this problem by alternating

𝑢𝑘+1 =
𝑎

𝐾𝑣𝑘
𝑣𝑘+1 =

𝑏

𝐾⊤𝑢𝑘+1
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