The exercises are independent. The questions all have the same weight in the grade. The third exercise gives bonus points.

EXERCISE 1: (10 Pts)_

Let us consider the $\mathbb{R} \to \mathbb{R}$ function

$$f: x \mapsto \begin{cases} x^3 & \text{if } x \ge 0\\ +\infty & \text{otherwise} \end{cases}$$

- 1. What is the domain of f? Is domf closed, convex?
- 2. Draw the epigraph of f. Is it closed? What does this mean for f?
- 3. Is the function f convex? strongly convex?
- 4. Where is the function differentiable? Is the gradient of f Lipschitz continuous on this interval?

Let us try to minimize f by gradient descent.

6. Take a constant $c \in [0, 1]$ and y > 0. Give the conditions on the stepsize γ to have

$$f(y - \gamma \nabla f(y)) \le f(y) - cf(y).$$

- 7. Is is possible to guarantee a functional decrease at each iteration with a constant stepsize gradient descent method?
- 8. What stepsize policy would you implement to have a guaranteed convergence in terms of functional value?
- 9. Which method (seen in the course) for nonsmooth optimization could be employed here?
- 10. Show that the problem can be simplified with the change of variable $t \leftarrow x^{3/2}$.

EXERCISE 2: (10 Pts)___

1. Consider the following optimization problem

$$\mathcal{P}: \begin{cases} \max_{x \in \mathbb{R}^n} \frac{1}{3} \sum_{i=1}^n x_i^3 \\ \text{s.t.: } \sum_{i=1}^n x_i = 0; \\ \sum_{i=1}^n x_1^2 = n. \end{cases}$$

- (a) Using Lagrange multipliers λ and μ, respectively, find all KKT points of problem P for arbitrary n > 2. Express all KKT points in terms of the multipliers λ* and μ*.
 Hint: Recall that |x| = x sgn(x), where sgn : ℝ \ {0} → {-1, 1} is the sign function such that x → -1 if x < 0 and x → 1 if x > 0. Also note that such sign function is undefined at 0.
- (b) By examining second order conditions characterize the set of all maximizers for arbitrary n > 2, and find the largest value of the objective function that satisfies all the constraints.
- 2. Let $a \in \mathbb{R}^n$ and $L \subseteq \mathbb{R}^n$ a subspace of \mathbb{R}^n .

(a) One way to formulate the projection problem is

$$\mathcal{P}_1 \begin{cases} \min_{x \in \mathbb{R}^n} \frac{1}{2} \|x - a\|^2 \\ \text{s.t.} Ax = 0 \end{cases}$$

where $L = \{x \in \mathbb{R}^n | Ax = 0\}.$

Formulate the dual problem \mathcal{D}_1 and provide a geometric interpretation of the dual problem. Recall that $\text{Im}(A^{\top}) = \text{Null}(A)^{\perp}$.

(b) Another way to formulate the projection problem is

$$\mathcal{P}_2 \begin{cases} \min_{x \in \mathbb{R}^n} \|x - a\| \\ \text{s.t.} : x \in L \end{cases}$$

- i. Write \mathcal{P}_2 as a minimax problem.
- ii. Show that the dual problem associated to \mathcal{P}_2 can be written as,

$$\mathcal{D}_2: \begin{cases} \max_y \langle a, y \rangle \\ \text{s.t.: } \|y\| \le 1; \\ y \in M. \end{cases}$$

and specify the subset $M \subseteq \mathbb{R}^n$. Hint: for any $u \in \mathbb{R}^n$,

$$\|u\| = \max_{\|y\| \le 1} \langle u, y \rangle$$

EXERCISE 3: (Bonus)_____

Let c denote a non null vector of \mathbb{R}^n , x_0 of point of \mathbb{R}^n and H a symmetric positive definite matrix of size $n \times n$. Show that the solution of the problem

writes

$$\bar{x} = x_0 - \frac{H^{-1}c}{\sqrt{c^{\top}H^{-1}c}}.$$