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CHAPTER 1 Variational analysis

The purpose of this rst part is to properly introduce the notations and
the notions of dierentiability at play when dealing with functions. We

will thus see how to dene subgradients, and gradients when the function is
dierentiable. Finally, we will take a rst look at the gradient algorithm.

In the rst page of the renowned book “Variational analysis” by R. Tyrrell Rockafel-
lar and Roger J-B Wets (Rockafellar and Wets, 1998), we are told that “it’s convenient
for many purposes to consider functions 𝐹 that are allowed to be extended-real-valued,
i.e., to take values in ℝ = [−∞, +∞] instead of just ℝ = (−∞, +∞)”, we will thus adopt
this convention ourselves.

A fundamental question in variational analysis is the study of the minimum (or
equivalently maximum) of functions dened over a Euclidean space ℝ𝑛 . In all this
course, we will place ourselves in the (nite-dimensional) Euclidean space ℝ𝑛 , with
the scalar product 〈·, ·〉 and the associated norm 𝑥 ↦→ ‖𝑥 ‖:=

√︁
〈𝑥, 𝑥〉.

For a function 𝐹 : ℝ𝑛 → ℝ, we dene its domain as dom 𝐹 :={𝑥 ∈ ℝ𝑛 : 𝐹 (𝑥) < +∞},
and its inmum

inf 𝐹 := inf
𝑥 ∈ℝ𝑛

𝐹 (𝑥) = inf
𝑥 ∈dom 𝐹

𝐹 (𝑥).

Whenever this inmum is attained, ie. there is some 𝑥 such that 𝐹 (𝑥) = inf 𝐹 , then
it is called a minimum and is denoted by min 𝐹 . We further dene

argmin 𝐹 := {𝑥 ∈ ℝ𝑛 : 𝐹 (𝑥) = inf 𝐹 } .

Additionally, a function 𝐹 is lower semi-continuous if for any 𝑥 ∈ ℝ𝑛 ,

lim inf
𝑢→𝑥

𝐹 (𝑢):=min{𝑡 ∈ ℝ : ∃𝑢𝑟 → 𝑥 with 𝐹 (𝑢𝑟 ) → 𝑡} = 𝐹 (𝑥).

Finally, a function 𝐹 is said to be proper is 𝐹 (𝑥) < +∞ for at least one 𝑥 ∈ ℝ𝑛

and 𝐹 (𝑥) > −∞ for all 𝑥 ∈ ℝ𝑛 . This means that the domain of a proper function is a
nonempty set over which 𝐹 is nite-valued.

1.1 Subgradients

In order to investigate the local behavior of a function with respect to minimization, a
rst natural step is to consider local ane lower approximations. This rst-order in-
formation is captured by the notion of subgradients. There is a variety of subgradients
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and several ways to express them, see (Rockafellar and Wets, 1998, Chap. 7,8), (Mor-
dukhovich, 2006, Chap. 1) for general references. We give here only the notions that
will be used for our purposes following the terminology and notations of (Rockafellar
and Wets, 1998, Chap. 8).

Denition 1.1 (Subgradients). Consider a function 𝐹 : ℝ𝑛 → ℝ and a point 𝑥 ∈ ℝ𝑛

at which 𝐹 (𝑥) is nite:
• the set of regular subgradients is dened as

�̂�𝐹 (𝑥) = {𝑣 : 𝐹 (𝑢) ≥ 𝐹 (𝑥) + 〈𝑣,𝑢 − 𝑥〉 + 𝑜 (‖𝑢 − 𝑥 ‖) for all 𝑢 ∈ ℝ𝑛} . (1.1)

• the set of (general or limiting) subgradients is dened as

𝜕𝐹 (𝑥) =
{
lim
𝑟

𝑣𝑟 : 𝑣𝑟 ∈ �̂�𝐹 (𝑢𝑟 ), 𝑢𝑟 → 𝑥, 𝐹 (𝑢𝑟 ) → 𝐹 (𝑥)
}
. (1.2)

If 𝐹 (𝑥) is innite, �̂�𝐹 (𝑥) = 𝜕𝐹 (𝑥) = ∅.

While the regular subgradient seems simpler and more appealing at rst, we will
use the general subgradient in all the following, simply referenced under the name
subgradient for simplicity. The reason for this is its superior continuity properties as
stated in the following lemma.

Lemma 1.2 (Rockafellar and Wets 2009, Th. 8.6, Prop. 8.7 [★]). Consider a function
𝐹 : ℝ𝑛 → ℝ and a point 𝑥 ∈ ℝ𝑛 at which 𝐹 (𝑥) is nite, then the sets of regular
subgradients �̂�𝐹 (𝑥) and general subgradients 𝜕𝐹 (𝑥) are closed. Furthermore, the set of
general subgradients 𝜕𝐹 is outer semi-continuous at 𝑥 , ie.

lim sup
𝑢→𝑥 with 𝐹 (𝑢)→𝐹 (𝑥)

𝜕𝐹 (𝑢) := {𝑣 : ∃𝑢𝑟 → 𝑥, ∃ 𝑣𝑟 → 𝑣 with 𝑣𝑟 ∈ 𝜕𝐹 (𝑢𝑟 )} ⊂ 𝜕𝐹 (𝑥)

Note that the regular and limiting subdierentials at some point 𝑥 coincide in a
variety of situations, we then say that the function is (Clarke) regular at 𝑥 (Rockafellar
and Wets, 2009, Def. 7.25, Cor. 8.11). While less natural in its denition, the outer
semi-continuity property of the general subgradient allows us, for example, to deduce
that any limit point 𝑥 of a sequence (𝑥𝑘 ) satisfy 0 ∈ 𝜕𝐹 (𝑥) if the distance from 𝜕𝐹 (𝑥𝑘 )
to 0 vanishes.

The condition 0 ∈ 𝜕𝐹 (𝑥) is particularly interesting since it is related to local
minimas by Fermat’s rule.

Theorem 1.3 (Fermat’s rule). If a proper function 𝐹 : ℝ𝑛 → ℝ has a local minimum
at 𝑥 (ie. if there is a neighborhood U of 𝑥 such that 𝐹 (𝑥) ≤ 𝐹 (𝑢) for all 𝑢 ∈ U) then
0 ∈ 𝜕𝐹 (𝑥).

1.2 Differentiability

Dierentiability plays a central role in optimization. This is somehow a special case of
the notion of subgradient dened above but the treatment of dierentiable functions
will be rather dierent algorithmically. In order to promote even more this dierence,
we will adopt the following convention for the name of generic functions: (i) 𝑓 if it is
dierentiable; (ii) 𝑔 if it is not assumed dierentiable; and (iii) 𝐹 if the dierentiability
does not play a role in the result.
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1.2.1 Derivative of a function from ℝ to ℝ

In this basic case, the notion of dierentiability is quite direct.

Denition 1.4. A function 𝑓 : V ⊂ ℝ → ℝ dened on a open subset1 1At rst read, you can take V as
the full space to x ideas

V of ℝ is
dierentiable at 𝑥 ∈ V if the derivative (ie. the limit)

𝑓 ′(𝑥):= lim
ℎ→0

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

exists. This function 𝑓 is dierentiable on V if it is dierentiable at every point of V .
This denition is equivalent to the existence of a real number 𝑓 ′(𝑥) such that

𝑓 (𝑥 + ℎ) = 𝑓 (𝑥) + 𝑓 ′(𝑥)ℎ + 𝑜 ( |ℎ |).

Note that we now only consider an open subset of ℝ over which the function is
nite-valued. If 𝑓 takes innite values on any open set containing 𝑥 , then it cannot be
dierentiable at that point.

In addition, if 𝑓 is dierentiable at 𝑥 , it is necessarily continuous at 𝑥 . The derivative
𝑓 ′ is itself a function from V → ℝ and may also be continuous (on V), in which case,
we say that 𝑓 is continuously dierentiable, often denoted C1 (V) or simply C1.

The derivative of the derivative is called the second-order derivative, noted 𝑓 ′′. If
it exists and is continuous, we say that 𝑓 is C2. Iterating, we can easily dene higher
order derivatives and dierentiability classes up to C∞.

1.2.2 Gradient of a function from ℝ𝑛 to ℝ

Let us now consider a function dened over an open subset V of ℝ𝑛

𝑓 : V ⊂ ℝ𝑛 −→ ℝ

𝑥 = [𝑥 1, .., 𝑥𝑛] ↦−→ 𝑓 (𝑥) .

For every 𝑥 ∈ V , the 𝑖-th partial function is dened onV ′ ⊂ ℝ as

𝜙𝑖,𝑥 : V ′ −→ ℝ

𝑢 ↦−→ 𝑓 (𝑥 1, .., 𝑥𝑖−1, 𝑢, 𝑥𝑖+1, .., 𝑥𝑛)
,

and since this function falls into the case of the previous section, we can study its
dierentiability. If for all 𝑖 , 𝜙𝑖,𝑥 is dierentiable at 𝑥𝑖 , then, we will say that 𝑓 is
dierentiable at 𝑥 .
Denition 1.5. A function 𝑓 : V ⊂ ℝ𝑛 → ℝ dened on a open subset V of ℝ𝑛 is
dierentiable at 𝑥 ∈ V if for all 𝑖 = 1, .., 𝑛, the derivative (ie. the limit)

𝜕𝑓

𝜕𝑥𝑖
(𝑥):= lim

ℎ→0

𝜙𝑖,𝑥 (𝑥𝑖 + ℎ) − 𝜙𝑖,𝑥 (𝑥𝑖 )
ℎ

exists. This function 𝑓 is dierentiable on V if it is dierentiable at every point of V .
Further, if 𝑓 is dierentiable on V , we dene its gradient as the V ⊂ ℝ𝑛 → ℝ𝑛

mapping

∇𝑓 (𝑥) =


𝜕𝑓

𝜕𝑥 1
(𝑥)
...

𝜕𝑓

𝜕𝑥𝑛
(𝑥)

 .
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Similar to what was obtained in the one-dimensional case, we have a rst-order
development of 𝑓 at a point 𝑥 at which 𝑓 is dierentiable:

𝑓 (𝑥 + ℎ) = 𝑓 (𝑥) + 〈∇𝑓 (𝑥), ℎ〉 + 𝑜 (‖ℎ‖).

1.2.3 Jacobian of a mapping ℝ𝑚 to ℝ𝑛

Now, let us consider the case of a mapping (ie. a multi-valued function) fromℝ𝑚 toℝ𝑛

𝑐 : V ⊂ ℝ𝑚 −→ ℝ𝑛

𝑥 = [𝑥 1, .., 𝑥𝑚] ↦−→ 𝑐 (𝑥) = [𝑐1 (𝑥), .., 𝑐𝑛 (𝑥)]
.

A mapping is dierentiable if and only if each of its component functions is dier-
entiable as formalized in the following denition.
Denition 1.6. A mapping 𝑐 : V ⊂ ℝ𝑚 → ℝ𝑛 dened on a open subset V of ℝ𝑚

is dierentiable at 𝑥 ∈ V if for all 𝑖 = 1, .., 𝑛, and all 𝑗 ∈ 1, ..,𝑚, the derivative 𝜕𝑐𝑖
𝜕𝑥 𝑗

(𝑥)
exists. This mapping 𝑐 is dierentiable on V if it is dierentiable at every point of V .
Further, if 𝑐 is dierentiable onV , we dene its Jacobian as the V ⊂ ℝ𝑚 → ℝ𝑛 ×ℝ𝑚

mapping22The name comes from Carl Gustav
Jacob Jacobi (1804-1851), a German

mathematician.

𝐽𝑐 (𝑥) =

∇𝑐1 (𝑥)>

...

∇𝑐𝑛 (𝑥)>

 =


𝜕𝑐1
𝜕𝑥 1

(𝑥) . . .
𝜕𝑐1
𝜕𝑥𝑚

(𝑥)
...

. . .
...

𝜕𝑐𝑛
𝜕𝑥 1

(𝑥) . . .
𝜕𝑐𝑛
𝜕𝑥𝑚

(𝑥)

 .
While, we do not often dierentiate mappings, we often dierentiate compositions

of a function and mapping. For this, the chain rule gives a ecient formula based on
the respective gradients and Jacobian of the functions.
Lemma 1.7 (Chain rule). Take a function 𝑓 : V ′ ⊂ ℝ𝑛 → ℝ and a mapping 𝑐 : V ⊂
ℝ𝑚 → ℝ𝑛 . If 𝑐 is dierentiable at 𝑥 ∈ V and 𝑓 is dierentiable at 𝑐 (𝑥) ∈ V ′, then 𝑓 ◦ 𝑐
is dierentiable at 𝑥 and its gradient can be obtained by33

𝑓 ◦ 𝑐 (𝑥) = 𝑓 (𝑐 (𝑥))

∇𝑓 ◦ 𝑐 (𝑥) = 𝐽𝑐 (𝑥)>∇𝑓 (𝑐 (𝑥)) . (Chain rule)

The rst-order development of 𝑓 ◦ 𝑐 is thus

𝑓 ◦ 𝑐 (𝑥 + ℎ) = 𝑓 ◦ 𝑐 (𝑥) + 〈𝐽𝑐 (𝑥)>∇𝑓 (𝑐 (𝑥)), ℎ〉 + 𝑜 (‖ℎ‖).

1.2.4 Second-order dierentiability

The derivative of the gradient, that is the second-order derivative of the function, is
often used in numerical optimization methods.
Denition 1.8. A function 𝑓 : V ⊂ ℝ𝑛 → ℝ dened on a open subset V of ℝ is
twice dierentiable at 𝑥 ∈ V if its gradient is dierentiable at 𝑥 ∈ V .
Further, if 𝑓 is twice dierentiable on V , we dene its Hessian as the V ⊂ ℝ𝑛 →
ℝ𝑛 ×ℝ𝑛 mapping44also denoted by 𝐻 𝑓 , its name

comes from Ludwig Otto Hesse
(1811-1874), a German

mathematician. ∇2 𝑓 (𝑥) = 𝐽∇𝑓 (𝑥) =


𝜕2 𝑓

(𝜕𝑥 1)2 (𝑥) . . .
𝜕2 𝑓

𝜕𝑥 1𝜕𝑥𝑛
(𝑥)

...
. . .

...
𝜕2 𝑓

𝜕𝑥 1𝜕𝑥𝑛
(𝑥) . . .

𝜕2 𝑓
(𝜕𝑥𝑛)2 (𝑥)

 .



Numerical Optimization 5

This denition comes with the following important property.
Lemma 1.9. The Hessian of a function 𝑓 : V ⊂ ℝ𝑛 → ℝ at 𝑥 ∈ V is a symmetric
matrix.

Proof. This follows directly from Schwarz’s theorem.5 5Hermann Schwarz (1843-1921),
German mathematician, was the
rst to propose a rigorous proof of
the symmetry of second derivatives
(also called the equality of mixed
partials).

�

Remark 1.10 (Hessian at a local minimum). If 𝑓 admits a local minimum at 𝑥 and is
twice dierentiable at 𝑥 , then ∇𝑓 = 0 by Fermat’s rule (Theorem 1.3) but we can also
show that ∇2 𝑓 (𝑥) is positive semi-denite; see Tutorial 1 Exercise 1.3. J

1.2.5 Fréchet derivatives [★]
The notion of Fréchet derivatives generalizes the notion of gradient and Jacobian seen
above. A mapping 𝑐 : V ⊂ ℝ𝑚 → ℝ𝑛 dened on a open subset V of ℝ𝑚 is Fréchet
dierentiable at 𝑥 ∈ V if there exists a linear operator

D𝑐 (𝑥) : ℝ𝑚 −→ ℝ𝑛

ℎ ↦−→ D𝑐 (𝑥) [ℎ]

called the (Fréchet) dierential of 𝑐 at 𝑥 ,6 6from Maurice René Fréchet
(1878-1973), a French
mathematician.

such that

𝑐 (𝑥 + ℎ) = 𝑐 (𝑥) + D𝑐 (𝑥) [ℎ] + 𝑜 (‖ℎ‖)

or, equivalently lim
ℎ→0

‖𝑐 (𝑥 + ℎ) − 𝑐 (𝑥) − D𝑐 (𝑥) [ℎ] ‖
‖ℎ‖ = 0.

Then, if 𝑓 is a V ⊂ ℝ𝑛 → ℝ function, the gradient of 𝑓 can be dened as the
unique element of ℝ𝑛 that satises

D𝑓 (𝑥) [ℎ] = 〈∇𝑓 (𝑥), ℎ〉 for all ℎ ∈ ℝ𝑛

and thus, in line with the regular subgradient notation, it can also be dened as

∇𝑓 (𝑥) = {𝑣 : 𝑓 (𝑢) = 𝑓 (𝑥) + 〈𝑣,𝑢 − 𝑥〉 + 𝑜 (‖𝑢 − 𝑥 ‖) for all 𝑢 ∈ ℝ𝑛} . (1.3)

The same can be done for mappings and the Jacobian of 𝑐 can be dened as the
unique ℝ𝑛 ×ℝ𝑚 operator 𝐽𝑐 (𝑥) such that D𝑐 (𝑥) [ℎ] = 𝐽𝑐 (𝑥)ℎ.

Finally, the Chain rule for dierentials is

D(𝑓 ◦ 𝑐) (𝑥) [ℎ] = D𝑓 (𝑐 (𝑥)) [D𝑐 (𝑥) [ℎ]] = 〈∇𝑓 (𝑐 (𝑥)), 𝐽𝑐 (𝑥)ℎ〉 = 〈𝐽𝑐 (𝑥)>∇𝑓 (𝑐 (𝑥)), ℎ〉.

1.2.6 Link with subdierentials

To be complete, let us relate the notion of gradient dened here with the subdierentials
dened before.

Lemma 1.11. Consider a function 𝑓 : ℝ𝑛 → ℝ and a point 𝑥 ∈ ℝ𝑛 at which 𝑓

is dierentiable, then ∇𝑓 (𝑥) = �̂� 𝑓 (𝑥) ⊂ 𝜕𝑓 (𝑥). If, in addition, 𝑓 is continuously
dierentiable around 𝑥 , then ∇𝑓 (𝑥) = 𝜕𝑓 (𝑥).

Proof. For the rst part, interpret directly (1.3) as (1.1). For the second part, the conti-
nuity of ∇𝑓 enables leaves no other choice for a limit in (1.2) than ∇𝑓 (𝑥). �

In the common case, where we deal with the sum of two functions, the following
lemma is particularly useful.
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Lemma 1.12. If 𝐹 = 𝑓 + 𝑔 with 𝑓 continuously dierentiable around 𝑥 and 𝑔(𝑥) nite,
then 𝜕𝐹 (𝑥) = ∇𝑓 (𝑥) + 𝜕𝑔(𝑥).

Proof. Direct from the denitions. �

1.3 Smoothness and Gradient descent

There is slight discrepancy in the literature concerning the notion of smoothness for
functions. In (Rockafellar and Wets, 1998), it is used for continuously dierentiable
functions, in Riemannian analysis it often refers to C∞ function, while in numerical
optimization and machine learning (see eg. (Bubeck et al., 2015)), it is used for functions
with Lipschitz-continuous gradients. We will adopt the latter viewpoint. The reason
for this is that it allows us to have a quadratic upper approximation of our function,
obtained directly from the fundamental theorem of calculus. This is the crucial point
for the use of gradient methods.

Denition 1.13. We say that a function 𝑓 : ℝ𝑛 → ℝ is 𝐿-smooth if it has a 𝐿-Lipschitz
continuous gradient, ie. if

‖∇𝑓 (𝑥) − ∇𝑓 (𝑢)‖ ≤ 𝐿‖𝑥 − 𝑢‖ for all 𝑥,𝑢 ∈ ℝ𝑛 .

From this property, we can derive this highly important lemma.

Lemma 1.14. Consider a function 𝑓 : ℝ𝑛 → ℝ with a 𝐿-Lipschitz continuous gradient,
then for any 𝑥,𝑢 ∈ ℝ𝑛 , one has

|𝑓 (𝑢) − 𝑓 (𝑥) − 〈∇𝑓 (𝑥), 𝑢 − 𝑥〉| ≤ 𝐿

2 ‖𝑥 − 𝑢‖2 .

Proof. See Tutorial 1. �

Thus, if we x a point 𝑥 , the function 𝜌𝑥 : 𝑢 ↦→ 𝑓 (𝑥) + 〈∇𝑓 (𝑥), 𝑢 − 𝑥〉 + 𝐿
2 ‖𝑢 − 𝑥 ‖2

is quadratic in its argument and majorizes 𝑓 , that is to say 𝜌𝑥 (𝑢) ≥ 𝑓 (𝑢) for any 𝑢.
Furthermore, the minimum of 𝜌𝑥 is attained at 𝑥★ = 𝑥 − 1

𝐿
∇𝑓 (𝑥).

𝑥
𝑥 − 1

𝐿
∇𝑓 (𝑥 )

𝜌𝑥

𝑓
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Such a quadratic approximation can be leveraged using gradients steps, ie. taking

𝑢 = 𝑥 − 𝛾∇𝑓 (𝑥)

for some 𝛾 > 0. Indeed, in that case, Lemma 1.14 gives us

𝑓 (𝑢) ≤ 𝑓 (𝑥) −
(
1
𝛾
− 𝐿

2

)
‖𝑥 − 𝑢‖2 = 𝑓 (𝑥) −

(
𝛾 − 𝐿𝛾2

2

)
‖∇𝑓 (𝑥)‖2 . (1.4)

Thus, taking a gradient step leads to a strict functional decrease (𝑓 (𝑢) < 𝑓 (𝑥)) as
soon as 𝛾 < 2/𝐿. This is the core idea behind the gradient descent algorithm.7 7introduced by Louis Augustin

Cauchy (1789–1857), a French
mathematician, in his “Compte
Rendu à l’Académie des Sciences”
of October 18, 1847.

Take
𝑥0 ∈ ℝ𝑛 and 𝛾 > 0, the gradient descent algorithm consists in iterating

𝑥𝑘+1 = 𝑥𝑘 − 𝛾∇𝑓 (𝑥𝑘 ) (Gradient descent)

and leads to the following guarantees.

Theorem 1.15. Consider a function 𝑓 : ℝ𝑛 → ℝwith a 𝐿-Lipschitz continuous gradient
and such that inf 𝑓 > −∞. Assume that (Gradient descent) is run with 0 < 𝛾 < 2/𝐿,
then (𝑓 (𝑥𝑘 )) converges and any limit point 𝑥 of (𝑥𝑘 ) satises ∇𝑓 (𝑥) = 0.

Proof. See Tutorial 1. �

Even though the above theorem is only a partial justication, gradient descent
is widely used for nding critical points of smooth functions. The link between
nding critical points and minimizing a function will be brought in the next chapter
by convexity. In that case, the guarantees of gradient descent will be strengthened.

Finally, let us conclude this chapter with a quote from the original paper by Cauchy
(Cauchy et al., 1847) that also applies to us “I’ll restrict myself here to outlining the
principles underlying [my method], with the intention to come again over the same
subject”.8 8In the original text: “ Je me

bornerai pour l’instant à indiquer les
principes sur lesquels [ma méthode]
se fonde, me proposant de revenir
avec plus de détails sur le même
sujet, dans un prochain mémoire.”.
The translation and reference is due
to Claude Lemaréchal, see
(Lemaréchal, 2012).

BC
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CHAPTER 2 Convexity

Convexity is at the heart of optimization. This is notably due to the unicity
of projections onto convex sets and the direct link between critical points

and minimums for convex functions.

In this chapter, we will rst study convex sets, then convex functions.

2.1 Convex sets

2.1.1 Motivation: Projecting onto a closed set

Similarly to orthogonal projections onto ane subspaces, we can dene projection on
nonempty closed sets.9 9Nonempty: otherwise there is

nothing to project onto. Closed:
otherwise “the” closest point in a
set from another point is not
well-dened.

Thus, let us consider a non-empty closed set 𝐶 and investigate the problem

inf
𝑥 ∈𝐶

𝐹 𝑦 (𝑥):=
1
2 ‖𝑦 − 𝑥 ‖2 (2.1)

which intuitively amounts to projecting 𝑦 onto 𝐶 .
First, take 𝑢 ∈ 𝐶 , and dene 𝑆 :={𝑥 ∈ ℝ𝑛 : ‖𝑦 −𝑥 ‖2 ≤ ‖𝑦 −𝑢‖2}. Then, the problem

(2.1) is equivalent to

inf
𝑥 ∈𝐶∩𝑆

𝐹 𝑦 (𝑥):=
1
2 ‖𝑦 − 𝑥 ‖2 (2.2)

where𝐶∩𝑆 is a closed compact set. Projecting thus amounts tominimizing a continuous
function over a closed compact set, which always admits a solution, as per the following
lemma.

Lemma 2.1. Let 𝐹 : ℝ𝑛 → ℝbe a proper lower semi-continuous function (or in particular,
a continuous function) and let 𝑆 be a closed compact set. Then, there is some 𝑥★ ∈ 𝑆 such
that 𝐹 (𝑥★) = inf𝑥 ∈𝑆 𝐹 (𝑥).

Proof. ([★]) Since 𝐹 is proper, it nevers takes the value −∞ thus 𝛽 := inf𝑥 ∈𝑆 𝐹 (𝑥) > −∞.
For a decreasing sequence of reals (𝛽𝑛) with 𝛽𝑛 → 𝛽 , let us dene the sequence of the
𝑆𝛽𝑛 = {𝑥 : 𝐹 (𝑥) ≤ 𝛽𝑛}. For any 𝑛, 𝑆𝛽𝑛 is nonempty, closed, and included in 𝑆𝛽𝑛−1 . Thus,
the limit 𝑆𝛽 = {𝑥 : 𝐹 (𝑥) = inf𝑢∈𝑆 𝐹 (𝑢)} is also nonempty and closed which gives the
result. �

This grants the existence of a minimizer of (2.2), and thus of (2.1), ie. a projection
on 𝐶 . In particular, the inf above are actually min. However, the projection may not
be unique, that is where convexity comes into play.10 10The above enables us to show the

existence of projections onto
nonempty closed sets, but the
projection may not be unique.
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2.1.2 Convexity for sets

Let us now introduce the denition of a convex set.

Denition 2.2. A subset𝐶 ofℝ𝑛 is convex if and only if for any 𝑥,𝑢 ∈ 𝐶 , (1−𝛼)𝑥+𝛼𝑢 ∈
𝐶 for any 𝛼 ∈ (0, 1).

The crucial property here is that any (weighted) average of points of a convex
set belongs stay in the set. Equivalently, the set 𝐶 is convex if and only if for any
(𝑥 1, .., 𝑥𝑁 ) ∈ 𝐶𝑁 ,

𝑁∑︁
𝑖=1

𝛼𝑖𝑥𝑖 ∈ 𝐶 for any (𝛼 1, .., 𝛼𝑁 ) ∈ ℝ𝑁
+ with

𝑁∑︁
𝑖=1

𝛼𝑖 = 1,

where
∑𝑁

𝑖=1 𝛼𝑖𝑥𝑖 is called a convex combination of (𝑥 1, .., 𝑥𝑁 ).

Examples of convex sets:
• Ane spaces {𝑥 : 〈𝑠, 𝑥〉 = 𝑟 }
• Balls {𝑥 : ‖𝑥 − 𝑠 ‖ ≤ 𝑟 }
• Half spaces {𝑥 : 〈𝑠, 𝑥〉 ≤ 𝑟 } and open half spaces {𝑥 : 〈𝑠, 𝑥〉 < 𝑟 }
• Simplices {𝑥 :

∑𝑛
𝑖=1 𝑥𝑖 = 1 and 𝑥𝑖 ≥ 0 for all 𝑖 = 1, .., 𝑛}

• Intersections of convex sets ∩𝑁
𝑖=1𝐶𝑖

Examples of non-convex sets:
• Discrete sets (eg. {0} ∪ {1}) or disjoint sets
• Spheres {𝑥 : ‖𝑥 − 𝑠 ‖ = 𝑟 }
• Sets with “holes”

2.1.3 Projection on convex sets

Getting back to the projection problem (2.1)

min
𝑥 ∈𝐶

𝐹 𝑦 (𝑥):=
1
2 ‖𝑦 − 𝑥 ‖2 (2.3)

where 𝑆 :={𝑥 ∈ ℝ𝑛 : ‖𝑦 − 𝑥 ‖2 ≤ ‖𝑦 − 𝑢‖2}. Now, let us assume that 𝐶 is additionally
convex.

Suppose that 𝑥 1★ ≠ 𝑥2
★ are two distinct solutions of (2.3). Dene 𝑥0★ = (𝑥 1★ +

𝑥2
★)/2, then

𝐹 𝑦 (𝑥0★) =
1
2 ‖𝑦 − 𝑥0

★‖2 = 1
2 ‖(𝑦 − 𝑥 1

★)/2 + (𝑦 − 𝑥2
★)/2‖2

=
1
4 ‖𝑦 − 𝑥 1

★‖2 + 1
4 ‖𝑦 − 𝑥2

★‖2 − 1
8 ‖𝑥 1

★ − 𝑥2
★‖2

=
1
2 (𝐹 𝑦 (𝑥 1★) + 𝐹 𝑦 (𝑥2★)) −

1
8 ‖𝑥 1

★ − 𝑥2
★‖2

thus 𝐹 𝑦 (𝑥0★) < 𝐹 𝑦 (𝑥 1★) = 𝐹 𝑦 (𝑥2★) which contradicts 𝑥 1★ ≠ 𝑥2
★ being two distinct

solutions. Hence, the projection on a convex set is unique. We have shown the
following lemma.
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Lemma 2.3. Let 𝐶 be a closed nonempty convex set. Then, for any 𝑦 ∈ ℝ𝑛 , there is a
unique projection proj𝐶 (𝑦), solution of (2.3).

In fact, this unique projection can be characterized more precisely.

Theorem 2.4. Let 𝐶 be a closed nonempty convex set. Then, for any 𝑦 ∈ ℝ𝑛 , proj𝐶 (𝑦)
is the projection of 𝑦 onto 𝐶 if and only if

〈𝑦 − proj𝐶 (𝑦), 𝑧 − proj𝐶 (𝑦)〉 ≤ 0 for all 𝑧 ∈ 𝐶.

Proof. Left as an exercise. See (Hiriart-Urruty and Lemaréchal, 1993, Th. 3.1.1). �

2.1.4 Minimization over convex sets

Now, let us consider a more general problem: minimizing a function 𝐹 over a convex
set 𝐶 . The problem consists in nding 𝑥★ ∈ 𝐶 such that 𝐹 (𝑥★) ≤ 𝐹 (𝑥) for all 𝑥 ∈ 𝐶 ,
we note this problem

𝑥★ ∈ argmin𝐶 𝐹 ⇔ 𝑥★ is a solution of inf
𝑥 ∈𝐶

𝐹 (𝑥)

We directly note that if 𝐶 is empty, the problem is impossible11 11infeasible in the optimization
language.

and if 𝐶 is open
it may be impossible to nd a solution. Hence, we will restrict our analysis to closed
nonempty convex sets as before.

The constrained variant of Fermat’s rule (Theorem 1.3) that links the (sub)gradient
of the function with local minimas writes as follows.

Theorem 2.5 ((Rockafellar and Wets, 1998, Th. 6.12,8.15)). If a proper lower-
semicontinuous function 𝐹 : ℝ𝑛 → ℝ has a local minimum at 𝑥 constrained to the
convex set 𝐶 (ie. if there is a neighborhood U of 𝑥 in 𝐶 such that 𝐹 (𝑥) ≤ 𝐹 (𝑢) for all
𝑢 ∈ U) then 0 ∈ 𝜕𝐹 (𝑥) + 𝑁𝐶 (𝑥) or,12 12The normal cone of a convex set𝐶

at a point 𝑥 ∈ 𝐶 is dened as the set
𝑁𝐶 (𝑥) :={𝑢 : 〈𝑦 − 𝑥,𝑢 〉 ≤
0 for all 𝑦 ∈ 𝐶 }.

equivalently,

〈𝑦 − 𝑥, 𝑣〉 ≥ 0

for any 𝑣 ∈ 𝜕𝐹 (𝑥) and all 𝑦 ∈ 𝐶 .
In particular, if 𝐹 is dierentiable, 0 ∈ ∇𝐹 (𝑥) + 𝑁𝐶 (𝑥) means that

〈𝑦 − 𝑥,∇𝐹 (𝑥)〉 ≥ 0

for all 𝑦 ∈ 𝐶 .

Note that if 𝑥 belongs to the relative interior of 𝐶 , then 𝑁𝐶 (𝑥) = {0}.

𝐶

𝑥 1★
interior

𝑁𝐶 (𝑥 1★) = {0} = ∇𝐹 (𝑥 1★)

−∇𝐹 (𝑥2★)𝑥2★

border 𝑁𝐶 (𝑥2★)
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2.2 Convex functions

The notion of convexity is as important for functions as for sets. Notably, this is the
notion that will enable us to go from the (sub)gradient inequalities and local minimizers
above to global minimizers.

2.2.1 Denition

A function is convex if and only if its epigraph1313This is the set
epi𝐹 :={(𝑥, 𝑡 ) : 𝐹 (𝑥) ≤ 𝑡 }

is convex. However, the following
denition is much more direct.

Denition 2.6. A function 𝐹 : ℝ𝑛 → ℝ is convex if and only if for any 𝑥,𝑢 ∈ dom 𝐹 ,
𝐹 ((1 − 𝛼)𝑥 + 𝛼𝑢) ≤ (1 − 𝛼)𝐹 (𝑥) + 𝛼𝐹 (𝑢) for any 𝛼 ∈ (0, 1).

More generally convex functions verify Jensen’s inequality. For any convex combi-
nation

∑𝑁
𝑖=1 𝛼𝑖𝑥𝑖 ,

𝐹

(
𝑁∑︁
𝑖=1

𝛼𝑖𝑥𝑖

)
≤

𝑁∑︁
𝑖=1

𝛼𝑖𝐹 (𝑥𝑖 ).

Checking the denition directly may be possible but it is often simpler to rely on
convexity-preserving operations (for some, we will prove that they preserve convexity
in Tutorial 2):

• all norms are convex;
• a sum of convex functions is convex;
• ane substitution of the argument (if 𝐹 is convex, 𝑥 ↦→ 𝐹 (𝐴𝑥 + 𝑏) is convex for
any ane map 𝐴𝑥 + 𝑏);

• the (pointwise) maximum of convex functions is convex.
The most striking point of convex functions is that local minimizers are actually

global.

Theorem 2.7. Let 𝐹 : ℝ𝑛 → ℝ be a proper convex function. Then, every local minimizer
of 𝐹 is a (global) minimizer.

Proof. See Tutorial 2. �

2.2.2 Subgradients of convex functions

This class of functions comes with several interesting properties, for instance dom 𝐹

and argmin 𝐹 are convex if 𝐹 is convex, furthermore, every local minimum is a global
one. This is again captured by the notion of subgradients.

Lemma 2.8 (Rockafellar and Wets 1998, Prop. 8.12). Consider a convex proper function
𝐹 : ℝ𝑛 → ℝ and a point 𝑥 ∈ dom 𝐹 . Then,

𝜕𝐹 (𝑥) = {𝑣 : 𝐹 (𝑢) ≥ 𝐹 (𝑥) + 〈𝑣,𝑢 − 𝑥〉 for all 𝑢 ∈ ℝ𝑛} = �̂�𝐹 (𝑥) ≠ ∅.

Thus, 𝐹 is regular at any point and 0 ∈ 𝜕𝐹 (𝑥) if and only if 𝑥 ∈ argmin 𝐹 .

An important point is that𝑢 ↦→ 𝐹 (𝑥)+〈𝑣,𝑢−𝑥〉 provides a linear under-approximation
of the whole function 𝐹 .
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Furthermore, we have the same link between subgradients and optimality when
constrained to a convex set.

Theorem 2.9 ((Rockafellar and Wets, 1998, Th. 8.15)). Consider a proper lower-
semicontinuous convex function 𝐹 : ℝ𝑛 → ℝ and a convex set 𝐶 . Then, 𝑥 ∈ argmin𝐶 𝐹

if and only if 0 ∈ 𝜕𝐹 (𝑥) + 𝑁𝐶 (𝑥) or, equivalently,

〈𝑦 − 𝑥, 𝑣〉 ≥ 0

for any 𝑣 ∈ 𝜕𝐹 (𝑥) and all 𝑦 ∈ 𝐶 .

2.2.3 Dierentiable convex functions

First, Theorem 2.9 can be a little simplied if the function is dierentiable.

Theorem 2.10 ((Rockafellar and Wets, 1998, Th. 6.12)). Consider a proper lower-
semicontinuous convex and dierentiable function 𝑓 : ℝ𝑛 → ℝ and a convex set 𝐶 .
Then, 𝑥 ∈ argmin𝐶 𝑓 if and only if 0 ∈ ∇𝑓 (𝑥) + 𝑁𝐶 (𝑥) which means that

〈𝑦 − 𝑥,∇𝑓 (𝑥)〉 ≥ 0

for all 𝑦 ∈ 𝐶 .

In addition, for a dierentiable 𝑓 , convexity can be seen directly as a property on
the gradient mapping.

Theorem 2.11 (Bauschke and Combettes 2011, Prop. 17.10). Let 𝑓 : ℝ𝑛 → ℝ be a
proper function with open domain.14 14typically here, dom 𝑓 = ℝ𝑛 .Suppose that 𝑓 is dierentiable on dom 𝑓 . Then the
following are equivalent:

i) 𝑓 is convex;

ii) 𝑓 (𝑢) ≥ 𝑓 (𝑥) + 〈∇𝑓 (𝑥), 𝑢 − 𝑥〉 for all 𝑥,𝑢 ∈ dom 𝑓 ;

iii) 〈∇𝑓 (𝑥) − ∇𝑓 (𝑢), 𝑥 − 𝑢〉 ≥ 0 for all 𝑥,𝑢 ∈ dom 𝑓 , ie. ∇𝑓 is monotone.
Furthermore, if 𝑓 is twice dierentiable on dom 𝑓 , any of the above is equivalent to
iv) 〈𝑢,∇2 𝑓 (𝑥)𝑢〉 ≥ 0 for all 𝑥,𝑢 ∈ dom 𝑓 , ie. ∇2 𝑓 is positive semi-denite.

2.2.4 Strict convexity

Strict convexity is simply convexity but when every inequality is replaced with a strict
inequality: a function 𝐹 : ℝ𝑛 → ℝ is strictly convex if and only if for any 𝑥,𝑢 ∈ 𝐶 ,
𝐹 ((1 − 𝛼)𝑥 + 𝛼𝑢) < (1 − 𝛼)𝐹 (𝑥) + 𝛼𝐹 (𝑢) for any 𝛼 ∈ (0, 1). All results above then hold
with strict inequalities.

Lemma 2.12. Let 𝐹 : ℝ𝑛 → ℝ be a strictly convex lower semi-continuous proper function
and 𝐶 a convex set, then 𝐹 has at most one minimizer on 𝐶 . In particular, 𝐹 has at most
one minimizer on ℝ𝑛 .

Proof. See Tutorial 2. �

Strict convexity can be observed mathematically and from that we can ensure
the uniqueness of solutions. However, it is almost impossible to exploit numerically
since it only grants us a strict inequality and not an exploitable knowledge about the
function’s local behavior. For this, we need a stronger condition: strong convexity.
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2.2.5 Strong convexity

While convexity provides ane lower bounds, having quadratic lower-bounds enable
to get a better control that may have a great impact on the convergence of optimization
methods; this is captured by the notion of strong convexity.

Denition 2.13. For some ` > 0, a function 𝐹 : ℝ𝑛 → ℝ is `-strongly convex if and
only if 𝐹 − 1

2`‖ · ‖
2 is convex.

Using the fact that 𝐹 :=𝐹 − 1
2`‖ · ‖

2 is convex and veries 𝜕𝐹 = 𝜕𝐹 −`· by Lemma 1.12,
we get that for any 𝑥 ∈ ℝ𝑛 and any 𝑣 ∈ 𝜕𝐹 (𝑥)

𝐹 (𝑢) ≥ 𝐹 (𝑥) + 〈𝑣,𝑢 − 𝑥〉 + `

2 ‖𝑢 − 𝑥 ‖2 for all 𝑢 ∈ ℝ𝑛 (2.4)

which directly implies that a strongly convex function has at most one minimizer
by taking 𝑥 such that 0 ∈ 𝜕𝐹 (𝑥). The following lemma then adds the existence (see
(Bauschke and Combettes, 2011, Chap. 11.4) for a more general take).

Lemma 2.14. Let 𝐹 : ℝ𝑛 → ℝ be a strongly convex lower semi-continuous proper
function and 𝐶 a convex set, then 𝐹 has exactly one minimizer on 𝐶 . In particular, 𝐹 has
exactly one minimizer one minimizer on ℝ𝑛 .

Proof. ([★]) Let us consider the case where 𝐶 = ℝ𝑛 , the other cases can be deduced
easily. From (2.4), we get that for all 𝑢 ∈ ℝ𝑛 ,

𝐹 (𝑢) ≥ 𝐹 (𝑥) + `

2 ‖𝑥 ‖
2 − 〈𝑣, 𝑥〉 + 〈𝑣 + `𝑥,𝑢〉 + `

2 ‖𝑢‖
2

≥ 𝐹 (𝑥) + `

2 ‖𝑥 ‖
2 − 〈𝑣, 𝑥〉 − ‖𝑣 + `𝑥 ‖‖𝑢‖ + `

2 ‖𝑢‖
2

hence 𝐹 (𝑢)/‖𝑢‖ → +∞when ‖𝑢‖ → +∞, ie. 𝐹 is supercoercive. Thus, this means that
for any 𝑡 , the level set {𝑥 : 𝐹 (𝑥) ≤ 𝑡} is bounded (this is direct by contradiction, see
(Bauschke and Combettes, 2011, Chap. 11.11)). This means that since 𝐹 is proper, we can
take 𝑡 suciently large so that the corresponding level set is non-empty and bounded.
Finally, since 𝐹 is lower semi-continuous, applying Lemma 2.1 to this compact set gives
us the existence of a minimal value, which is unique from the quadratic lower bound
expressed in (2.4). �

If a dierentiable function is strongly convex, we have the following characteriza-
tions.

Theorem 2.15. Let 𝑓 : ℝ𝑛 → ℝ be a proper function with open domain. Suppose that 𝑓
is dierentiable on dom 𝑓 . Then the following are equivalent:

i) 𝑓 is `-strongly convex;

ii) 𝑓 (𝑢) ≥ 𝑓 (𝑥) + 〈∇𝑓 (𝑥), 𝑢 − 𝑥〉 + `

2 ‖𝑢 − 𝑥 ‖2 for all 𝑥,𝑢 ∈ dom 𝑓 ;

iii) 〈∇𝑓 (𝑥) − ∇𝑓 (𝑢), 𝑥 − 𝑢〉 ≥ `‖𝑢 − 𝑥 ‖2 for all 𝑥,𝑢 ∈ dom 𝑓 , ie. ∇𝑓 is monotone.
Furthermore, if 𝑓 is twice dierentiable on dom 𝑓 , any of the above is equivalent to
iv) 〈𝑢,∇2 𝑓 (𝑥)𝑢〉 ≥ `‖𝑢‖2 for all 𝑥,𝑢 ∈ dom 𝑓 , ie. ∇2 𝑓 is positive denite.
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2.3 Back to the gradient algorithm

We saw in Section 1.3 that the (Gradient descent) algorithm on a 𝐿-smooth function
function 𝑓 consists in taking 𝑥0 ∈ ℝ𝑛 and iterating

𝑥𝑘+1 = 𝑥𝑘 − 𝛾∇𝑓 (𝑥𝑘 ) (Gradient descent)

for some 𝛾 ∈ (0, 2/𝐿).
In Chapter 1, we saw that the functional values were decreasing and all limit points

where critical points of 𝑓 . However, we had no convergence guarantee and no rate.
Convexity will help us get these rates. For this part, our main reference will be (Bubeck
et al., 2015, Chap. 3.2,3.4).

2.3.1 Gradient algorithm for convex functions

When 𝑓 is 𝐿-smooth and convex, we can guarantee convergence and a O(1/𝑘) rate.
Theorem 2.16. Let 𝑓 : ℝ𝑛 → ℝ be a convex 𝐿-smooth function. Then, the iterates (𝑥𝑘 )
generated by (Gradient descent) with 𝛾 = 1/𝐿 satisfy:

• (convergence) 𝑥𝑘 → 𝑥★ for some minimizer 𝑥★ of 𝑓 ;15 15ie. a point such that ∇𝑓 (𝑥★) = 0.

• (rate) 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥★) ≤ 2𝐿‖𝑥0 − 𝑥★‖2
𝑘

for any minimizer 𝑥★ of 𝑓 .

Proof. See Tutorial 4. �

In the above theorem, any 𝛾 ∈ (0, 1/𝐿) actually works for the convergence and
gets a similar complexity but 𝛾 = 1/𝐿 is the optimal value in terms of rate.
Remark 2.17 (Lower bound). This is not the fastest way to minimize a convex smooth
function. Actually, one can show that the fastest attainable rate for this class of
functions is O(1/𝑘2); see (Bubeck et al., 2015, Th. 3.14). This complexity is attained by
Nesterov’s fast gradient method (Nesterov, 1983). This method accelerates gradient
descent by adding an “inertial” step:

𝑦𝑘+1 = 𝑥𝑘 − 𝛾∇𝑓 (𝑥𝑘 ) (Fast Gradient descent)
𝑥𝑘+1 = 𝑦𝑘+1 + 𝛼𝑘+1 (𝑦𝑘+1 − 𝑦𝑘 )

where 𝛾 ∈ (0, 1/𝐿) and 𝛼𝑘+1 = (𝑘 + 2)/(𝑘 + 3).16 16Actually, the choice for 𝛼𝑘+1 is a
bit more complicated but this
variant grants the same rate.

J

2.3.2 Gradient algorithm for strongly convex functions

Now, if the function is additionally strongly convex, the quadratic lower bounds grants
us a better rate.

Theorem 2.18. Let 𝑓 : ℝ𝑛 → ℝ be a `-strongly convex 𝐿-smooth function. Then, the
iterates (𝑥𝑘 ) generated by (Gradient descent) with 𝛾 = 2

`+𝐿 satisfy:

• (convergence) 𝑥𝑘 → 𝑥★ for the minimizer 𝑥★ of 𝑓 ;17 17unique by strong convexity

• (rate) 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥★) ≤
(
^ − 1
^ + 1

)2𝑘
‖𝑥0 − 𝑥★‖2 where ^ = 𝐿

`
≥ 1.

Proof. See Tutorial 4. �
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In the above theorem, any 𝛾 ∈ (0, 2/(` + 𝐿)] actually works for the convergence
and gets a similar complexity but 𝛾 = 2/(` + 𝐿) is the optimal value in terms of rate.

We note here that the term ^ = 𝐿
`
≥ 1 appears in the rate, this number is generally

called the conditioning of the number by analogy with matrices and linear systems.
Finally, the obtained rate is again not optimal for this class of functions, the optimal

rate beingO
((√

^−1√
^+1

)2𝑘 )
, again attained by amodied version of (Fast Gradient descent).

2.3.3 Projected Gradient algorithm

Now let us consider the problem of minimizing a smooth convex function 𝐹 over a
nonempty closed convex set 𝐶 . Thanks to the ability to project onto 𝐶 , we can easily
dene a projected gradient method:

𝑥𝑘+1 = proj𝐶 (𝑥𝑘 − 𝛾∇𝑓 (𝑥𝑘 )) (Projected gradient descent)

for some initialization 𝑥0 ∈ ℝ𝑛 and stepsize 𝛾 > 0.
This algorithm has similar guarantees as gradient descent.

Theorem 2.19. Let 𝑓 : ℝ𝑛 → ℝ be a convex 𝐿-smooth function. Then, the iterates (𝑥𝑘 )
generated by (Gradient descent) with 𝛾 = 1/𝐿 belong to 𝐶 and satisfy:

• (convergence) 𝑥𝑘 → 𝑥★ for some minimizer 𝑥★ of 𝑓 on 𝐶 ;1818ie. a point such that
−∇𝑓 (𝑥★) ∈ 𝑁𝐶 (𝑥★) , ie.

〈𝑦 − 𝑥★, ∇𝐹 (𝑥★) 〉 ≥ 0 for all
𝑦 ∈ 𝐶 .

• (rate) 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥★) ≤ 3𝐿‖𝑥0 − 𝑥★‖2 + 𝑓 (𝑥0) − 𝑓 (𝑥★)
𝑘 + 1 for any minimizer 𝑥★ of

𝑓 on 𝐶 .

Proof. We use Theorem 2.4 to get that since 𝑥𝑘+1 = proj𝐶
(
𝑥𝑘 − 1

𝐿
∇𝑓 (𝑥𝑘 )

)
, we have

〈𝑥𝑘 −
1
𝐿
∇𝑓 (𝑥𝑘 ) − 𝑥𝑘+1, 𝑧 − 𝑥𝑘+1〉 ≥ 0 for any 𝑧 ∈ 𝐶

and taking 𝑧 = 𝑥𝑘 this gives

〈∇𝑓 (𝑥𝑘 ), 𝑥𝑘 − 𝑥𝑘+1〉 ≤ 〈𝐿(𝑥𝑘 − 𝑥𝑘+1)︸         ︷︷         ︸
:=𝑔𝐶 (𝑥𝑘 )

, 𝑥𝑘 − 𝑥𝑘+1〉.

Then, smoothness of 𝑓 implies that

𝑓 (𝑥𝑘+1) ≤ 𝑓 (𝑥𝑘 ) + 〈∇𝑓 (𝑥𝑘 ), 𝑥𝑘 − 𝑥𝑘+1〉 +
𝐿

2 ‖𝑥𝑘 − 𝑥𝑘+1‖2

≤ 𝑓 (𝑥𝑘 ) + 〈𝑔𝐶 (𝑥𝑘 ), 𝑥𝑘 − 𝑥𝑘+1〉 +
1
2𝐿 ‖𝑔𝐶 (𝑥𝑘 )‖

2

and the rest of the proof is similar to the one of Theorem 2.16 with ∇𝑓 (𝑥𝑘 ) replaced
with 𝑔𝐶 (𝑥𝑘 ). �

BC



CHAPTER 3 Nonsmoothminimizationandthe

Proximity operator

The gradient method is very helpful for minimizing smooth functions. How-
ever, when a function is non-dierentiable, the (sub)gradient method has

very degraded performances. Fortunately, in many applications of interest the
nonsmooth functions have some particular structure that enable us to use a
powerful tool: the proximity operator.

In this chapter, we consider the problem

min
𝑥 ∈ℝ𝑛

𝑔(𝑥)

where 𝑔 is a nonsmooth convex function.

3.1 The Subgradient method

A direct method to minimize a convex nonsmooth function is to mimic the gradient
method and to subgradient descent:

𝑥𝑘+1 = 𝑥𝑘 − 𝛾 𝑣𝑘 with 𝑣𝑘 ∈ 𝜕𝑔(𝑥𝑘 ) (Subgradient descent)

However, these iterations may not converge. For instance, take 𝑔 = | · |, then (𝑥𝑘 )
will oscillate around 0 for any 𝛾 > 0.

In fact, we have the following result.

Theorem 3.1. Let 𝑔 : ℝ𝑛 → ℝ be a proper convex function with ‖𝑣‖ ≤ 𝑀 for any
𝑥 ∈ dom𝑔 and any 𝑣 ∈ 𝜕𝑔(𝑥). Then, (Subgradient descent) started with 𝑥0 such that
‖𝑥0 − 𝑥★‖ ≤ 𝑅 with 𝛾 = 𝑅

𝑀
√
𝑘
generates iterates that verify

𝑔

(
1
𝑘

𝑘−1∑︁
𝑡=0

𝑥𝑡

)
− 𝑔(𝑥★) ≤ 𝑀𝑅

√
𝑘
.

Proof. See (Bubeck et al., 2015, Th. 3.2). �

This is not completely satisfying since the stepsize is decreasing which limits the
rate and the iterates do not converge. Thankfully, we have a better tool to deal with
certain nonsmooth functions.
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3.2 The Proximity Operator

3.2.1 Denition

A central tool to tackle non-dierentiable functions is the proximity operator, introduced
by (Moreau, 1965), and denoted prox𝛾𝑔 for a step-size 𝛾 > 0 and a nonsmooth function
𝑔 : ℝ𝑛 → ℝ; it is dened as the set-valued mapping

prox𝛾𝑔 (𝑦):= argmin𝑢∈ℝ𝑛

{
𝑔(𝑢) + 1

2𝛾 ‖𝑢 − 𝑦‖2︸                  ︷︷                  ︸
:=𝜌𝑦 (𝑢)

}
.

In the same avor as for the gradient step, if one takes a proximal step, ie.

𝑥 = prox𝛾𝑔 (𝑦)

for some 𝛾 > 0, the denition directly gives us

𝑔(𝑥) ≤ 𝑔(𝑦) − 1
2𝛾 ‖𝑥 − 𝑦‖2 (3.1)

which mirrors (1.4) (the descent inequality of a gradient step on a smooth function)
but for a nonsmooth function.1919Actually, this link can be made

formal since a proximal step is
equivalent to a gradient step on the

Moreau envelope dened for all
𝑦 ∈ ℝ𝑛 as

𝑒𝛾𝑔 (𝑦) = inf𝑢∈ℝ𝑛 𝜌𝑦 (𝑢) (Moreau,
1965; Yosida, 1988).

With this respects, the proximity operator provides a alternative to the use of
subgradients since they are not able to provide descent inequalities such as (1.4) and
(3.1). However, this comes with the cost of having to solve a minimization subproblem,
which in turn question about the existence and uniqueness of the subproblem solutions.

3.2.2 Properties

First, for convex functions the proximity operator exists and is unique.

Theorem 3.2. Let 𝑔 : ℝ𝑛 → ℝ be a convex lower semi-continuous proper function, then
prox𝛾𝑔 (𝑦) is a singleton for any 𝛾 > 0 and any 𝑦 ∈ ℝ𝑛 .

Proof. Since 𝑔 is convex, 𝜌𝑦 is 1
𝛾
-strongly convex. Then, Lemma 2.14 guarantees the

existence and uniqueness of the minimizers of 𝜌𝑦 (𝑢) for any 𝑢, which means that
prox𝛾𝑔 (𝑦) is well-dened and unique. �

In addition, we have the following identity.

Proposition 3.3. Let 𝑔 : ℝ𝑛 → ℝ be a convex lower semi-continuous proper function,
then the following propositions are equivalent:

i) 𝑥 = prox𝛾𝑔 (𝑦);
ii) (𝑦 − 𝑥)/𝛾 ∈ 𝜕𝑔(𝑥);
iii) 𝑔(𝑢) ≥ 𝑔(𝑥) + 〈(𝑦 − 𝑥)/𝛾,𝑢 − 𝑥〉 for any 𝑢 ∈ ℝ𝑛 .

Proof. This follow directly from Fermat’s rule and the denition of a convex subgradi-
ent. �

The above proposition also enables us to show that the proximity operator is
(rmly) non-expansive.
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Corollary 3.4. Let 𝑔 : ℝ𝑛 → ℝ be a convex lower semi-continuous proper function, then
for any 𝑦, 𝑧 ∈ ℝ𝑛

‖prox𝛾𝑔 (𝑦) − prox𝛾𝑔 (𝑧)‖2 ≤ 〈𝑦 − 𝑧, prox𝛾𝑔 (𝑦) − prox𝛾𝑔 (𝑧)〉
⇔‖prox𝛾𝑔 (𝑦) − prox𝛾𝑔 (𝑧)‖2 ≤ ‖𝑦 − 𝑧‖2 − ‖𝑦 − prox𝛾𝑔 (𝑦) − 𝑧 + prox𝛾𝑔 (𝑧)‖2

Proof. See Tutorial 3. �

3.2.3 Convergence of the proximal point algorithm

Now, let us investigate the proximal point algorithm:

𝑥𝑘+1 = prox𝛾𝑔 (𝑥𝑘 ) (Proximal Point)

The rst thing to notice is that the xed points of this algorithm correspond to the
minimizers of 𝑔.

Corollary 3.5. Let 𝑔 : ℝ𝑛 → ℝ be a convex lower semi-continuous proper function, then
𝑥★ is a minimizer of 𝑔 if and only if 𝑥★ = prox𝛾𝑔 (𝑥★) (for any 𝛾 > 0).

Proof. From Proposition 3.3, we have that 𝑥★ = prox𝛾𝑔 (𝑥★) if and only if 0 ∈ 𝜕𝑔(𝑥★)
which is equivalent to 𝑥★ being a minimizer of 𝑔 since it is convex. �

Now, we can analyze the convergence of our proximal point method.

Theorem 3.6. Let 𝑔 : ℝ𝑛 → ℝ be a convex lower semi-continuous proper function.
Then, the (Proximal Point) method with 𝛾 > 0 veries 𝑔(𝑥𝑘+1) ≤ 𝑔(𝑥𝑘 ) and

𝑔(𝑥𝑘 ) − 𝑔(𝑥★) ≤ ‖𝑥★ − 𝑥0‖2
2𝛾𝑘 .

Proof. First, since 𝑥𝑘+1 = prox𝛾𝑔 (𝑥𝑘 ),

𝑔(𝑥𝑘+1) +
1
2𝛾 ‖𝑥𝑘+1 − 𝑥𝑘 ‖2 ≤ 𝑔(𝑥𝑘 )

and thus 𝑔(𝑥𝑘+1) ≤ 𝑔(𝑥𝑘 ).
Since 𝑥𝑘+1 = prox𝛾𝑔 (𝑥𝑘 ), it is the minimum of the 1/𝛾-strongly convex function

𝜌𝑥𝑘 ,20 20If 𝑥★ is the minimizer of a
`-strongly convex function 𝐹 , then
0 ∈ 𝜕𝐹 (𝑥★) and (2.4) gives us that
𝐹 (𝑥★) ≤ 𝐹 (𝑢) − `

2 ‖𝑢 − 𝑥★ ‖2.

thus

𝑔(𝑥𝑘+1) +
1
2𝛾 ‖𝑥𝑘+1 − 𝑥𝑘 ‖2 ≤ 𝑔(𝑥★) + 1

2𝛾 ‖𝑥
★ − 𝑥𝑘 ‖2 −

1
2𝛾 ‖𝑥𝑘+1 − 𝑥★‖2

and by summing this inequality from 𝑡 = 0, .., 𝑘 − 1, we get
𝑘−1∑︁
𝑡=0

(
𝑔(𝑥𝑡+1) − 𝑔(𝑥★)

)
≤ 1

2𝛾

𝑘−1∑︁
𝑡=0

(‖𝑥★ − 𝑥𝑡 ‖2 − ‖𝑥𝑡+1 − 𝑥★‖2) −
𝑘−1∑︁
𝑡=0

1
2𝛾 ‖𝑥𝑡+1 − 𝑥𝑡 ‖2

≤ 1
2𝛾 ‖𝑥

★ − 𝑥0‖2 .

Now, since 𝑔(𝑥𝑘+1) ≤ 𝑔(𝑥𝑘 ), we get that

𝑘
(
𝑔(𝑥𝑘 ) − 𝑔(𝑥★)

)
≤

𝑘−1∑︁
𝑡=0

(
𝑔(𝑥𝑡 ) − 𝑔(𝑥★)

)
≤ 1

2𝛾 ‖𝑥
★ − 𝑥0‖2

which gives the result. �



20 Chap. 3 - Nonsmooth minimization and the Proximity operator

3.2.4 Examples

Example 3.7 (Squared norm). For 𝑔(𝑥) = 1
2 ‖𝑥 ‖

2, the proximity operator can be com-
puted explicitly. Since 𝜌𝑦 : 𝑢 ↦→ 𝑔(𝑢) + 1

2𝛾 ‖𝑢 − 𝑦‖2 is strongly convex, there is a
unique minimizer 𝑥 and it veries ∇𝑠 (𝑥) = 0. Thus 𝑥 + 1

𝛾
(𝑥 − 𝑦) = 0 which implies

𝑥 = 𝑦/(1 + 𝛾):

prox𝛾 1
2 ‖ · ‖2

(𝑦) = 𝑦

1 + 𝛾 .

Example 3.8 (Absolute value). The proximity operator of the absolute value admits a
closed form expression: for 𝑦 ∈ ℝ and 𝛾 > 0,

prox𝛾 | · | (𝑦) =


𝑦 + 𝛾 if 𝑦 < −𝛾
0 if − 𝛾 ≤ 𝑦 ≤ 𝛾

𝑦 − 𝛾 if 𝑦 > 𝛾

See Tutorial 3.
A very useful calculus rule for the proximity operator is that if 𝑔 is separable:2121By coordinates, or blocks of

coordinates.

𝑔(𝑥 1, 𝑥2, .., 𝑥𝑚) =
𝑚∑︁
𝑖=1

𝑔𝑖 (𝑥𝑖 ),

then the proximity operator of 𝑔 can be obtained from those of the (𝑔𝑖 ):

prox𝛾𝑔 (𝑦1, 𝑦2, .., 𝑦𝑚) =


prox𝛾𝑔1 (𝑦1)
prox𝛾𝑔2 (𝑦2)

...

prox𝛾𝑔𝑚 (𝑦𝑚)


.

Example 3.9 (ℓ1 norm). The ℓ1-norm is dened on ℝ𝑛 as ‖𝑥 ‖1 =
∑𝑛

𝑖=1 |𝑥𝑖 |. Using this
separability, the proximity operator at 𝑦 ∈ ℝ𝑛 and 𝛾 > 0,

prox𝛾 ‖ · ‖1 (𝑦) =


prox𝛾 | · | (𝑦1)
prox𝛾 | · | (𝑦2)

...

prox𝛾 | · | (𝑦𝑚)


.

Formore examples, see (Beck, 2017, Chap. 6) and thewebsite proximity-operator.net.

3.2.5 Relation with the Projection operator

In optimization, it is useful to dene the indicator of set 𝐶 ⊂ ℝ𝑛 as the function
]𝐶 : ℝ𝑛 → ℝ such that2222This is dierent from the

indicator 𝐼𝐴 in probability which is
equal to 1 if 𝐴 is true and 0

elsewhere.
]𝐶 (𝑥) =

{
0 if 𝑥 ∈ 𝐶

+∞ else .

Lemma 3.10. Let 𝐶 ⊂ ℝ𝑛 be a non-empty closed convex set. Then, for any 𝛾 > 0,

prox𝛾]𝐶 (𝑦) = proj𝐶 (𝑦).

Proof. It is enough to remark that the inner minimization inℝ𝑛 amounts to minimizing
over 𝐶 since otherwise the inner value is +∞. This exactly gives the denition of the
projection. �

http://proximity-operator.net
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3.3 The Proximal Gradient

Now that we have a tool to handle simple nonsmooth functions, we can address the
minimization of the sum of a smooth function and a nonsmooth one:

min
𝑥 ∈ℝ𝑛

𝑓 (𝑥) + 𝑔(𝑥). (3.2)

Since the proximity operator is dicult to compute in general, a rule of thumb is
to use a gradient method as soon as possible. Furthermore, in many signal processing
or machine learning problems, the objective is of the form 𝑓 + 𝑔, with 𝑓 a smooth
loss function that measure the t between the model and the data and 𝑔 a nonsmooth
regularization, chosen so that the proximity operator is easy to compute.

3.3.1 Motivation: Splitting [★]
In the convex case, a minimizer of problem (3.2) is a point 𝑥 satisfying

0 ∈ ∇𝑓 (𝑥) + 𝜕𝑔(𝑥). (3.3)

In order to decouple these two functions, splitting methods have been developed.
They consist in nding a point satisfying (3.3) by solving the xed-point iteration

0 ∈ 𝛾∇𝑓 (𝑥𝑘 ) + 𝛾𝜕𝑔(𝑥𝑘+1) + 𝑥𝑘+1 − 𝑥𝑘

⇔ 0 ∈ 𝜕𝑔(𝑥𝑘+1) +
1
𝛾
(𝑥𝑘+1 − (𝑥𝑘 − 𝛾∇𝑓 (𝑥𝑘 )))

⇔ 𝑥𝑘+1 = prox𝛾𝑔 (𝑥𝑘 − 𝛾∇𝑓 (𝑥𝑘 ))

and thus consists in alternating a proximal step and a gradient step.

3.3.2 Algorithm

The proximal gradient algorithm consists in iterating

𝑥𝑘+1 = prox𝛾𝑔 (𝑥𝑘 − 𝛾∇𝑓 (𝑥𝑘 )) (Proximal gradient)

for some 𝛾 > 0 and starting point 𝑥0.
It is worth noticing that this composition can actually be seen as the minimization

of a rst-order approximation of 𝑓 plus 𝑔. Indeed:

𝑥𝑘+1 = prox𝛾𝑔 (𝑥𝑘 − 𝛾∇𝑓 (𝑥𝑘 ))

= argmin𝑢∈ℝ𝑛

{
𝑔(𝑢) + 1

2𝛾 ‖𝑢 − 𝑥𝑘 + 𝛾∇𝑓 (𝑥𝑘 )‖2
}

= argmin𝑢∈ℝ𝑛

{
𝑔(𝑢) + 〈𝑢 − 𝑥𝑘 ,∇𝑓 (𝑥𝑘 )〉 +

1
2𝛾 ‖𝑢 − 𝑥𝑘 ‖2 +

𝛾

2 ‖∇𝑓 (𝑥𝑘 )‖
2
}

= argmin𝑢∈ℝ𝑛

{
𝑓 (𝑥𝑘 ) + 〈𝑢 − 𝑥𝑘 ,∇𝑓 (𝑥𝑘 )〉 + 𝑔(𝑢) +

1
2𝛾 ‖𝑢 − 𝑥𝑘 ‖2

}
(3.4)

where in the last inequality we remove terms independent of 𝑢. We notice that the
rst two terms approximate 𝑓 .

This helps us put together the tools for the algorithm’s descent lemma.
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Lemma 3.11. Let 𝑓 : ℝ𝑛 → ℝ be a convex 𝐿-smooth function and let 𝑔 : ℝ𝑛 → ℝ be
a convex lower semi-continuous proper function. Then, the (Proximal gradient) method
with 𝛾 ∈ (0, 1/𝐿] veries 𝑓 (𝑥𝑘+1) + 𝑔(𝑥𝑘+1) ≤ 𝑓 (𝑥𝑘 ) + 𝑔(𝑥𝑘 ) and

𝑓 (𝑥𝑘 ) + 𝑔(𝑥𝑘 ) − (𝑓 (𝑥★) + 𝑔(𝑥★)) ≤ ‖𝑥★ − 𝑥0‖2
2𝛾𝑘 .

Proof. By (3.4), 𝑥𝑘+1 is the minimizer of the right hand side, which is a 1/𝛾-strongly
convex function, hence for any 𝑧 ∈ ℝ𝑛 ,

𝑓 (𝑥𝑘 ) + 〈𝑥𝑘+1 − 𝑥𝑘 ,∇𝑓 (𝑥𝑘 )〉 + 𝑔(𝑥𝑘+1) +
1
2𝛾 ‖𝑥𝑘+1 − 𝑥𝑘 ‖2

≤𝑓 (𝑥𝑘 ) + 〈𝑧 − 𝑥𝑘 ,∇𝑓 (𝑥𝑘 )〉 + 𝑔(𝑧) +
1
2𝛾 ‖𝑧 − 𝑥𝑘 ‖2 −

1
2𝛾 ‖𝑧 − 𝑥𝑘+1‖2

≤𝑓 (𝑧) + 𝑔(𝑧) + 1
2𝛾 ‖𝑧 − 𝑥𝑘 ‖2 −

1
2𝛾 ‖𝑧 − 𝑥𝑘+1‖2

where the second inequality comes from the convexity of 𝑓 .
Now, the smoothness of 𝑓 (Lemma 1.14), implies that

𝑓 (𝑥𝑘+1) ≤ 𝑓 (𝑥𝑘 ) + 〈𝑥𝑘+1 − 𝑥𝑘 ,∇𝑓 (𝑥𝑘 )〉 +
𝐿

2 ‖𝑥𝑘+1 − 𝑥𝑘 ‖2

and using the rst set of inequalities, we get

𝑓 (𝑥𝑘+1) + 𝑔(𝑥𝑘+1)

≤ 𝑓 (𝑥𝑘 ) + 〈𝑥𝑘+1 − 𝑥𝑘 ,∇𝑓 (𝑥𝑘 )〉 + 𝑔(𝑥𝑘+1) +
1
2𝛾 ‖𝑥𝑘+1 − 𝑥𝑘 ‖2 +

1
2

(
𝐿 − 1

𝛾

)
‖𝑥𝑘+1 − 𝑥𝑘 ‖2

≤ 𝑓 (𝑧) + 𝑔(𝑧) + 1
2𝛾 ‖𝑧 − 𝑥𝑘 ‖2 −

1
2𝛾 ‖𝑧 − 𝑥𝑘+1‖2 +

1
2

(
𝐿 − 1

𝛾

)
‖𝑥𝑘+1 − 𝑥𝑘 ‖2 .

Using 𝑧 = 𝑥𝑘 , we get that the sequence of functional values is decreasing and
with 𝑧 = 𝑥★, we obtain the rate with the same proof as for the proximal point method
(Theorem 3.6). �
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TUTORIAL 1 Around the Gradient

Exercise 1.1 (Quadratic functions).
a. In ℝ𝑛 , compute the gradient of the squared Euclidean norm ‖ · ‖22 at a generic

point 𝑥 ∈ ℝ𝑛 .
b. Let 𝐴 be an 𝑚 × 𝑛 real matrix and 𝑏 a size-𝑚 real vector. We dene 𝑓 (𝑥) =

‖𝐴𝑥 − 𝑏‖22. For a generic vector 𝑎 ∈ ℝ𝑛 , compute the gradient ∇𝑓 (𝑎) and
Hessian ∇2 𝑓 (𝑎).

c. Let 𝐶 be an 𝑛 × 𝑛 real matrix, 𝑑 a size-𝑛 real vector, and 𝑒 ∈ ℝ. We dene
𝑔(𝑥) = 𝑥>𝐶𝑥 +𝑑>𝑥 +𝑒 . For a generic vector 𝑎 ∈ ℝ𝑛 , compute the gradient ∇𝑔(𝑎)
and Hessian 𝐻𝑔 (𝑎).

d. Can all functions of the form of 𝑓 and be written in the form of 𝑔? And con-
versely?

Exercise 1.2 (Basic Dierential calculus). Use the composition lemma to compute the
gradients of:

a. 𝑓1 (𝑥) = ‖𝐴𝑥 − 𝑏‖22 .
b. 𝑓2 (𝑥) = ‖𝑥 ‖2 .

Exercise 1.3 (Optimality conditions). Let 𝑓 : ℝ𝑛 → ℝbe a twice dierentiable function
and 𝑥 ∈ ℝ𝑛 . We suppose that 𝑓 admits a local minimum at 𝑥 that is 𝑓 (𝑥) ≥ 𝑓 (𝑥) for
all 𝑥 in a neighborhood23 23Formally, one would write

∀𝑥 ∈ ℝ𝑛 such that ‖𝑥 − 𝑥 ‖ ≤ Y for
Y > 0 and some norm ‖ · ‖.

of 𝑥 .
a. For any direction 𝑢 ∈ ℝ𝑛 , we dene the ℝ → ℝ function 𝑞(𝑡) = 𝑓 (𝑥 + 𝑡𝑢).

Compute 𝑞′(𝑡).
b. By using the rst order Taylor expansion of 𝑞 at 0, show that ∇𝑓 (𝑥) = 0.
c. Compute 𝑞′′(𝑡). By using the second order Taylor expansion of 𝑞 at 0, show that

∇2 𝑓 (𝑥) is positive semi-denite.

Exercise 1.4 (Descent lemma). A function 𝑓 : ℝ𝑛 → ℝ is said to be 𝐿-smooth if it is
dierentiable and its gradient ∇𝑓 is 𝐿-Lipchitz continuous, that is

∀𝑥,𝑦 ∈ ℝ𝑛, ‖∇𝑓 (𝑥) − ∇𝑓 (𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖ .
The goal of the exercise is to prove that if 𝑓 : ℝ𝑛 → ℝ is 𝐿-smooth, then for all
𝑥,𝑦 ∈ ℝ𝑛 ,

𝑓 (𝑥) ≤ 𝑓 (𝑦) + (𝑥 − 𝑦)T∇𝑓 (𝑦) + 𝐿

2 ‖𝑥 − 𝑦‖2



26 Tuto. 1 - Around the Gradient

a. Starting from fundamental theorem of calculus stating that for all 𝑥,𝑦 ∈ ℝ𝑛 ,

𝑓 (𝑥) − 𝑓 (𝑦) =
∫ 1

0
(𝑥 − 𝑦)T∇𝑓 (𝑦 + 𝑡 (𝑥 − 𝑦))d𝑡

prove the descent lemma.
b. Give a function for which the inequality is tight and one for which it is not.

Exercise 1.5 (Smooth functions). Consider the constant stepsize gradient algorithm
𝑥𝑘+1 = 𝑥𝑘 − 𝛾∇𝑓 (𝑥𝑘 ) on an 𝐿-smooth function 𝑓 with some minimizer (i.e. some 𝑥★
such that 𝑓 (𝑥) ≥ 𝑓 (𝑥★) for all 𝑥 ).

a. Use the descent lemma to prove convergence of the sequence (𝑓 (𝑥𝑘 )) when
𝛾 ≤ 2/𝐿.

b. Does the sequence (𝑥𝑘 ) converge? To what?

BC



TUTORIAL 2 Convexity

Exercise 2.1 (Fundamentals of convexity).
a. Let 𝑓 and 𝑔 be two convex functions. Show that 𝑚(𝑥) = max(𝑓 (𝑥), 𝑔(𝑥)) is

convex.
b. Show that 𝑓1 (𝑥) = max(𝑥2 − 1, 0) is convex.
c. Let 𝑓 be a convex function and 𝑔 be a convex, non-decreasing function. Show

that 𝑐 (𝑥) = 𝑔(𝑓 (𝑥)) is convex.
d. Show that 𝑓2 (𝑥) = exp(𝑥2) is convex. What about 𝑓3 (𝑥) = exp(−𝑥2)
e. Justify why the 1-norm, the 2 norm, and the squared 2-norm are convex.

Exercise 2.2 (Proof of Theorem 2.7). Let 𝐹 : ℝ𝑛 → ℝ be a proper convex function.
We want to show that if 𝑥 is a local minimizer of 𝐹 , then it is a (global) minimizer.

a. Since 𝑥 is a local minimizer, there is a ball of radius 𝜌 > 0 such that 𝐹 (𝑥) ≤ 𝐹 (𝑢)
for all 𝑢 ∈ B(𝑥, 𝜌). Take 𝑦 ∈ ℝ𝑛 \ B(𝑥, 𝜌) and dene 𝛼 = 1 − 𝜌/‖𝑦 − 𝑥 ‖,
𝑧 = 𝛼𝑥 + (1 − 𝛼)𝑦. Show that 𝛼 ∈ (0, 1) and 𝑧 ∈ B(𝑥, 𝜌).

b. Use convexity of 𝐹 to conclude.

Exercise 2.3 (Strict and strong convexity).
a. For a strictly convex function 𝑓 , show that the problem{

min 𝑓 (𝑥)
𝑥 ∈ 𝐶

where 𝐶 is a convex set admits at most one solution.
b. Find a strictly convex function that admits no minimizer.
c. Show that a strongly convex function is also strictly convex.

Exercise 2.4 (Convexity and smoothness). Let 𝑓 : ℝ𝑛 → ℝ be an 𝐿-smooth convex
function.

a. Show that for all 𝑥,𝑦 ∈ ℝ𝑛 ,

𝑓 (𝑥) − 𝑓 (𝑦) ≤ 〈𝑥 − 𝑦;∇𝑓 (𝑥)〉 − 1
2𝐿 ‖∇𝑓 (𝑥) − ∇𝑓 (𝑦)‖2
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and thus
1
𝐿
‖∇𝑓 (𝑥) − ∇𝑓 (𝑦)‖2 ≤ 〈𝑥 − 𝑦;∇𝑓 (𝑥) − ∇𝑓 (𝑦)〉 ≤ 𝐿‖𝑥 − 𝑦‖2 .

Hint: Dene 𝑧 = 𝑦 − 1
𝐿
(∇𝑓 (𝑦) − ∇𝑓 (𝑥)).

Use convexity to bound 𝑓 (𝑥) − 𝑓 (𝑧) and smoothness to bound 𝑓 (𝑧) − 𝑓 (𝑦) and
sum both inequalities.

b. Let 𝑓 be in addition `-strongly convex with minimizer 𝑥★. Show that for all
𝑥 ∈ ℝ𝑛 ,

(𝑥 − 𝑥★)T∇𝑓 (𝑥) ≥ `𝐿

` + 𝐿
‖𝑥 − 𝑥★‖2 + 1

` + 𝐿
‖∇𝑓 (𝑥)‖2 .

Hint: Use the fact that 𝑓 − `

2 ‖ · ‖
2 is (𝐿 − `)-smooth and question a.

BC



TUTORIAL 3 The Proximity operator

Exercise 3.1 (Proof of Corollary 3.4). Let 𝑔 : ℝ𝑛 → ℝ be a convex lower semi-
continuous proper function. Show that for any 𝑦, 𝑧 ∈ ℝ𝑛

‖prox𝛾𝑔 (𝑦) − prox𝛾𝑔 (𝑧)‖2 ≤ 〈𝑦 − 𝑧, prox𝛾𝑔 (𝑦) − prox𝛾𝑔 (𝑧)〉
⇔‖prox𝛾𝑔 (𝑦) − prox𝛾𝑔 (𝑧)‖2 ≤ ‖𝑦 − 𝑧‖2 − ‖𝑦 − prox𝛾𝑔 (𝑦) − 𝑧 + prox𝛾𝑔 (𝑧)‖2

Exercise 3.2. Show that the proximity operator of the absolute value is given for
𝑦 ∈ ℝ and 𝛾 > 0 by

prox𝛾 | · | (𝑦) =


𝑦 + 𝛾 if 𝑦 < −𝛾
0 if − 𝛾 ≤ 𝑦 ≤ 𝛾

𝑦 − 𝛾 if 𝑦 > 𝛾

Exercise 3.3 (Application). The lasso problem is a regularized linear regression prob-
lem that writes as

min
𝑥 ∈ℝ𝑛

1
2 ‖𝐴𝑥 − 𝑏‖2 + _‖𝑥 ‖1

where 𝐴 is a full rank𝑚 × 𝑛 matrix and 𝑏 is a size𝑚 vector.
a. Write the iterations for a proximal gradient algorithm. Which stepsize can be

used?
b. The regularization _‖𝑥 ‖1 is said to be sparsity enforcing, guess why.

BC
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TUTORIAL 4 Convergence and Rates

The goal of these exercises is to investigate the convergence and rate of the gradient
algorithm on 𝐿-smooth functions.

Exercise 4.1 (Rate for smooth functions). Let us consider a 𝐿-smooth convex function
𝑓 and note 𝑥★ one of its minimizers. We consider the algorithm:

𝑥𝑘+1 = 𝑥𝑘 −
1
𝐿
∇𝑓 (𝑥𝑘 ).

a. Prove that

‖𝑥𝑘+1 − 𝑥★‖2 ≤ ‖𝑥𝑘 − 𝑥★‖2 − 1
𝐿2

‖∇𝑓 (𝑥𝑘 )‖2 = ‖𝑥𝑘 − 𝑥★‖2 − ‖𝑥𝑘+1 − 𝑥𝑘 ‖2 .

Hint: Replace𝑥𝑘+1 by𝑥𝑘− 1
𝐿
∇𝑓 (𝑥𝑘 ) and that for convex smooth functions 1

𝐿
‖∇𝑓 (𝑥)−

∇𝑓 (𝑦)‖2 ≤ 〈𝑥 − 𝑦;∇𝑓 (𝑥) − ∇𝑓 (𝑦)〉 as demonstrated in Exercise 2.4.

b. Show that

𝛿𝑘 := 𝑓 (𝑥𝑘 ) − 𝑓 (𝑥★) ≤ ‖𝑥𝑘 − 𝑥★‖ · ‖∇𝑓 (𝑥𝑘 )‖ ≤ ‖𝑥1 − 𝑥★‖ · ‖∇𝑓 (𝑥𝑘 )‖.

Hint: Use convexity then a.

c. Use smoothness and b. to show that

0 ≤ 𝛿𝑘+1 ≤ 𝛿𝑘 −
1

2𝐿‖𝑥1 − 𝑥★‖2︸           ︷︷           ︸
:=𝜔

𝛿2
𝑘
.

d. Deduce that
1

𝛿𝑘+1
− 1
𝛿𝑘

≥ 𝜔.

Hint: Divide c. by 𝛿𝑘𝛿𝑘+1.
e. Conclude that for the gradient algorithm with stepsize 1/𝐿 we have

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥★) ≤ 2𝐿‖𝑥1 − 𝑥★‖2
𝑘 − 1 .

Exercise 4.2 (Iterates converence for smooth functions). Under the same setup as the
exercise above, we want to show that the iterates converge to some minimizer.
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a. Show that the iterates are bounded and that for any 𝑥 ∈ argmin 𝑓 , ‖𝑥𝑘 − 𝑥 ‖
converges.

b. Show that every limit point of (𝑥𝑘 ) belongs to argmin 𝑓 .
c. Suppose that 𝑥 and 𝑦 are two limit points of (𝑥𝑘 ). Show that

2〈𝑥𝑘 , 𝑥 − 𝑦〉 = ‖𝑥𝑘 − 𝑦‖2 − ‖𝑥𝑘 − 𝑥 ‖2 + ‖𝑥 ‖2 − ‖𝑦‖2

converges to some ℓ .
d. Using that 𝑥 and 𝑦 are two limit points of (𝑥𝑘 ), deduce that ℓ = 2〈𝑥, 𝑥 − 𝑦〉 =

2〈𝑦, 𝑥 − 𝑦〉.
e. Deduce that (𝑥𝑘 ) converges to a point in argmin 𝑓 .

Exercise 4.3 (Rate for smooth strongly convex functions). Let us consider a 𝐿-smooth
`-strongly convex function 𝑓 and note 𝑥★ its unique minimizer. We consider the
algorithm:

𝑥𝑘+1 = 𝑥𝑘 −
2

` + 𝐿
∇𝑓 (𝑥𝑘 ).

a. Using Exercise 2.4, prove that

‖𝑥𝑘+1 − 𝑥★‖2 ≤
(
1 − 4`𝐿

(` + 𝐿)2

)
‖𝑥𝑘 − 𝑥★‖2

=

(
^ − 1
^ + 1

)2
‖𝑥𝑘 − 𝑥★‖2

where ^ = 𝐿/` is the conditionning number of the problem.
b. Show that

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥★) ≤ 𝐿

2 ‖𝑥𝑘 − 𝑥★‖2 .

c. Conclude that for the gradient algorithm with stepsize 2/(` + 𝐿) we have

𝑓 (𝑥𝑘 ) − 𝑓 (𝑥★) ≤
(
^ − 1
^ + 1

)2𝑘
𝐿‖𝑥0 − 𝑥★‖2

2 .

d. Do the iterates converge?

BC



TUTORIAL 5 Linearandadratic Programs

In this tutorial, we are going to investigate Linear and Quadratic programs, often
abbreviated LP and QP respectively. These problems appear when minimizing linear
or quadratic cost functions under linear inequalities constraints. Typical formulations
of these problems are:

Linear program (LP):

min
𝑥 ∈ℝ𝑛

𝑐>𝑥

subject to 𝐺𝑥 ≤ ℎ

Quadratic program (QP):

min
𝑥 ∈ℝ𝑛

1
2𝑥

>𝑃𝑥 + 𝑞>𝑥

subject to 𝐺𝑥 ≤ ℎ

where 𝑐, 𝑞 ∈ ℝ𝑛 , 𝐺 ∈ ℝ𝑚×𝑛 , ℎ ∈ ℝ𝑚 , 𝑃 ∈ ℝ𝑛×𝑛 .

Although these problems are quite specic, a number of (sub-)problems in op-
timization can actually be formulated in one of the two forms above. The interest
of these formulations is that there exists a large number of standard libraries imple-
menting computationally ecient LP and QP solvers24 24generally based on interior point,

active sets, simplex, ... algorithms
and variants.

. Depending on the solver, the
formulation may vary but very marginally (for instance, some include linear equalities).

These solvers will take the vectors/matrices dening the problem and output a
solution along with a solver status and additional information (precision, number of
iterations, etc.). For instance, the library CVXOPT’s functions are:
lp(c, G, h) and qp(P, q, G, h)
(see http://cvxopt.org/userguide/coneprog.html#linear-programming).

The main diculty here is to properly reformulate the problems to make them t
the standard form.

Exercise 5.1 (First steps).

a. Do LP/QP always have solutions? Try to devise some conditions for solutions
to exist if that is not the case.

b. My problem looks like a LP but the objective is 𝑐>𝑥 + 𝑎 where 𝑎 is a constant
scalar. Is that a problem?

c. My problem is min𝑢,𝑣 𝑢 + 𝑣 under the constraints that 𝑣 ≥ 0 and 𝑢 = 7𝑣 + 3. How
can I formulate it as a LP?

http://cvxopt.org/userguide/coneprog.html#linear-programming
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Exercise 5.2 (Equivalent problems). Let 𝑓 : ℝ𝑛 → ℝ; we consider the problem

min
𝑥 ∈ℝ𝑛

𝑓 (𝑥)

subject to 𝑥 ∈ 𝐶

and we assume that a solution 𝑥 exists. Show that this problem is equivalent to solving

min
(𝑥,𝑟 ) ∈ℝ𝑛+1

𝑟

subject to 𝑓 (𝑥) ≤ 𝑟

(𝑥, 𝑟 ) ∈ 𝐶 ×ℝ ⊂ ℝ𝑛+1

in the sense that
(i) if 𝑥 is a solution of the rst problem, then (𝑥, 𝑓 (𝑥)) is a solution of the second.
(ii) if (𝑥, 𝑟 ) is a solution of the second problem, then 𝑥 is a solution of the rst one.

Exercise 5.3 (Linear reformulation). Let 𝐴 ∈ ℝ𝑚×𝑛 and 𝑏 ∈ ℝ𝑚 . Reformulate the
problem

min
𝑥 ∈ℝ𝑛

‖𝐴𝑥 − 𝑏‖∞

as a linear problem. Notably, give the corresponding (𝑐,𝐺, ℎ) from the LP formulation.

Exercise 5.4 (Linear reformulation II). Let 𝐴 ∈ ℝ𝑚×𝑛 and 𝑏 ∈ ℝ𝑚 . Reformulate the
problem

min
𝑥 ∈ℝ𝑛

‖𝐴𝑥 − 𝑏‖1

as a linear problem by extending the technique of Ex. 5.2 (without giving details).
Notably, give the corresponding (𝑐,𝐺, ℎ) from the LP formulation.

Do the same for the problem

min
𝑥 ∈ℝ𝑛

‖𝑥 ‖1

subject to ‖𝐴𝑥 − 𝑏‖∞ ≤ 1

Exercise 5.5 (Particular LPs). Solve explicitly the following optimization problems:2525Drawings may be helpful!

a. Minimize 𝑐>𝑥 under the constraints that
∑

𝑖 𝑥𝑖 = 1 and 𝑥 ≥ 0 (linear function
over the simplex).

b. Minimize 𝑐>𝑥 under the constraint that 𝐴𝑥 = 𝑏 (linear function over an ane
subspace).
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Exercise 5.6 (Quadratic reformulation). We consider the regression model

𝑦 = 𝑋\ + b, b ∼ N(0, 𝜎𝐼𝑚),

where 𝑋 ∈ ℝ𝑚×𝑛 and 𝑦 ∈ ℝ𝑚 are the observed values and \ ∈ ℝ𝑛 is the unknown
parameter we want to nd.

a. Show that maximizing the likelihood ℓ (\ ) = 𝑓\ (𝑦)26 26
𝑓\ (𝑦) is the density function of

𝑦 for a xed value of \ .
of \ amount to minimizing

‖𝑋\ − 𝑦‖22.
b. Reformulate this problem as a QP.

BC
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