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Rules: All answers should be as developed as possible. Some questions are more guided or open than
others; for the latter, there can be more than one admissible answer, the thorough treatment of the question will
be privileged over one particular answer. I you think you need to add an extra assumption, say it explicitly in
your answer. Duration: 3 hours.

In the whole exam, unless explicitly specified, we let (Ω,A) be a measurable space. We denote by P(Ω) the
set of probability distributions over Ω, and we let µ and ν be two probability measures on (Ω,A). In addition,
we assume that τ is a σ-finite measure on (Ω,A) satisfying µ ≪ τ and ν ≪ τ and define p = dµ/dτ, q = dν/dτ .

Exercise 1. — The Hellinger distance between µ and ν is defined as follows:

H(µ, ν) :=

√∫
(
√
p−√

q)
2
dτ =

√∫ (√
dµ−

√
dν

)2

. (1)

Show the following properties:

1. H(µ, ν) ≥ 0 with equality if and only if µ = ν.

2. H is symmetric and verifies the triangle inequality.

3. H2(µ, ν) = 2
(
1−

∫ √
pqdτ

)
= 2

(
1−

∫ √
dµdν

)
.

4. 1
2H

2(µ, ν) ≤ ∥µ− ν∥TV . Hint: we recall that ∥µ− ν∥TV = 1−
∫
min(p, q)dτ .

5. ∥µ− ν∥TV ≤ H(µ, ν)
√
1− H2(µ,ν)

4 . Hint: we can first show that
∫
min(p, q)dτ +

∫
max(p, q)dτ = 2

Exercise 2 (IPM on quadratics). — In this exercise, we restrict ourselves to distributions on R. Let us consider
the following Integral Probability Metric (IPM) candidate:

d(µ, ν) := sup
f∈Fq

∣∣∣∣∫ f dµ−
∫

f dν

∣∣∣∣ .
where the function class Fq := {x 7→ ax2 + bx+ c : a, b, c ∈ [−1, 1]3} is a set of quadratic functions on R.

1. Can we get rid of the absolute value in the definition of d?

2. How can you express d using the moments of µ and ν?
(We recall that that the k-th moment of µ is mk(µ) = EX∼µ[X

k] , k ∈ N)

3. Is d a metric on probability measures on R?

4. Is d a metric on Gaussian distributions? More generally, for what families of distributions is d a metric?

5. Can we compare d with W1 ? With the total variation ? What if we restricted ourselves to probability
measures on [0, 1]? Hint: we recall that W1 and the total variation are IPMs with F the set of 1-Lipchitz
continuous functions and the set of functions with ∞-norm bounded by 1 respectively.

6. Is the condition {a, b, c ∈ [−1, 1]3} in Fq necessary to define a metric? If not, by what can we replace it?

Exercise 3 (Nash Equilibria). — The parts of this exercise are independent.

A– 2×2 Coordination Game. Consider the following two-player game in normal form. Both players have two
strategies: A and B. The payoff matrix is given by:

A B
A (3, 3) (0, 2)

B (2, 0) (1, 1)



1. Identify all pure strategy Nash equilibria.

2. Find the mixed strategy Nash equilibrium and verify that in equilibrium each player is strongly
indifferent among the pure strategies played with positive probability.

B– Iterated Elimination of Strictly Dominated Strategies in a 3×3 Game. Consider the following game with
Player 1 choosing among rows T , M , and B, and Player 2 choosing among columns L, C, and R:

L C R
T (2, 0) (1, 1) (4, 2)

M (3, 4) (1, 2) (2, 3)

B (1, 3) (0, 2) (3, 0)

3. Identify a strategy for Player 1 that is strictly dominated and eliminate it.

4. Then, for the reduced game, identify a strictly dominated strategy for Player 2 and eliminate it.

5. Find the pure strategy Nash equilibria in the resulting 2×2 game.

6. Find the mixed Nash equilibrium of the full 3×3 game.

Exercise 4. — Let X1, . . . , Xn be i.i.d. samples from distribution µ on R and define the empirical measure

µn =
1

n

n∑
i=1

δXi
.

We give ourselves a family (qλ)λ∈Λ of probability distributions on R parametrized by λ ∈ Λ ⊂ R (eg. the
family of exponential distributions). The goal of the exercise is to explore different ways of tuning λ and their
consequences in terms of variational inference.

1. Show that

KL(µ||qλ) = EX∼µ[− log(qλ(X))] + C (2)

where C is a quantity independent from λ to precise. Hint: we recall that KL(µ||ν) =
∫
log

(
dµ
dν

)
dµ if

µ ≪ ν and +∞ otherwise.

2. Deduce that with probability one,

argmin
λ∈Λ

KL(µ||qλ) = argmax
λ∈Λ

lim
n→∞

1

n

n∑
i=1

log(qλ(Xi)) (3)

what is the interpretation of this result?

Now, we note g = log ◦ qλ and consider the distributionally robust problem

sup
ν∈P(R)

Eν [g] =

∫
g(x)dν(x) (4)

s.t. KL(ν||µn) ≤ ρ

where ρ ≥ 0 is the robustness radius.

3. If ρ = 0, what is the closed form expression of problem (4)? What if ρ → +∞?

4. For some fixed ρ ∈ [0,+∞), what is the support of the optimal ν⋆ (that we will assume to exist)? Then,
how can problem (4) be reformulated as finite-dimensional optimization problem?

5. Let n = 2, ρ = 0.1, what is the optimal value of problem (4)? Hint: we give x log(2x) + (1− x) log(2(1−
x))) = 0.1 for x = 0.28 and x = 0.72.

6. In fact, one can show that the value of problem (4) is equal to infγ>0 {γρ+ γ logEµn
exp(g/γ)}. How can

you relate this to question 3.?

7. Why is the expression of 6. more adapted than equation (4) to study the problem as n → ∞?
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Exercise 5 (f -Divergences). — Let µ, ν ∈ P(Ω) be such that µ ≪ ν. Then, for a convex function f : X :=
[0,+∞) → R∪{+∞} such that f(x) is finite for all x > 0, f(1) = 0, and f(0) = limt→0+ f(t), the f -divergence
of µ from ν is defined as

Df (µ ∥ ν) ≡
∫
Ω

f

(
dµ

dν

)
dν . (5)

Let f∗ be the convex conjugate of f , ie f∗ (y) := sup {⟨y, x⟩ − f(x) : x ∈ X} for all y ∈ R. Let effdom(f∗)
be the effective domain of f∗, that is, effdom(f∗) = {y : f∗(y) < ∞}.

1. Show that

Eµ[g] ≤ Df (µ ∥ ν) + Eν [f
∗ ◦ g] (6)

for all g : Ω → effdom(f∗). (Hint: you can use that f∗(y) + f(x) ≥ xy for all x, y by convex conjugation)

In fact, we have the following variational principle:

Df (µ ∥ ν) = sup
g:Ω→effdom(f∗)

Eµ[g]− Eν [f
∗ ◦ g] (7)

that we will take as granted for the remainder of the exercise.

2. For f(x) = x log x, verify that Df is the Kullback-Liebler divergence. What is f∗? Instantiate (7) in that
case.

3. For f(x) = 1
2 |x − 1|, show that Df is an integral probability metric. What common distance does this

correspond to?

In addition, if g : Ω → effdom(f∗) is upper-bounded and limt→+∞ f(t) = +∞, convex duality tells us
similarly that:

sup
µ∈P(Ω):µ≪ν

{Eµ[g]−Df (µ ∥ ν)} = inf
λ∈R

{Eν [f
∗(g + λ)]− λ} (8)

that we will also take as granted for the remainder of the exercise.

4. Instantiate (8) with f(x) = x log x. What kind of result of the course do we recover?

5. Instantiate (8) with f(x) = (x−1)2. Is Df a distance? What are the striking differences with the previous
question?

6. Let Ω = {a1, a2, ..., an} be a set of n points. What is supµ∈P(Ω) {Eµ[g]}?

7. In the setup of question 6., instantiate (8) with f(x) = x log x and ν the uniform distribution over these
points. Show that we recover a well-known smoothing of the maximum.

8. For a general Ω, how can we use (8) to find an approximation of the supremum of g? What do we have
to compute?

Bonus. Why don’t we have simply supµ∈P(Ω):µ≪ν {Eµ[g]−Df (µ ∥ ν)} = Eν [f
∗ ◦ g]? Or rather, for which space

Y do we have supµ∈Y:µ≪ν {Eµ[g]−Df (µ ∥ ν)} = Eν [f
∗ ◦ g]
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