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CHAPTER 1 Introduction

The purpose of this first part is to properly introduce the notations and the
notions of stochastic programming and how randomness can intervene

in optimization methods.

Our focus in this monograph is the problem of decision under uncertainty and will
turn around the problem of optimizing in the variable1 1For simplicity, we restrict

ourselves to the case of
minimization for variables in ℝ= .
Most results can be extended to
Hilbert spaces and constrained
problems.

G ∈ ℝ= the objective

5 (G ;- ) (1.1)

where - is some uncertain variable, i.e., a variable that is not perfectly known. In the
context of statistical learning, we can think of 5 as the loss of some machine learning
model parametrized by G (e.g. the weights of a neural networks or the coefficients
of linear regression model) when facing the data sample b . However, the techniques
presented here are not limited nor rooted in the statistical learning community but
rather span various domains and applications.

Now, the problem of optimizing the objective (1.1) is ill-defined until we specify how
to deal with - . This is a modeling issue and several sets of {objectives, assumptions,
results, communities} are of independent interest:

• If - ∈ X where X is known perfectly, the robust optimization approach to this
problem is to solve

min
G

sup
- ∈X

5 (G ;- ) (RO)

which is usually pessimistic but provides strong guarantees.
• If - ∼ ` where ` is a probability distribution that is known perfectly, the

stochastic programming approach to this problem is to solve

min
G

�-∼` [5 (G ;- )] (SP)

which is often more favorable and easier numerically but with looser guarantees.
We will begin by identifying robustness issues in the deterministic and stochastic

cases and reviewing classical results about these two approaches and then move to
finer approaches next. We will also explore how diverse these distributions’ outputs
can be.

1.1 Robustness in the deterministic case

Let us first consider the case where the uncertainty is not modeled as a random variable.
Problems of the form (RO) are simply constrained optimization problem on the joint
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variable (G, - ). Nevertheless, the study of these problem still has some importance
when the size of the perturbation set X is small as it models some uncertainty in the
parameters/conditions of the general problem. For instance, in numerical optimization,
one can think of rounding errors or approximations in the specification of the objective;
in machine learning, having a controlled loss for data samples that are close by can
actually make the model more robust.

1.1.1 Stability in linear programming

Let us consider the linear program

inf
G∈ℝ=

2>G (1.2)

subject to �G ≤ ℎ

where 2 ∈ ℝ= , � ∈ ℝ<×= , ℎ ∈ ℝ< and assume that it is feasible i.e., that there exists
G ∈ ℝ= such that �G ≤ ℎ.

Then, we have the following result stating that optimal solution are on the border
of the polytope defined by the constraints.

Proposition 1.1. Support that Problem (1.2) is feasible, i.e., that there exists G such
that �G ≤ ℎ. Then, if 2 ≠ 0, the solutions of (1.2) either lie on the border (one of the
inequalities of the constraint is saturated) or are degenerate (the infimum of the problem
is −∞).

Proof. The objective and constraint set are convex. Hence, Theorem B.9 states that
G★ is a minimizer if and only if 0 ∈ 2 +#{G :�G≤ℎ} (G★). This rules out all points in the
interior as long as 2 ≠ 0.
Let us call 68 ∈ ℝ= the 8-th row of � and ℎ8 ∈ ℝ the 8-th component of ℎ. We say
that G★ is a border point if �G★ ≤ ℎ and 〈68 , G★〉 = ℎ8 for some 8; for such a point,
denote � (G★) = { 9 : 〈6 9 , G★〉 = ℎ 9 }. Then, #{G :�G≤ℎ} (G★) = {∑9∈ � (G★) U 96 9 , U ∈ ℝ<+ }
(see (Hiriart-Urruty and Lemaréchal, 1993a, Ex. 5.2.6)).
Thismeans that if−2 can bewritten as a positive combination of the rows � ⊂ {1, ..,<}
of � , the corresponding solutions are border points, on a face {G : 〈6 9 , G〉 = ℎ 9 ∀9 ∈
� }.
Furthermore, using Farkas’ lemma of the alternative (see e.g. (Hiriart-Urruty and
Lemaréchal, 1993a, Lemma 4.3.1)), we have that −2 = ∑<

9=1 U 96 9 , U ∈ ℝ<+ if and only
if {G ∈ ℝ= : 〈6 9 , G〉 ≤ 0, 9 = 1, ..,<} ⊂ {G ∈ ℝ= : 〈2, G〉 ≥ 0}. Thus, if −2 cannot be
written as a positive combination of the rows � ⊂ {1, ..,<} of� , there is G ∈ ℝ= such
that 〈6 9 , G〉 ≤ 0, 9 = 1, ..,< such that 〈2, G〉 < 0. Hence, taking G ′ = _G with _ > 0,
we have that �G ′ ≤ ℎ and letting _ → ∞, the problem’s value tends to −∞. �

Now, let us identify a stability problem by considering the problem

inf
G∈ℝ2

G1 + G2

subject to (1 + - )G1 + G2 ≥ 1

G1 + (1 − - )G2 ≥ 1

G1 + G2 = 1

G1, G2 ≥ 0

for some - ∈ [−0.5, 0.5].
It is easy to see that [1, 0] is a solution if - ≥ 0 and that [0, 1] is a solution if

- ≤ 0. This means that if - is uncertain, the solutions of the problem can change.



Robust Optimization and Statistical Learning 3

Nevertheless, here the value of the problem (i.e., the value of G1 + G2) does not change
with X , only the chosen solution changes.

Though the problem’s value does not change, this abrupt change of optimal point
is an issue both numerically (see after) and in practice (as it can lead to opposite
decisions).

Example 1.2 (Numerical solutions). Using Scipy’s linprog solver, the problem
above is solved by the following code.

1 from s c i p y . op t im i z e impor t l i n p r o g
2

3 d e l t a = −1e −7
4

5 c = [ 1 , 1 ]
6

7 A_ub = [ [ − 1 ∗ ( 1 + d e l t a ) , − 1 ] , [ − 1 , − 1 ∗ ( 1 − d e l t a ) ] ]
8 b_ub = [ − 1 , − 1 ]
9

10 A_eq = [ [ 1 , 1 ] ]
11 b_eq = [ 1 ]
12

13 l = 0
14 u = None
15

16 r e s = l i n p r o g ( c , A_ub=A_ub , b_ub=b_ub , A_eq=A_eq , b_eq = b_eq ,
bounds =( l , u ) )

17

18 p r i n t ( r e s . message )
19 p r i n t ( r e s . x )

With X = −14 − 7, the obtained solution is [1, 0] which is unfeasible ! As soon,
as I take X = −1.14 − 7, the solution jumps to [−0, 1]…

Question 1.1. What is the normal cone to the solution as a function of -?
Question 1.2. Suppose that there exists a point G such that −2 ∈ int#{G :�G≤ℎ} (G★).
What does this say about the stability of the solutions of the problem?

Example 1.3 (from Wikipedia). Suppose that a farmer has a piece of farm land,
say ! hectares, to be planted with either wheat or barley or some combination
of the two. The farmer has � kilograms of fertilizer and % kilograms of pesticide.
Every hectare of wheat requires �1 kilograms of fertilizer and %1 kilograms of
pesticide, while every hectare of barley requires �2 kilograms of fertilizer and
%2 kilograms of pesticide. Let (1 be the selling price of wheat and (2 be the
selling price of barley, per hectare. If we denote the area of land planted with
wheat and barley by G1 and G2 and want to maximize profit, we solve:

inf
G∈ℝ2

(1G1 + (2G2

subject to G1 + G2 ≤ !

�1G1 + �2G2 ≤ �

%1G1 + %2G2 ≤ %

G1, G2 ≥ 0

Let �1 = 3, �2 = 6, � = 48, %1 = 4, %2 = 2, % = 32 be fixed by some environ-

https://en.wikipedia.org/wiki/Linear_programming
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mental law. The farmer has ! = 10 hectares. As a regulator, I can fix a price
per ton, which leads to a price per hectares ((1, (2) that is uncertain (due to
weather, economics, etc.). Which target price ((1, (2) would be the most robust
in terms of plantation repartition, knowing that I want to have a production of
both cultures ?
What should I do to change the optimal repartition?

1.1.2 Robust (Linear) Optimization

Two good references for robust optimization (on which we will rely heavily) are
(Bertsimas et al., 2011) and (Ben-Tal et al., 2009). The idea of robust optimization is to
reformulate the optimization problem in order to explicitly model the uncertainties of
the problem and directly take care of them.22See for instance, the

documentation of the solver Mosek
on that part.

This adds complexity to the problem to
solve both numerically and theoretically. Indeed, the solution [0.5, 0.5] appears to be
a good compromise in the previous problem, but it is unfeasible for any - ≠ 0 !

1.1.3 Optimization of a supremum, Adversarial training

If the set X in which - lives is compact. We have by Danskin’s theorem that a gradient
(or subgradient) of � : G ↦→ max- ∈X 5 (G, - ) can be obtained by computing the gradient
(or subgradient) of 5 with respect to G at the (a) point - (G) attaining the maximum.

This is heavily used in game theory and adversarial training which will talk about
later on.

1.2 Robustness in the stochastic case

Now, the uncertainty is supposed to follow a probability distribution `

1.2.1 Stability in stochastic optimization

Let us consider the problem of minimizing in G a smooth function that also depends
on a random uncertainty:

min
G

5 (G ;- )

then, the problem is ill-posed. Indeed, the optimality conditions in G are ∇G 5 (G ;- ) = 0
… for almost all -? in expectation?

Instead of making the problem more precise right now, let us mimicking what
would be done without the random component. This way, we see what happens for an
unseen randomness (something that happens in practice…).

A first thing to notice is that if ` has variance 0, we are in the standard case of
(deterministic) optimization without any robustness problem. So variance plays an
important role…

Let write a gradient algorithm see what happens! Let us start at some G0 and for
all : , iterate

G:+1 = G: − W:∇G 5 (G: ;-:+1) (1.3)

where it is important that we observe -:+1, that is F :+1-measurable33F: denotes the natural filtration,
i.e., the sigma algebra generated by

G0, …, G: .

but not F : -
measurable, when computing the gradient at G: .

https://docs.mosek.com/latest/toolbox/case-studies-robust-lo.html
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Taking the expectation, we get

� [G:+1 |F : ] = G: − W:� [∇G 5 (G: ;-:+1) |F : ]
and we would love to exchange expectation and integral…

Lemma 1.4. Let X be a measure space and suppose that the function 5 : ℝ= × X → ℝ

satisfies the following conditions:
(a) Differentiability: 5 (·;- ) is �1 for all - ∈ X.

(b) Smoothness: ∇G 5 (·;- ) is !-Lipschitz for all - ∈ X.

(c) Integrability: 5 (G ; ·) and ∇G 5 (G ; ·) are integrable with respect to ` for a certain
fixed G ∈ ℝ=

Then, the function � : G ↦→ �[∇G 5 (G ;- )] is differentiable and for all G ,�[∇G 5 (G ;- )] =
∇G� (G).
Proof. We may assume without loss of generality that both 5 (0;- ) and ∇G 5 (0;- )
are integrable thanks to condition (c). Consider the function

6 : (G ;- ) ↦→ 5 (G ;- )
‖G ‖2 + 1

.

Since the gradient of 5 is !-Lipschitz in G by condition (b), we have using the descent
lemma Lemma A.14 that

|5 (G ;- ) − 5 (0;- ) | ≤ ‖∇G 5 (0;- )‖‖G ‖ +
!

2
‖G ‖2

so that 6 is upper bounded by an integrable function uniformly in G as

|6(G ;- ) | ≤ |5 (0;- ) | + ‖∇G 5 (0;- )‖ +
!

2
. (1.4)

We also have

∇G6(G ;- ) = ∇G 5 (G ;- )
1

‖G ‖2 + 1
− G 25 (G ;- )

(‖G ‖2 + 1)2 = ∇G 5 (G ;- )
1

‖G ‖2 + 1
− G 26(G ;- )‖G ‖2 + 1

= ∇G 5 (0;- )
1

‖G ‖2 + 1
+ (∇G 5 (G ;- ) − ∇G 5 (0;- ))

1

‖G ‖2 + 1
− G 26(G ;- )‖G ‖2 + 1

Using again Lipschitz continuity of the gradient of 5 , ∇G6(G ;- ) is upper bounded by
an integrable function, uniformly in G , as

‖∇G6(G ;- )‖ ≤ ‖∇G 5 (0;- )‖ + ! + 26(G ;- ) (1.5)
≤ 3‖∇G 5 (0;- )‖ + 2! + 2|5 (0;- ) |.

Hence, we have that i) ∇G6(G ;- ) exists for all G (as 5 is�1) and ii) both - ↦→ 6(G ;- )
and - ↦→ ∇G6(G ;- ) are bounded by functions in !1 (`) uniformly in G thanks to
Eqs. (1.4) and (1.5) since |5 (0;- ) | and ‖∇G 5 (0;- )‖ belong to !1 (`). Hence, we have
the appropriate domination assumptions to differentiate under the integral for the
function 6 so that for all G , the function � : G ↦→ �[6(G ;- )] is differentiable and
∇G� (G) = �[∇G6(G ;- )] (see e.g. (Folland, 1999, Th. 2.27)).
Now, turning back to 5 , since for all G , 5 (G ;- ) = 6(G ;- ) (‖G ‖2 + 1), let � (G) =

�[∇G 5 (G ;- )] = � (G) (‖G ‖2 + 1) and thus ∇G� (G) = ∇G� (G) (‖G ‖2 + 1) + 2G� (G).
Also, for all G

∇G 5 (G ;- ) = ∇G6(G ;- ) (‖G ‖2 + 1) + 2G6(G ;- )
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whose right hand side is integrable as shown above. This enables us to conclude that
for all G ,

�[∇G 5 (G ;- )] = �[∇G6(G ;- )] (‖G ‖2 + 1) + 2G�[6(G ;- )]
= ∇G� (G) (‖G ‖2 + 1) + 2G� (G) = ∇G� (G)

which is the claimed result. �
Using this result, we get that provided that the (-: ) are iid., we have

� [G:+1 |F : ] = G: − W:∇G� (G: )

and thus, in expectation, a step of gradient on our stochastic objective is a gradient
step on the average objective. It is thus legitimate to investigate problems of the form

min
G
� (G):=�-∼` [5 (G ;- )] (SP)

in view of algorithms of the form (1.3). For this, the convex and non-convex cases are
very different in terms of results.

Question 1.3. Quadratic problems are very special for stochasticmethods (eg. 5 (G ;- ) =
‖�-G − 1- ‖2), why?

Convex case

We will only consider here the decreasing stepsize case as the constant step case is
much harder and not yet fully understood.

Question 1.4. Why?

Proposition 1.5. Let X be a measure space and suppose that the functions 5 : ℝ= ×X →
ℝ and � : G ↦→ �[∇G 5 (G ;- )] satisfy the following conditions:
(a) Differentiability: 5 (·;- ) is �1 for all - ∈ X.

(b) Convexity + Smoothness: � is convex and ∇G� is !-Lipschitz

(c) Noise: The sequence (-: ) are iid. and �
[
‖∇G 5 (G ;- ) − �[∇G 5 (G ;- )] ‖2

]
≤ f2

for all G with f < +∞
If

∑
: W: = +∞ and

∑
: W

2
:
< +∞, then G: converges almost surely to a minimizer of � .

Proof. Let G★ be a minimizer of � . Then,

�
[
‖G:+1 − G★‖2 |F :

]
= �

[
‖G: − G★ − W:∇G 5 (G: ;-:+1)‖2 |F :

]
= ‖G: − G★‖2 + W2:�

[
‖∇G 5 (G: ;-:+1)‖2 |F :

]
− 2W: 〈G: − G★,∇G� (G: )〉

= ‖G: − G★‖2 + W2: ‖∇G� (G: ) − ∇G� (G★)‖2 − 2W: 〈G: − G★,∇G� (G: ) − ∇G� (G★)〉
+ W2

:
�

[
‖∇G 5 (G: ;-:+1) − �[∇G 5 (G: ;-:+1) |F : ] ‖2 |F :

]
≤ ‖G: − G★‖2 +

(
W2
:
− W:
!

)
‖∇G� (G: ) − ∇G� (G★)‖2

+ W2
:
�

[
‖∇G 5 (G: ;-:+1) − �[∇G 5 (G: ;-:+1) |F : ] ‖2 |F :

]
≤ (1 + W2

:
)‖G: − G★‖2 −

W:

!
‖∇G� (G: ) − ∇G� (G★)‖2 + W2:f

2

where in the first inequality we use the smoothness and the convexity (see (Bubeck
et al., 2015, Lem. 3.5)). We are now in position to use Robbins-Siegmund theorem to
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show that ‖G:+1 −G★‖2 converges almost surely. With some additional technicalities,
we show the claimed result.4 4Left as an exercise!�

Apart from these results, we also have ones on the asympotic normality (Fabian,
1968) or extensions to infinite variance (Wang et al., 2021).

Non-convex case

This will not be detailed here, see (Benaïm, 2006, Chap. 3,4).

1.2.2 Stability in stochastic optimization

We have seen that classical methods of stochastic approximation natively lead to a
noisy minimization of the expected function. This means that

• the uncertainty is handled in average

Question 1.5. What could we do else?

• the samples (-: ) have to be draw exactly from the distribution `

Question 1.6. Is it a problem for the optimal value? For the optimal solution?

Example 1.6 (Convergence and Γ-convergence). We could say that if two
distributions are close, the expected functions are close and then the values
and minimizers are close.
The first part is true, indeed the weak convergence of a sequence of positive
probability measures (`=) to a probability measure ` is equivalent to having
�-∼`= [5 (G ;- )] → �-∼` [5 (G ;- )] = � (G). We can thus hope to have a
pointwise convergence of the objective.
Nevertheless, even though the values will be close, this mode of convergence
does not imply a convergence of the minimizers. For instance, let �= (G) =

(G − =)2/== , then (�=) converges pointwise to 0 but the minimizers diverge.
And this is in the convex case ! For the non convex case, we can design camel
humps that have the same minimizer converging to one that has the other
minimizer.
This is a important difference between converge and Γ-convergence of func-
tions.5 5Γ-convergence of a sequence of

functions is equivalent to the
Kuratowski convergence of their
epigraphs. Formally, (�= )
Γ-converges to � if for every
sequence G= such that G= → G ,
� (G ) ≤ lim inf=→∞ �= (G= ) and
for every G , there is a sequence G=
converging to G
� (G ) ≥ lim sup=→∞ �= (G= ) .

Question 1.7. Can we design a sequence of functions of the form “camel bump” + -:
such that the functions converge pointwise but the minimizers do not converge?

Question 1.8. What if we have a converging sequence of convex functions whose
limit has a unique minimizer?

1.2.3 A statistical framework of robustness

In a statistical perspective, let ` = `= be an empirical distribution i.e., `= = 1
=

∑#
8=1 . 8

where the (. 8 ) are draw independently from distribution `0.
In terms of notations, : will be an iteration counter, related to a sample -: from

` = `= while = will represent the number of samples in the empirical distribution `= .
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Obviously,

�-∼` [5 (G ;- )] =
1

=

=∑
8=1

5 (G ;. 8 )

is equal to �-∼`0 [5 (G ;- )] in average but again, the variance of the objective is
essential to control the robustness of objectives.

If = → ∞, the uniform law of large numbers states that �-∼` [5 (G ;- )] converges
in probability to �-∼`0 [5 (G ;- )] pointwise (uniformly in some compact) in G ,66provided that 5 is continuous in G

and uniformly intergrable, with a
dominating functions, …

this is
at the heart of the theory of M-estimators.

If = is fixed, then finite-sample concentration bounds on the distribution can be
used but we are back to the previous problem of stability. A solution to avoid this is to
consider a robust problem on the distributions.

1.2.4 Distributionally Robust Optimization

In the same flavor as robust optimization, distributionally robust optimization proposes
to solve

min
G

sup
a∈U(` )

�-∼a [5 (G ;- )] (DRO)

where U(`) is a neighborhood of the distribution ` in the space of distributions.
This approach has been investigated for a long time but is revitalized presently for

its applications in machine learning. A chapter will be devoted to it but first we need
som prerequisites on how to compare distributions.

1.3 Comparing distributions

In order to pursue our objective of seeing how robust solutions can be, we have to
measure how nasty distributions can be. For this, we will properly define nastiness as
the surprising nature or perplexity of a random variable which is well characterized
by Shannon’s entropy. This will then lead us to consider how noise affects functions.
Finally, we will review some ways to compare distributions.

1.3.1 Information and Random Variables

The notion of the information brought by the outcome of a random variable has been
introduced in the 1940’s as the foundation of the field of information theory (see the
foundational paper (Shannon, 1948)), which is not about information per se bet rather
how transmissions and their incubent noise affect the amount of information (i.e., bits)
that can be transmitted. The general idea is that if the outcome of a random variable is
certain before observing it (e.g. ` (- = G) = 1), the its observation is not informative.
Similarly, knowing that a certain number will not be draw in a lottery is not very
informative (as it is highly probable) while knowing that one number will be draw is
very informative.

Shannon’s characterization77Later on, several other
charaterizations were provided, see

the wikipedia page of Entropy
(Information theory)

of perplexity/self-information was chosen so that to
meet several axioms:

• An event with probability 100% is perfectly unsurprising and yields no informa-
tion
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• The less probable an event is, the more surprising it is and the more information
it yields

• If two independent events are measured separately, the total amount of informa-
tion is the sum of the self-informations of the individual events

This means that for two independent event� and �, we seek a function ℎ such that

• ℎ(�) = 0 if ` (�) = 1 and ℎ(�) > 0 if ` (�) < 1

• ℎ(�) = 6(` (�)) with 6 monotonically decreasing in [0, 1]
• ℎ(� ∩ �) = ℎ(�) + ℎ(�)

then the last two axioms imply that 6(` (�∩�)) = 6(` (�) · ` (�)) = 6(` (�)) +6(` (�)).
This means that6 has to verify Cauchy’s logarithmic equation (i.e., 6(G ·~) = 6(G)+6(~)
+ monotonicity ) and for this the only solution is the logarithmic function (up to some
scalar/base8 8Different choices of base

correspond to different units of
information: base 2, the unit is the
shannon (symbol Sh), often called a
’bit’; when base 4 , the unit is the
natural unit of information (symbol
nat); and base 10, the unit is the
hartley (symbol Hart). We will stick
with the natural log in order to
streamline the presentation.

).
Solution of Cauchy’s functional inequality (classical + logarithmic).

Cauchy’s functional inequality over rationals Let 5 : ℚ → ℚ satisfy

5 (G + ~) = 5 (G) + 5 (~) for all G,~ ∈ ℚ.

We aim to show that 5 (G) = 2G for some 2 ∈ ℚ.
Set ~ = 0:

5 (G + 0) = 5 (G) + 5 (0),

which gives 5 (0) = 0.
Now, for G ∈ ℚ, setting ~ = −G :

5 (G + (−G)) = 5 (0) =⇒ 5 (G) + 5 (−G) = 0.

Thus, 5 (−G) = −5 (G).
For = ∈ ℕ, by induction, we have 5 (=G) = =5 (G) and 5 (−=G) = −5 (=G) = −=5 (G).
Let G ∈ ℚ and G =

?

@
with ?, @ ∈ ℤ, @ > 0. Using additivity and scaling:

5

(
?

@

)
= 5

(
1

@
+ · · · + 1

@

)
= ?5 ( 1

@
) = ?

@
5 (1).

Hence, the solution to Cauchy’s functional equation over ℚ is 5 (G) = 2G , where
2 = 5 (1) ∈ ℚ.
Extension to Real Numbers for Monotonic Functions On ℝ, the situation is way more
complex but some additional assumptions suffice to get back to the rational case.
Suppose 5 is monotonic. Without loss of generality, assume 5 is non-decreasing.
Since 5 is monotonic, it is continuous almost everywhere.
For G ∈ ℝ, consider a sequence (@=) ⊂ ℚ such that @= → G . By monotonicity

5 (@=) = 2@= and hence lim
=→∞

5 (@=) = 2 lim
=→∞

@= = 2G .

Since 5 is monotonic, 5 (G) = 2G for all G ∈ ℝ.
Logarithmic case For any G,~ > 0, writing G = exp(D) and ~ = exp({), we have
6(G · ~) = 6(exp(D + {)) = 6(G) + 6(~) = 6(exp(D)) + 6(exp({)) and so Cauchy’s
equation applied to 5 ≡ 6 ◦ exp gives that 6 ◦ exp(D) = 2D for all D ∈ ℝ and thus
6(G) = 2 log(G) for all G ∈ ℝ∗

+. �
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This means that our measure of surprise for probability `, sometimes called self-
information is the function ℎ(�) = − log(` (�)) for any event �.

From this axiomatic definition, Shannon introduced the concept of entropy.99“My greatest concern was what to
call it. I thought of calling it

‘information’, but the word was
overly used, so I decided to call it
‘uncertainty’. When I discussed it
with John von Neumann, he had a
better idea. Von Neumann told me,
‘You should call it entropy, for two

reasons. In the first place your
uncertainty function has been used
in statistical mechanics under that

name. In the second place, and
more importantly, no one knows

what entropy really is, so in a
debate you will always have the

advantage.” See (Rioul, 2021)

The
entropy of a random variable - is naturally defined as the expected self-information.
Here, we see an issue arising between the discrete and continuous case due to the
definition of the probability of an event…

1.3.2 Entropy (the discrete case)

Let - follow some probability ` on a finite set X (or equivalently ` is an atomic
distribution on X).

Definition 1.7 (Entropy). Denote by ? : X → [0, 1] the discrete probabilities of the
elements of X (? (G) = ` (- = G)). Then, the entropy � is defined as

� (- ) = �[− log ? (- )] = −
∑
G∈X

? (G) log ? (G)

with the convention 0 log 0 = 0. We readily notice that � depends on - only through
? (and not X), so the abuse of notation � (?) will be often used.

The notation � comes from Boltzmann’s quantity � that was introduced in the
1870’s in the context of statistical mechanics and thermodynamics and shares a similar
formulation (see also the notion of Gibbs entropy).

The following properties are easily derived.

Lemma 1.8. The entropy of a random variable verifies the following properties
(a) � (- ) ≥ 0

(b) � (- ) ≤ log |X| where |X| is the number of elements in X, with equality if and
only if - has a uniform distribution over X

(c) � (?) is concave in ?

(d) If - and - ′ are iid., then ℙ(- = - ′) ≥ exp(−� (- ))
Proof. Left as an exercise. A useful trick to recall is that log(G) ≤ G − 1 for all
G > 0 with equality if and only if G = 1. For the probability of equality, use that
exp� log(* ) ≤ � exp log(* ) = �* for any rv* valued in (0, 1]. �

Example 1.9 (Bernoulli variable). If- ∼ B(@) then� (- ) = � (@) = −@ log(@)−
(1 − @) log(1 − @).

Since entropy is linked to information theory, it is often to consider two ran-
dom variables and, by extending our notations, to define the joint entropy � ((-,. )) =
−∑

G,~∈X ? (G,~) log ? (G,~) and the conditional entropy � (. |- ) = −∑
G,~∈X ? (G,~) log ? (~ |G).

Then, the mutual information between - and . is defined as the reduction of
uncertainty of - due to the knowledge of . .

Definition 1.10 (Mutual information). The mutual information � between - and . is
defined as

� (- ;. ) =
∑
G,~∈X

? (G,~) log
(
? (G,~)
? (G)? (~)

)
with the convention 0 log 0 = 0.
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Then, we have the following properties.

Lemma 1.11. The mutual information of a couple of random variables verifies the
following properties

(a) � (- ;. ) = � (. ;- )
(b) � (- ;- ) = � (- )
(c) � (- ;. ) = � (- ) − � (- |. )
(d) � (- ;. ) ≥ 0 with equality if and only if - and . are independent

(e) If - → . → / (-,., / form a Markov chain), then � (- ;. ) ≥ � (- ;/ ); in
particular, � (- ;. ) ≥ � (- ;6(. ))

Proof. Left as an exercise (For the non negativity, use Jensen’s inequality). �

Example 1.12 (Horse races). Suppose that you bet on a race of< horses. You
invest a fraction 18 of your money on horse 8 , which has probability ?8 to win
and return rate (or odd) of >8 . Thus, if 8 wins, your wealth grow by (8 = 18>8 .
The exponential rate of a horse race is, (1, ?) = �(log () = ∑<

8=1 ?: log(1:>: ).

Question 1.9. Show that the optimal rate,★(?) is obtained by taking 1 = ? and
that,★(?) = ∑

8 ?8 log(>8 ) − � (?). Furthermore, if the return rate is uniform
>8 =<, then,★(?) = log(<) − � (?). Conclude.

1.3.3 Differential Entropy (the density case)

Let - follow some continuous probability distribution ` on set X.

Definition 1.13 (Differential Entropy). Denote by ? the density of ` (` (dG) = d` (G) =
? (G)dG ). Then, the differential entropy � is defined as

ℎ(- ) = �[− log ? (- )] = −
∫

? (G) log ? (G) dG

with the convention 0 log 0 = 0, and provided that the integral exists. As in the
discrete case, ℎ depends on - only through ? (and not X), so the abuse of notation
� (?) will be often used.

Differential entropy is not invariant under a change of variables and can become
negative. In addition, it is not even dimensionally correct. Since ℎ(- ) would be
dimensionless and ? (G) must have units of 1

3G
, this means that the argument to the

logarithm is not dimensionless as required.

Example 1.14. What the entropy of a uniform random variable on [0, 0]? For a
Laplace rv? For a Gaussian rv? Compare for a fixed variance.

As previously, we can nevertheless ask which density maximizes the differential
entropy.

Lemma 1.15. Let us denote by Q the set of probability densities @ on X such that∫
@(G)A8 (G) dG = U8 for 8 = 1, ..,< where the (A8 ) are measurable functions and the

(U8 ) are real numbers. Then, the probability density @★ that maximizes ℎ(@) over Q is
uniquely defined as @(G) = exp(_0 +

∑<
8=1 _8A8 (G)) for some _0, .., _< .
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Proof. The optimality of this form is done in class. The existence is given by the
Karush-Kuhn-Tucker conditions in infinite dimensional programs, see Tutorial C or
(Peypouquet, 2015, Th. 3.66). �

Example 1.16 (Optimality of the Gaussian). The distribution on ℝwith zero
mean and variance f2 that has the largest entropy is the Gaussian distribution,
attaining an entropy of log(2cf2)/2.

Most properties on entropy fall but the ones on mutual information are preserved!
Hence, wea can keep in mind that comparing random variables is more natural in an
information theoretic perspective. This is the topic of the following section.

1.3.4 Kullback-Liebler Divergence

Bridging together the discrete and continuous cases, the Kullback-Liebler divergence
is the relative entropy from the second measure to the first. We now drop the random
variable dependence to a distribution dependence.

Definition 1.17 (Kullback-Liebler Divergence). Let ` and a be two probability mea-
sures on a measurable space X such that ` is absolutely continuous with respect to a ,
then the relative entropy from Q to P is defined as

�KL (` | |a) =
∫
G∈X

log

(
` (dG)
a (dG)

)
` (dG)

where ` (dG )
a (dG ) is the Radon-Nikodym derivative of ` with respect to a .

We note that both the discrete and continuous case, �KL (` | |a) = � ((`, a)) −
� (`). We also have that the divergence between the joint and product of marginal
distributions is the mutual information.

Lemma 1.18. The Kullback-Liebler divergence of a couple of random variables is non-
negative and null if and only if ` = a as measures.

Proof. See Exercise 1.4. �

Finally, the Kullback-Liebler divergence is not a metric on the space of probability
distributions. Indeed, it is not symmetric and does not satisfy the triangle inequality.
However, it is a divergence (i.e., something that generalizes squared distances), and
generates a topology in the space of distributions. A direct way to see this is through
Pinsker’s inequality.

Lemma 1.19. Let ` and a be two probability distributions on a measurable space X.
Then,

‖?A>1 − a ‖)+ ≤
√

1

2
�KL (` | |a)

where ‖?A>1 − a ‖)+ = sup
{
|` (�) − a (�) | � is a measurable event

}
is the total vari-

ation distance between ` and a .

Proof. See Exercise 1.7. �
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Other related Distances & Divergences

• The family of Rényi divergences generalizes the Kullback-Liebler divergence
• The family of 5 -divergence is another way to generalize It

Duality formula for variational inference

An important result for what follows is the following variational formula by Donsker
and Varadhan.

Proposition 1.20 (Duality Formula for Variational Inference). Let ` and a be two
probability measures on a measurable space X such that a is absolutely continuous with
respect to `. Let 6 be a real-valued `-integrable random variable. Then,

log�-∼` exp(ℎ(- )) = sup
a�`

{�-∼a exp(ℎ(- )) − �KL (a | |`)} .

Furthermore, the supremum is attained if and only if a (d- )/` (d- ) =

exp(ℎ(- ))/�-∼` exp(ℎ(- )).

Warning: Note the order or the absolute continuity and of the arguments in the
divergence ! It is not symmetric!
Proof. See Exercise 1.5 �

Question 1.10. Howdoes supa�` {�-∼a exp(ℎ(- )) − �KL (a | |`)} , supa�` {�-∼a exp(ℎ(- ))}
and supa {�-∼a exp(ℎ(- ))} compare to supG ℎ(G)?

EF
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CHAPTER 2 Game Theory

Game theory is a set of analytical tools to understand the phenomena
observed when decision-makers interact.

The players pursue well-defined objectives (they are rational) and take into account
what they know of the other players’ behavior.

A game is the description of the players, their possible actions, and their interest.
The modelling/formalization is very important.

A bit of history:
• Traces since 1713 by Waldegrave, for the analysis of a card game;
• Renewed interest in the 1920s with chess analysis;
• Von Neumann’s “On the theory of Games of Strategy”(von Neumann, 1928) in
1928 kickstarted the field;

• Nobel prizes (economy mostly) in 1994 (inc. John Nash), 2005, 2007, 2012, and
2015 (Jean Tirole).

This part is mainly based on:
• The “course in game theory” by Obsborne and Rubinstein (Osborne and Rubin-
stein, 1994)

2.1 Description and Vocabulary

2.1.1 Normal form

There is a finite set of players P = {1, .., # }.
Each player 8 has a set of actions S8 and a payoff function g8 : S1 × .. × S# → ℝ.

Definition 2.1. A game in normal form is a tuple Γ = (#, S = {S8 }, g = {g8 }).

2.1.2 Pure/Mixed Strategy

In a pure strategy, each player 8 chooses one action s8 ∈ S8 . Then, it receives the payoff
g8 (s1, .., s# ).

If instead each player chooses randomly an action in S8 , it is called a mixed strategy.
Mixed strategies will be considered later.
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2.1.3 Different types of games

We will illustrate several types of fundamental games that capture the diversity of
normal games. Each time, we will exhibit a two players game (# = 2) as they can
easily be represented graphically and are the most basic and insightful examples in
game theory.

They are typically represented as a table:

Player 2
s2 s′2

Player 1 s1 (g1 (s1, s2), g2 (s1, s2)) (g1 (s1, s′2), g2 (s1, s′2))
s′1 (g1 (s′1, s2), g2 (s′1, s2)) (g1 (s′1, s′2), g2 (s′1, s′2))

Common interest A game where the players have the same payoff: g8 = g 9 for all
8, 9 ∈ P.

Example 2.2 (Activity in Grenoble). Alice and Bob want to do something
together, either trail ) or ski ( with no preference.

S� = S� = {), (} and g� = g� =

{
1 if s� = s�
0 else

Zero-sum games A game where the player are antagonist:
∑#
8=1 g8 ≡ 0

Example 2.3 (Matching pennies). Alice and Bob both have a penny; they
secretly turn it to heads or tails. If the pennies match, Alice wins 1€ and Bob
loses 1€ (Bob gives 1€ to Alice). If they are different Alice gives 1€ to Bob.

S� = S� = {�,) } and g� = −g� =

{
1 if s� = s�
−1 else

Battle of the sexes Mix between common interest and zero-sum.

Example 2.4 (Meetup). Alice and Bob want to meet tonight; Alice prefers to
meet at a bar; Bob prefers to meet at home.

S� = S� = {�,� }, g� =


3 if s� = s� = �

1 if s� = s� = �

0 else
, g� =


1 if s� = s� = �

3 if s� = s� = �

0 else

Prisonner’s dilemma It is a classic game where Alice and Bob are arrested and
individually given the possibility to stay silent or cooperate.

S� = S� = {(,�},

g� =


−1 if s� = ( and s� = (

−3 if s� = ( and s� = �

0 if s� = � and s� = (

−2 if s� = � and s� = �

g� =


−1 if s� = ( and s� = (

0 if s� = ( and s� = �

−3 if s� = � and s� = (

−2 if s� = � and s� = �
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It is a fundamental game in economy, notably for the creation of rules enabling
the denunciation of coalitions between companies.

Game of chicken A lot like the prisonner’s dilemma but penalizing a lot mutual
cooperation.

S� = S� = {(,�},

g� =


−1 if s� = ( and s� = (

−3 if s� = ( and s� = �

0 if s� = � and s� = (

−20 if s� = � and s� = �

g� =


−1 if s� = ( and s� = (

0 if s� = ( and s� = �

−3 if s� = � and s� = (

−20 if s� = � and s� = �

It is the game modeling mutually assured destruction: cuban missile crisis, evolu-
tionary biology, etc.

Cournot competition Antoine Cournot (1801–1871) analyzed the spring water
duopoly:

• Two firms produce an equivalent product (# = 2);
• Each firm decides of a production level s8 ∈ ℝ for a cost 28 (s8 );
• The selling price result from the demand vs offer, it is common to both firms and
depend on the total production ? (s1 + s2).

The profit/payoff for company 1 is g1 (s1, s2) = s1? (s1 + s2) − 21 (s1); the one for
company 2 is g2 (s1, s2) = s2? (s1 + s2) − 22 (s2).

The question is which quantity to produce?

2.1.4 Target of Game Theory

Analyze these games and more precisely:
• Which strategies are best?
• Are there equilibriums?

2.2 Analysis for pure strategies

Notations:
S = S1 × S2 × .. × S#
S−8 =

>
9≠8 S9

g = (g8 )8

2.2.1 Dominating strategies

Definition 2.5. A strategy s8 ∈ S8 is dominated if there is C8 ∈ S8 such that

∀s−8 ∈ S−8 , g8 (C8 ; s−8 ) ≥ g8 (B8 ; s−8 ).

It is strictly dominated if the inequality is strict.

A rational player never plays a strictly dominated strategy.
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Definition 2.6. A strategy s8 ∈ S8 is dominating if for all C8 ∈ S8

∀s−8 ∈ S−8 , g8 (s8 ; s−8 ) ≥ g8 (C8 ; s−8 ).

It is strictly dominating if the inequality is strict.

It is unique from definition. If it exists, it is the only rational action.

Example 2.7. What should player 1 play in the following game?

Player 2
� �

Player 1 � (0,−2) (−10,−1)
� (−1,−10) (−5,−5)

• What will play Player 2?
• Deduce what should play Player 1.
• Is it the best payment both player could have had?

If there exists dominated strategies, they can be eliminated successively from the
game.

2.2.2 Nash Equilibrium

Definition 2.8. A strategy profile s = s1 × s2 × .. × s# ∈ S is a Nash Equilibrium (NE)
if

∀8,∀C8 ∈ S8 , g8 (s8 ; s−8 ) ≥ g8 (C8 ; s−8 ).

It is a global equilibrium (contrary to the local ones seen before). No player has
a singular interest to deviate from his action. It is thus a good way to conclude an
agreement.

2.2.3 Back to the examples

Are there Nash equilibriums in the following games?

Common Interest

Bob
T S

Alice T (1, 1) (0, 0)
S (0, 0) (1, 1)

Zero Sum

Bob
H T

Alice H (1,−1) (−1, 1)
T (−1, 1) (1,−1)
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Battle of the sexes

Bob
B H

Alice B (3, 2) (0, 0)
H (0, 0) (2, 3)

Prisonner’s dilemma

Bob
Silent Cooperate

Alice Silent (−1,−1) (−3, 0)
Cooperate (0,−3) (−2,−2)

Game of Chicken

Bob
Silent Cooperate

Alice Silent (−1,−1) (−3, 0)
Cooperate (0,−3) (−20,−20)

2.2.4 Nash Equilibriums and dominating strategies

• There can be no, one, or several NEs.
• If there is a strictly dominating strategy matching each player, it is the unique
NE.

• By eliminating successively strictly dominated strategies, NEs are preserved.
• A profile of dominating strategies is a NE.

2.2.5 Equilibrium Selection

a)

Player 2
� �

Player 1 � (9, 9) (−15, 8)
� (8,−15) (7, 7)

(A,A) and (B,B) are two NEs. If the player are risk-averse, they may prefer (B,B)
even though the payoff is smaller. Indeed, if the other player does not play the NE, the
loss is smaller with (B,B).

b)

Player 2
� �

Player 1 � (2, 2) (1, 1)
� (1, 1) (1, 1)

(A,A) and (B,B) are two NEs but B is dominated for each player while A is strictly
dominating. So (A,A) seems better.
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c)

Player 2
� �

Player 1 � (2, 2) (1, 2)
� (2, 1) (1, 1)

All states are NEs!

2.2.6 Application: Vickrey auctions (1961)

They are sealed-bid, second price auctions. There are # players, and player 8:
• estimates the price of the object at {8
• its action set is S8 = ℝ+ and corresponds to its bidding
• if he wins the auction (his bid is the greatest), he will make a profit based on the
difference between his estimation and his bid, otherwise he will make 0 profit

• mathematically, its payoff if g8 (s8 , s−8 ) = {8 −max9≠8 s9 if s8 > max9≠8 s9 and 0
else

Such auctions are used for instance in advertisement bidding (eg. Google Ads), for
mobile bandwidth acquisition (eg. FCC), etc.

Question 2.1. Show that ({1, .., {# ) is a Nash Equilibrium.

2.3 Mixed strategies

For some games, NEs with pure strategies do not exist; for instance, in Rock-Paper-
Scissors.

Example 2.9 (Rock-Paper-Scissors).

Player 2
Rock Paper Scissors

Player 1
Rock (0, 0) (−1, 1) (1,−1)
Paper (1,−1) (0, 0) (−1, 1)

Scissors (−1, 1) (1,−1) (0, 0)

2.3.1 Mixed games

Let Γ = (#, S = {S8 }, g = {g8 }) be a game in normal form and let us suppose that each
S8 is a finite set.

Definition 2.10. A mixed strategy f8 for player 8 is a probability distribution on S8 .

f8 = (f8 (S8 [1]), .., f8 (S8 [=8 ])) ∈ Δ(S8 )

where f8 (S8 [ 9]) = ℙ[8 plays the 9-th action in his set] and Δ(S8 ) is the simplex1010The Simplex Δ= of size = is the
set of all vector of ℝ= such that

G8 ≥ 0 and
∑=

8=1 G8 = 1.

on
S8 .

Interpretation:



Robust Optimization and Statistical Learning 21

• Random strategy (eg in Rock Paper Scissors)
• Model for a large number of players
We note Σ =

>
8 Δ(S8 ) and Σ−8 =

>
9≠8 Δ(S9 ).

Mixed game
• Each player plays a mixed strategy f8 ∈ Δ(S8 ) .
• The probability that the global strategy s = (s1, .., s# ) is played is

∏
9 f 9 (s9 ).

• For a global strategy f ∈ Σ, the expected payoff for player 8 is

g8 (f) = �s∼Σ [g8 (s)] =
∑
s∈S

[∏
9

f 9 (s9 )
]
g8 (s).

With these definitions, Γ = (#, Σ = {f8 }, g = {g8 }) is a mixed game:
• The players simultaneously choose a pure strategy s8 ∼ f8
• They get payoff g8 (s)
• Each player tries to maximize its expected payoff

2.3.2 Nash Equilibriums for Mixed Games

Definition 2.11. A mixed strategy profile f = f1 × f2 × .. × f# ∈ Σ is a Nash
Equilibrium (NE) if

∀8,∀g8 ∈ Σ8 = Δ(S8 ), g8 (f8 ;f−8 ) ≥ g8 (g8 ;f−8 ) .

Example 2.12 (Rock-Paper-Scissors). (1/3,1/3,1/3) is a NE.

Theorem 2.13 (Nash’s Theorem (1950)). All finite11 11with finite number of actionsgames have (mixed) Nash Equilib-
riums.
Proof. Upcoming! �

2.3.3 Dominated Mixed Strategies

Definition 2.14. A mixed strategy f8 ∈ Σ8 is dominated if there is g8 ∈ Σ8 = Δ(S8 )
such that

∀f−8 ∈ Σ−8 , g8 (g8 ;f−8 ) ≥ g8 (f8 ;f−8 ).

It is strictly dominated if the inequality is strict.

Example 2.15.

Player 2
A B C

Player 1
a (1, 1) (0, 2) (0, 4)
b (0, 2) (5, 0) (1, 6)
c (0, 2) (1, 1) (2, 1)
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Question 2.2. Show that for Player 2, strategy B is strictly dominated by 0.5� +
0.5� .

While we could remove strictly dominated mixed strategy, this does not lead to
a reduction of the states of the game. However, we are still able to remove strictly
dominated pure strategies.

Proposition 2.16. Let (Γ: ) be the sequence of games produced by eliminating strictly
dominated pure strategies in Γ. Then, for all : , #� (Γ: ) = #� (Γ) .

Example 2.17. We saw in Example 2.15 that B was strictly dominated by mixed
strategy 0.5� + 0.5� , thus we can remove it

Player 2
A C

Player 1
a (1, 1) (0, 4)
b (0, 2) (1, 6)
c (0, 2) (2, 1)

We can remove b for player 1 since it is dominated by eg. 0.40 + 0.61. We
obtained a reduced game:

Player 2
A C

Player 1
a (1, 1) (0, 4)
c (0, 2) (2, 1)

The Nash Equilibrium of the original game is (1/4, 0, 3/4) for Player 1 and
(2/3, 0, 1/3) for Player 2. We will see how to find it in the forthcoming sections.

2.3.4 Looking for mixed equilibriums

Definition 2.18. For player 8 , f8 ∈ Σ8 is a best response to f−8 ∈ Σ−8 if

∀g8 ∈ Σ8 = Δ(S8 ), g8 (f8 ;f−8 ) ≥ g8 (g8 ;f−8 ).

The set of all best responses for an adversarial strategy f−8 ∈ Σ−8 is denoted by
BR(f−8 )

The following result is obvious from the definitions.

Proposition 2.19. f ∈ Σ is a (mixed) Nash Equilibrium if and only if for all 8 , f8 ∈
BR(f−8 ).

There is a nice relation between pure and mixed strategies in terms of best response.
To study it, let use denote the support of a mixed strategy as supp(f8 ) = {s8 ∈ S8 :
f8 (s8 ) > 0}, i.e. the actions that have a positive probability to be played.

Proposition 2.20 (Weak Indifference). For player 8 , an adversarial strategy f−8 ∈ Σ−8 ,
and f8 ∈ BR(f−8 ), then

∀s8 ∈ supp(f8 ), g8 (s8 ;f−8 ) = g8 (f8 ;f−8 ) .
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This mean that all pure strategies in support have the same payoff, equal to the
payoff of the mixed strategy.
Proof.

g8 (f8 ;f−8 ) =
∑
s8 ∈S8

f8 (s8 )g8 (s8 ;f−8 ) =
∑

s8 ∈supp(f8 )
f8 (s8 )g8 (s8 ;f−8 )

Then:
1) g8 (s8 ;f−8 ) ≤ g8 (f8 ;f−8 ) since f8 ∈ BR(f−8 );
2) Suppose that there is C8 ∈ supp(f8 ) such that g8 (C8 ;f−8 ) < g8 (f8 ;f−8 ). Then,

g8 (f8 ;f−8 ) =
∑
s8 ∈S8

f8 (s8 )g8 (s8 ;f−8 )

<
∑

s8 ∈supp(f8 )
f8 (s8 )g8 (f8 ;f−8 ) (by our supposition)

= g8 (f8 ;f−8 ) (since f8 is a probability vector)

which is a absurd.
Hence, g8 (s8 ;f−8 ) = g8 (f8 ;f−8 ) for all s8 ∈ supp(f8 ). �

The notion of indifference can be strengthened as follows.

Proposition 2.21 (Strong Indifference). For player 8 and an adversarial strategy f−8 ∈
Σ−8 ,

f8 ∈ BR(f−8 ) ⇐⇒
{

(1) ∀s8 , C8 ∈ supp(f8 ), g8 (s8 ;f−8 ) = g8 (C8 ;f−8 )
(2) ∀s8 ∉ supp(f8 ), g8 (s8 ;f−8 ) ≤ g8 (f8 ;f−8 )

.

Proof. The forward way is direct from the previous proof. The other way comes from
noticing that (1) + (2) imply that g8 (s8 ;f−8 ) ≤ g8 (f8 ;f−8 ) for all s8 ∈ S8 and thus f8 is
a best response to f−8 . �

Using once again the link between best responses and Nash Equilibriums, we have
the following result.

Corollary 2.22. The strategy f ∈ Σ is a (mixed) Nash Equilibrium if and only if for
each player 8 : {

(1) ∀s8 , C8 ∈ supp(f8 ), g8 (s8 ;f−8 ) = g8 (C8 ;f−8 )
(2) ∀s8 ∉ supp(f8 ), g8 (s8 ;f−8 ) ≤ g8 (f8 ;f−8 )

.

Thus, in order to find Nash Equilibriums:
• Remove strictly dominated pure strategies
• Try all possible supports
• Find probabilities leading to indifferent payoffs

Example 2.23 (Common interest).

Player 2
A B

Player 1
A (1, 1) (0, 0)
B (0, 0) (1, 1)
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We saw before that there were two pure Nash equilibriums. There are no
obvious strictly dominated strategies.
Let us look for a mixed Nash equilibrium. f1 = (G, 1 − G) for some G ∈ [0, 1]
since it is a probability vector on two states; f2 = (~, 1−~) for some ~ ∈ [0, 1].
From Corollary 2.22 (1), we get that

1 × ~︸︷︷︸
1 plays A, 2 plays f2

= 1 × (1 − ~)︸       ︷︷       ︸
1 plays B, 2 plays f2

thus ~ = 1/2.
For the same reason G = 1/2. Thus, (1/2, 1/2) for 1 and (1/2, 1/2) for 2 is a
Nash Equilibrium with payoff 1/2 for both players.

Example 2.24. We continue here the example of Example 2.15:

Player 2
A B C

Player 1
a (1, 1) (0, 2) (0, 4)
b (0, 2) (5, 0) (1, 6)
c (0, 2) (1, 1) (2, 1)

that we reduced in Example 2.17 to:

Player 2
A C

Player 1
a (1, 1) (0, 4)
c (0, 2) (2, 1)

Using the same reasoning and notations as in Example 2.23, we get for the
actions of Player 1 that

1 × ~︸︷︷︸
1 plays a

= 2 × (1 − ~)︸       ︷︷       ︸
1 plays c

thus ~ = 2/3.
And for the actions of Player 2:

1 × G + 2 × (1 − G)︸                  ︷︷                  ︸
2 plays A

= 4 × G + 1 × (1 − G)︸                  ︷︷                  ︸
2 plays C

thus G = 1/4.
This means that (1/4, 3/4) for 1 and (2/3, 1/3) for 2 is the mixed NE of the
reduced game. Since strictly dominated strategies are not played, the mixed
NE of the original game is (1/4, 0, 3/4) for 1 and (2/3, 0, 1/3) for 2.
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2.3.5 The price of anarchy

Example 2.25 (Prisonner’s dilemma again). We recall the game:

Bob
Silent Cooperate

Alice Silent (−1,−1) (−3, 0)
Cooperate (0,−3) (−2,−2)

If we try to apply the same reasoning, we get for the actions of Alice that

−1 × ~ − 3 × (1 − ~)︸                    ︷︷                    ︸
Alice stays silent

= −2 × (1 − ~)︸         ︷︷         ︸
Alice cooperates

and we end up with 2~−1 = 2~−2, that is impossible, meaning that there is no
Nash Equilibriumwith both actions at the same time for Alice by Corollary 2.22.
Same thing occurs for Bob.
We are left with looking for Nash equilibrium with one action for both player
(ie. pure NE). We already saw that Cooperate for both player was the only
pure NE. It is also the mixed NE.
The payment for both players is (−2,−2) which is less than the maximal
payment possible of (−1,−1), this is the price of anarchy.

The price of anarchy is the difference between the best possible action with cooper-
ation and the Nash equilibrium.

2.3.6 A proof of Nash’s theorem

This was done in course using a reduction to the use of Kakutani’s fixed point
theorem.

2.3.7 Population games & Braess’s paradox

This was done in course as an example of population game with a high cost of
anarchy.

2.4 Two player games

In this section, we focus on the important case when # = 2. Then the game writes in
normal form Γ = {2; (Σ1, Σ2); (g1, g2)}.

2.4.1 Max-Mix strategies
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Definition 2.26. Let l ∈ ℝ. We say that player 8 guarantees a payment l if he has a
mixed strategy that pays at least l against any adversarial strategy:

∃f8 ∈ Σ8 : ∀f−8 ∈ Σ−8 , g8 (f8 ;f−8 ) ≥ l

that is to say

max
f8 ∈Σ8

min
f−8 ∈Σ−8

g8 (f8 ;f−8 ) ≥ l.

Proposition 2.27. The maximal payoff that player 8 can guarantee is

{8 = max
f8 ∈Σ8

min
f−8 ∈Σ−8

g8 (f8 ;f−8 ) = max
f8 ∈Σ8

min
s−8 ∈S−8

g8 (f8 ;f−8 )

(By linearity of the payoff, the min can be taken over all actions instead of all
strategies.)

Definition 2.28. A (mixed) strategy f8 ∈ Σ8 is max-min ifminf−8 ∈Σ−8 g8 (f8 ;f−8 ) = {8

A max-min policy is not necessarily a NE but it can be a sensible policy if player 8
is risk-averse, if the payoff of the other player in unknown, or if the other player is not
rational.

Example 2.29.

Player 2
A B

Player 1
a (−15, 0) (8, 1)
b (7, 0) (7, 1)

For player 1, b guarantees a payoff of 7. For player 2, B guarantees a payoff of 1.
(b,B) is a max-min equilibrium but not a Nash equilibrium.
Indeed, (a,B) is the only NE of the game. It is best if player 2 plays “well”.

2.4.2 Zero-sum games

In zero sum two players games, g1 = −g2 = g.

Theorem 2.30 (Von Neumann’s minimax theorem). Let Γ be a zero sum two players
game with g(·, f2) concave for any f2 ∈ Σ2 and g(f1, ·) convex for any f1 ∈ Σ1. A
strategy (f★1 , f★2 ) is a (mixed) Nash Equilibrium if and only if it is max-min. Furthermore,

{1 = g(f★1 , f★2 ) = g1 (f★1 , f★2 ) = max
f1∈Σ1

min
f2∈Σ2

g1 (f1;f2)

= min
f2∈Σ2

max
f1∈Σ1

g1 (f1;f2)

= − max
f2∈Σ2

min
f1∈Σ1

g2 (f1;f2)

= −{2.

The payment of a Nash Equilibrium is thus ({1,−{1); {1 is then called the value of the
game.

In the case of zero-sum games, finding a Nash Equilibrium amounts to finding a
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saddle-point, ie. a pair (f★1 , f★2 ) ∈ Σ1 × Σ2 such that for all (f1, f2) ∈ Σ1 × Σ2

g(f1, f
★
2 ) ≤ g(f★1 , f★2 ) ≤ g(f★1 , f2). (Saddle-Point)

Finding a saddle point problem is a difficult optimization problem in general but, it
enables to find Nash Equilibriums for zero sum games without having to manually
consider all possibles supports which can get very difficult computationally when the
dimension gets large.

In the next subsections, we see two cases where the (Saddle-Point) problem can be
solved numerically by (variants of) usual optimization methods.

2.4.3 The Linear case & Linear programming

Without loss of generality, we take S1 = S2 = {1, .., =}, so that the space of mixed
strategies is Σ1 = Σ2 = Δ= , the simplex in dimension =.

We consider a cost matrix� ∈ ℝ=×= with non-negative entries so that�8, 9 = g(8, 9)
(with 8 an action of player 1 and 9 an action of player 2). Then, if player 1 plays G and
2 plays ~ (both mixed strategies in Δ=), the payoff for player 1 is G>�~ and −G>�~ for
player 2.

Since the cost is convex-concave, Von Neumann’s theorem tells us that a Nash
Equilibrium of this game can be obtained by solving the max min problem:

max
G∈Δ

min
~∈Δ

G>�~. (2.1)

This problem is equivalent to

max
C,G∈Δ

C such that min
~∈Δ

G>�~ ≥ C,

and for some real value C and 4 = (1, 1, .., 1),

∃G ∈ Δ such that min
G∈Δ

{G>�~} ≥ C

⇔∃G ∈ ℝ= such that G ≥ 0, 4>G = 1, min
8=1,..,=

{[�>G]8 } ≥ C

⇔∃G ∈ ℝ= such that G ≥ 0, 4>G = 1, �>G ≥ C4.

Thus, the max min problem (2.1) is equivalent to

max
C,G

C such that G ≥ 0, 4>G = 1, �>G ≥ C4 (2.2)

which is a linear program.
The optimum (C★, G★) gives the value of the game C★ and the optimal strategy G★.

Remark 2.31 (Finding the optimal adversarial strategy). Using the same notations

max
G∈Δ

min
~∈Δ

G>�~ ≤ C

⇔min
~∈Δ

max
G∈Δ

G>�~ ≤ C

⇔∃~ ∈ Δ such that max
G∈Δ

{G>�~} ≤ C

⇔∃~ ∈ ℝ= such that ~ ≥ 0, 4>~ = 1, max
8=1,..,=

{[�~]8 } ≤ C

⇔∃~ ∈ ℝ= such that ~ ≥ 0, 4>~ = 1, �~ ≤ C4.
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Thus, since (2.1) is equivalent to

min
C
C such that max

G∈Δ
min
~∈Δ

G>�~ ≤ C,

it is also equivalent to

min
C,~

C such that ~ ≥ 0, 4>~ = 1, �~ ≤ C4 (2.3)

which is a again a linear program whose optimal value (C★, ~★) gives the value of the
game C★ and the optimal adversarial strategy ~★. Ê

Example 2.32.

Player 2
A B

Player 1
a (−6, 6) (9,−9)
b (4,−4) (−6, 6)

is a linear zero-sum game characterized by matrix � =

[
−6 9
4 −6

]
The solution of (2.2) for this game is C★ = 0, G★ = (2/5, 3/5) (the solution of
(2.3) is C★ = 0, ~★ = (3/5, 2/5)).

2.4.4 The Concave-Convex case & Extragradient

When the payoffs are not linear, finding a saddle point

g(f1, f
★
2 ) ≤ g(f★1 , f★2 ) ≤ g(f★1 , f2) (Saddle-Point)

is in general more difficult, but can still be achieved by first-order “gradient-like”
methods. This kind of setup has attracted a lot of interest in the 2020’s for the training
of Generative Adversarial Networks (GANs).

We define G = (f1, f2) and X = Δ= × Δ= . In this product space, we can define
{ = (−∇f1

g, +∇f2
g) and try to move oppositely to its direction (ie. do a gradient

ascent on g(·, f2) and a gradient descent on g(f1, ·)):

-:+1 = projX (-: − W{ (-: )) . (Gradient Descent Ascent)

Unfortunately, this direct strategy does not work in general.
Remark 2.33 (Failure of Gradient Descent/Ascent). Consider the problem

max
G∈ℝ

min
~∈ℝ

G~.

The only solution is (0, 0) but { (G,~) = (−~, G) which necessarily increases the
norm of (G,~). Ê

To overcome this problem, Korpelevich introduced in (?) the principle of Extragra-
dient : {

-:+1/2 = projX (-: − W{ (-: ))
-:+1 = projX (-: − W{ (-:+1/2))

(ExtraGradient)
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which intuitively consists in generating a leading point that will look forward the value
of the field and apply it to the base point. This way, circular effects can be managed
and convergence can be restored.

The textbook (Facchinei and Pang, 2003) gives the following result for extragradient.

Theorem 2.34 (Facchinei and Pang 2003, Th. 12.1.11). Let X be a closed convex set in
ℝ= and { be a !-Lipschitz continuous monotone vector field on X. Then, the iterates of
Extragradient with W < 1/! converge to a point -★ such that

〈{ (-★), - − -★〉 ≥ 0 for all - ∈ X.12 12We call this equation a Variational
Inequality for { constrained to X.

In our situation, X = Δ= × Δ= is indeed closed and convex. The vector field
{ = (−∇f1

g, +∇f2
g) is monotone13 13a mapping is monotone if

〈{ (G ) − { (~), G − ~〉 ≥ 0

since g is concave in its first argument and convex
in its second. We have to add the assumption that it is !-smooth to get that { is
!-Lipschitz. Then, the iterates of extragradient converge to a point -★ = (f★1 , f★2 ) such
that 〈{ (-★), - − -★〉 ≥ 0 for all - ∈ X which is equivalent to{

〈−∇f1
g(f★1 , f★2 ), f1 − f★1 〉 ≥ 0

〈∇f2
g(f★1 , f★2 ), f2 − f★2 〉 ≥ 0

for all (f★1 , f★2 ) ∈ Δ= × Δ=

⇔
{
0 ∈ −∇f1

g(f★1 , f★2 ) + #Δ=
(f★1 )

0 ∈ ∇f2
g(f★1 , f★2 ) + #Δ=

(f★1 )

⇔ 14 14Since g is concave-convex.

{
f★1 ∈ argmaxΔ=

g(·, f★2 )
f★2 ∈ argminΔ=

g(f★1 , ·)

which is equivalent to (Saddle-Point).
Hence, we have the following result.

Corollary 2.35. Let g : Δ= × Δ= → ℝ be a concave-convex !-smooth payoff. Then,
the iterates of Extragradient with { = (−∇f1

g, +∇f2
g) and W < 1/! converge to a Nash

Equilibrium of the corresponding zero-sum game.

Example 2.36 (Linear example). When g(G,~) = G>�~, { (G,~) = (−�~,�>G).
We can thus also solve linear games with this method.

Remark 2.37 (“Getting rid” of the simplex projections). The projection on the simplex
is a QP that can actually be solved exactly by dynamic programming (see eg. (?)).
Nevertheless, it can come out quite costly when the dimension is high.

A possibility to make these projections much easier to compute is to change the
(implicit) Euclidean metric. For the simplex, an efficient example is the Kullback-Liebler
divergence � (G,~) = ∑=

8=1 G8 log(G8/~8 ) −
∑=
8=1 (G8 − ~8 ), which serve as a metric on

strictly positive vectors.15 15This is a particular case of
Bregman divergence �Φ (G, ~) =
Φ(G ) − Φ(~) − 〈∇Φ(~), G − ~〉
with Φ(G ) = ∑=

8=1 G8 log(G8 ) .

We this metric, for any positive vector ~,

proj !Δ=
(~) = argminD∈Δ=

� (D,~) = ~∑=
8=1 ~8

=
~

‖~‖1

which is much easier to compute!
By changing the metric of the Extragradient algorithm,16 16ie. by going from -:+1/2 =

argmin- {−W 〈{ (-: ), - 〉 +
1
2 ‖- − -: ‖2} to -:+1/2 =

argmin- {−W 〈{ (-: ), - 〉 +
� (-,-: ) }

we obtain the Mirror-Prox
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method: 
(0:+1/2, 1:+1/2) = -: exp(−W{ (-: ))
-:+1/2 = ( 0:+1/2

‖0:+1/2 ‖1 ,
1:+1/2

‖1:+1/2 ‖1 )
(0:+1, 1:+1) = -: exp(−W{ (-:+1/2))
-:+1 = ( 0:+1

‖0:+1 ‖1 ,
1:+1

‖1:+1 ‖1 )

(Mirror Prox)

where the exponential is performed elementwise.
The Mirror Prox method has similar theoretical guarantees but better constants,

implementation, and behavior in practice. Ê

EF



CHAPTER 3 Differentiable programming

Differentiable programming is a powerful paradigm for solving opti-
mization and learning problems, enabling the efficient computation of

gradients in complex systems. This capability is critical for modern robust
optimization and statistical learning, where handling uncertainty and learning
robust models are central challenges. Below, we explore why differentiable
programming is essential for robust statistical learning.

What is Differentiable Programming? Differentiable programming refers to the
practice of designing and optimizing programs where all operations are differentiable.
This allows for the use of automatic differentiation (AD) to compute gradients efficiently,
which is the cornerstone of many optimization algorithms. Frameworks like PyTorch,
TensorFlow, and JAX are widely used for implementing such systems. This chapter is
mainly based on the monograph (Blondel and Roulet, 2024).

Why is Differentiable Programming Important for Robust Statistical Learn-
ing?

Robust statistical learning involves building models that can learn effectively
from data while remaining resilient to uncertainty, noise, or adversarial conditions.
Differentiable programming plays a key role in this domain due to the following
reasons:

• Gradient-Based Optimization
– Robust statistical learning relies on minimizing loss functions, which often

involve parameters with uncertainty. Differentiable programming provides
the tools to compute gradients with respect to these parameters, enabling
gradient-based optimization methods such as stochastic gradient descent
(SGD).

– Many robust optimization problems can be framed as bilevel optimiza-
tion tasks, where the inner and outer problems require efficient gradient
computation.

• Handling Nonlinear and Complex Models
– Real-world learning models often involve nonlinear relationships and con-

straints, making analytical gradient computation intractable.
– Differentiable programming enables gradient computation for complex

computational graphs, facilitating the training of models that incorporate
such nonlinearities.

• Robustness via Regularization and Adversarial Training



32 Chap. 3 - Differentiable programming

– Regularization techniques, such as L2 regularization or sparsity-inducing
penalties, require gradients of loss functions to penalize undesirable model
behaviors.

– Adversarial training, which improves robustness to adversarial perturba-
tions, relies on computing worst-case perturbations using gradients and
incorporating them into the training process.

• Sensitivity Analysis and Robust Decision Making
– Sensitivity analysis evaluates how small changes in inputs affect outputs,

a key component of robust optimization.
– Differentiable programming simplifies these computations, allowing for

better-informed decisions under uncertainty.
• Probabilistic Modeling and Inference

– Statistical learning often involves probabilistic models, such as Bayesian
networks or Gaussian processes, which require optimization of likelihood
functions.

– Differentiable programming enables gradient-based methods for maximum
likelihood estimation (MLE) or posterior inference, improving efficiency
and scalability.

• Meta-Learning and Higher-Order Gradients
– Meta-learning (learning to learn) often involves optimizing over learning

algorithms themselves, requiring the computation of higher-order gradi-
ents.

– Differentiable programming frameworks excel at handling these tasks,
enabling cutting-edge approaches in robust statistical learning.

Differentiable programming is a cornerstone of modern robust statistical learn-
ing, providing the computational tools necessary to tackle complex, uncertain, and
data-driven problems efficiently. Its ability to compute gradients seamlessly through
complex models empowers researchers and practitioners to design robust and scalable
learning systems. Mastering this paradigm is crucial for anyone aiming to excel in
robust optimization and statistical learning.

Example 3.1 (Continuous extensions of logical operators). Replacing a boolean
Π ∈ {0, 1} by a continuous variable c ∈ [0, 1] representing the “probability of
being true” is rather common in statistical learning (Furthermore, to extended
the values to ℝ, one can take c = sigmoid(@):=1/(1 + exp(−@))).
Similarly, logical operators can be extended in the same spirit:

and(c, c ′):=c · c ′

or(c, c ′):=c + c ′ − c · c ′

not(c):=1 − c
ifthenelse(c, {true, {false):=c · {true + (1 − c) · {false

Example 3.2 (Smoothing by convolution).
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3.1 Differentiating max (and argmax) operators

3.1.1 The discrete case

Given a vector D ∈ ℝ= , we define its maximum/max and argmax as

max(D):= max
9∈{1,..,=}

D 9 and argmax(D):={8 : D8 = max
9∈{1,..,=}

D 9 }

where the max is real valued while the argmax has between one and = outputs in
{1, .., =}.17 17Note that one could define

argmax(D ):={D8 : D8 =
max9 ∈{1,..,=} D 9 } i.e., to output the
entry rather than the coordinate,
but the entry goes better with
smoothing.

As classical in smoothing (see the logical operators above), it is natural to replace
a choice of alternative (e.g. a coordinate) with a probability distribution on the alterna-
tives. We recall the notation Δ=:={c ∈ ℝ= : c ≥ 0,

∑=
8=1 c8 } for the =-simplex, i.e., the

set of probability distributions on = elements.

Lemma 3.3. We have

max(D) = max
c∈Δ=

〈D, c〉 = max
c∈{41,..,4= }

〈D, c〉

and

argmax(D) = argmaxc∈Δ=
〈D, c〉 = argmaxc∈{41,..,4= } 〈D, c〉

Proof. Left as an exercise. �

Remark 3.4 (Link with game theory). In this part, recall that the argmax problem is
exactly the one of finding a dominating pure strategy with D8 the payoff of action B8 .
The probabilistic version corresponds to finding a mixed strategy. Ê

Maximum and entropy

Question 3.1. What is the entropy of the (arg)max output?

The rationale in differentiable programming is that all components of the probability
vector should have a positive probability. In some sense, we are adding noise to the
output of the max operator. In order to do so in a controlled manner, we have to
mitigate the objective vs noise.

Lemma 3.5. The entropy-regularized maximum operator, also called softmax, is the
log-sum-exp mapping. For _ > 0, we have

softmax(D) = max
c∈Δ=

〈D, c〉 + _� (c)

= max
c∈Δ=

〈D, c〉 − _
=∑
8=1

c8 log(c8 )

= _ log
=∑
8=1

exp(D8/_)
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Proof.

softmax(D) = max
c∈Δ=

〈D, c〉 − _
=∑
8=1

c8 log(c8 )

= max
c∈ℝ=+

min
C ∈ℝ

〈D, c〉 − _
=∑
8=1

c8 log(c8 ) − C (
=∑
8=1

c8 − 1)

= min
C ∈ℝ

max
c∈ℝ=+

〈D, c〉 − _
=∑
8=1

c8 log(c8 ) − C (
=∑
8=1

c8 − 1)

= min
C ∈ℝ

C + max
c∈ℝ=+

=∑
8=1

c8 (D8 − _ log(c8 ) − C)

= min
C ∈ℝ

C +
=∑
8=1

max
?∈ℝ+

? (D8 − _ log(?) − C)

where the first two equalities comes from the Lagrange Duality. Now, maximizing
? (D8 − _ log(?) − C) in ? leads to ?★8 = exp((D8 − C − _)/_). We are left with

softmax(D) = min
C ∈ℝ

C +
=∑
8=1

exp((D8 − C − _)/_)_

and nulling the gradient of the objective (in C ) leads to the equation

1 =

=∑
8=1

exp((D8 − C − _)/_)

= exp(−C/_) exp(−1)
=∑
8=1

exp(D8/_)

and thus C★ = _ log
(∑=

8=1 exp(D8/_)
)
− _. Plugging into problem, we obtain the

claimed result. �
Now, we have a differentiable approximation of the maximum and thus can link the

gradient of the maximum to the softargmax. Furthermore, we can show smoothness
of the problem.

Proposition 3.6. For _ > 0, we have

∇softmax(D) = soft argmax(D) = argmaxc∈Δ=
〈D, c〉 + _� (c)

=

[
exp(D 9/_)∑=
8=1 exp(D8/_)

]
9

and ∇softmax is 1/_-Lipschitz continuous

Proof. For the first part, take the value of ?★8 on the proof of the previous lemma with
the right value for C★. For the second part, compute the Hessian. �

3.1.2 The continuous case

Now, let us see what happens when we maximize a function 5 . In order to properly
take derivatives, let us assume that 5 is parametrized by ~ ∈ ℝ? . We thus define for
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5 : ℝ= ×ℝ? → ℝ, the functions

ℎ(~):= max
G∈X⊂ℝ=

5 (G,~) and G★(~):= argmaxG∈X⊂ℝ= 5 (G,~).

In order to study the derivatives of maximums, the two following theorems are
essential.

Theorem 3.7 (Rockafellar’s envelope theorem). Let 5 : ℝ= ×ℝ? → ℝ be jointly �1

and let X be a compact convex set. Then, if G★(~) is unique, ℎ is differentiable and

∇ℎ(~) = ∇~ 5 (G★(~), ~) .

Theorem 3.8 (Danskin’s theorem). Let 5 : ℝ= ×ℝ? → ℝ be concave-convex18 18i.e., concave in G convex in ~and let
X be a compact convex set. Then, if G★(~) is unique, ℎ is differentiable and

∇ℎ(~) = ∇~ 5 (G★(~), ~) .

Example 3.9 (Convex conjugation). Let 5 (G,~) = 〈G,~〉 − Ω(G) and X = Δ= .
Then ℎ(~) = Ω∗ (~) where Ω∗ denotes the convex conjugate of Ω. Then, the
G★(~) is unique as soon as Ω is strictly convex (for instance) (Hiriart-Urruty
and Lemaréchal, 1993a, Th X.4.1.1). Then, ∇ℎ(~) = G★(~) = ∇Ω∗ (~).
Furthermore, if Ω is ` strongly convex, then ∇Ω∗ is 1/`-Lipschitz continuous
(Hiriart-Urruty and Lemaréchal, 1993a, Th X.4.2.2).

3.2 Smoothing by optimization

Extending what we just saw, we can consider the task of making a whole function
smooth. We saw in Example 3.9 that for linear functions, adding a well chosen regular-
ization term makes the function differentiable with a controllable Lipschitz constant.

3.2.1 Direct smoothing

The Infimal convolution orMoreau envelope of 5 is defined as env5 ,_ (G) = 5 �_‖ · ‖2
2 (G) =

inf~ 5 (~) + _
2 ‖G − ~‖2.

It has smoothness guarantees but no closed form.

Question 3.2. Show that the infimal smoothing of the !1 norm corresponds to the
Huber loss.

3.2.2 Distributional smoothing

Mirroring what we did at the very beginning of the chapter, we can “add noise” to
optima as a way to create smoothness more easily.

Lemma 3.10. Let 5 : ℝ= → ℝ be a proper function and � ⊂ ℝ= , then

sup
G∈�

5 (G) = sup
c∈P(� )

∫
�

5 (C)dc (C)

where P(�) denotes the set of probability distributions over �
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Proof. Left as an exercise �
Then the same principle can be applied for convex conjugates (Clason and Valkonen,

2020, Chap. 5) and the smoothness comes from (Clason and Valkonen, 2020, Chap.
7.1).

Theorem 3.11. Let 5 : ℝ= → ℝ be a proper function and � ⊂ ℝ= compact, then

sup
c∈P(� )

∫
�

5 (C)dc (C) − Ω(c):=Ω∗ (5 )

Thus, if Ω is `-strongly convex, Ω∗ is 1/`-uniformly smooth.

For instance, (Agrawal and Horel, 2021) gives that if Ω(c) = � ! (c | |a) then
Ω∗ (5 ) =

∫
exp(5 (G))da (G) − 1 .

EF



CHAPTER 4 Distributionally Robust Opti-
mization

Distributionally Robust Optimization studies decision problems under
uncertainty where the probability distribution governing the uncertain

problem parameters is itself uncertain, in particular because it is only known
though samples. A key component of any DRO model is its ambiguity set, that
is, a family of probability distributions consistent with any available structural
or statistical information.

This part is mainly based on the monographs (Kuhn et al., 2024) (for DRO in
general) and (Chewi et al., 2024) (for statistical optimal transport in particular).

4.1 Distributional Robustness and Statistical Learning

4.1.1 Motivation

We will place ourselves in a classical machine learning setting where we have access
to = data points (- 8 )=8=1 that can stand for observed situations (e.g. past stock prices
in portfolio selection, electricity consumptions and weather conditions in energy
planning) or labeled training data of the form - 8 = (G8 , ~8 ) (in classical classification
and regression problems).

We are interested here in providing a statistical learning method that is performing
and reliable on future, unseen situations. To do so, we have to cleverly select a model
among a family parametrized by G ∈ X. We suppose that we have access to the loss
5 (G ;- ) (real-valued, lower is better) suffered by the model parametrized by G when
facing the situation - ∈ X. By this, we mean that for all parameters G and situations
- we have an explicit and implementable19 19In the project, we will need to

compute derivatives of 5 (G ;- )
with respect to G and -
numerically, preferably by
automatic differentiation.

expression for 5 (G ;- ).
An ideal way to choose a model would be to select the one with smallest (expected)

error in the target application. Yet, while we do know the distribution of the samples
`n = 1

=

∑=
8=1X- 8

, we have no access to (the distribution of) future situations. This is
where robust optimization and statistical learning come into play.

Robust Optimization and Statistical Learning under Uncertainty Robust op-
timization has a long history in the theory and practice of decision-making against
uncertainty (Ben-Tal et al., 2009). The first difficulty here is in the modeling: what
uncertainty do we want to be robust against?
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A brute-force approach to uncertainty is to minimize the loss of the worst-case
situation i.e.,

min
G∈X

sup
- ∈*

5 (G ;- )

where * is an uncertainty set. The striking limitation of this approach is that this
set * is typically difficult to design and often leads to very pessimistic decisions,
corresponding to unlikely or even impossible values of - .

Using the data, the Empirical Risk Minimization (aka Sample Average Approxi-
mation (Shapiro et al., 2021, Chap. 5) ) seeks to minimize the expected loss over the
empirical distribution i.e.,

min
G∈X

�-∼`n [5 (G ;- )] =
1

=

=∑
8=1

5 (G ;- 8 ) . (4.1)

ERM is generally regarded as the standard baseline for model training in machine
learning. Nonetheless, the approach is built over the assumption that the empirical
distribution `n is close to the distribution met in the target application. While this is
verified in some applications, the goal of our project is to focus on cases where this is
not necessarily the case. For instance, we may have too few samples to approximate
correctly their underlying distribution, or we may face a distribution shift between
training and application of the model.

Also, ERM fails to provide a good estimation of the future performance of a model
with the training error. Indeed, if the samples are drawn independently from the
same distribution `true, classical statistical learning theory ensures that, with high
probability, �-∼`true [5 (G ;- )] is close to �-∼`n [5 (G ;- )] up to O

(
1/
√
=
)
error terms

(Boucheron et al.; Wainwright, 2019), this kind of relation is known as a generaliza-
tion result. But being close does not guarantee any performance, even facing the
underlying distribution `true. We have not much control over the probability that
�-∼`n [5 (G ;- )] < �-∼`true [5 (G ;- )], i.e., that the real loss is higher than the training
loss.

Distributionally Robust Optimization (DRO) Between the pessimistic worst
case approach and the classical ERM, a middle spot has to be found. To do so, we can
reasonably acknowledge that the empirical distribution provides partial information
about the encountered distribution of - in practice, i.e., that the two distributions are
close. Doing so, we depart from pointwise robustness to consider distributional robustness.
DRO thus consists in minimizing the worst expectation of the loss when the distribution
lives in a neighborhood U(`n) of `n. The resulting problem is

min
G∈X

sup
a∈U(`n )

�-∼a [5 (G ;- )] (4.2)

where the inner sup is taken over probability measures on X in the set U(`n). First,
we can notice that ifU(`n) is reduced to the singleton {`n}, the problem is equivalent
to (4.1). More interestingly, if `true ∈ U(`n), then the optimal value of Problem (4.2) is
an upper-bound on �-∼`true [5 (G ;- )], i.e., an exact generalization bound that precisely
match our quest for predictability in the performance of machine learning models.
However, if the ambiguity set is too loose, the distributions can become unfavorable
(maybe including discrete ones centered on worst case points), and we fall back to
the caveat of (pointwise) worst-case robustness, hence the difficulty to design U(`n).
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In addition, since the inner maximization over probability measures is an infinite-
dimensional problem, a compromise has to be found between the modelling capacity
and the computational tractability of the objective.

Wasserstein Distributionally Robust Optimization In order to take into account
situations that are outside of the already observed ones and in order to encompass
both absolutely continuous and discrete distributions in a common neighborhood,
a natural approach is to rely on the Wasserstein distance, originating from optimal
transport (Villani et al., 2009, Chap. 6). This approach leads to ambiguity sets of the
form U(`n) = {a ∈ P(X) : , (`n, a) ≤ d} for some d ≥ 0, where P(X) is the
set of probability distributions on X and, for a lower semi-continous cost function
2 : X× X → R+, the Wasserstein distance20 20In order to match the literature’s

terminology, we will abusively call
the optimal transport cost the
Wasserstein distance even though it
is not necessarily a distance when 2
is not distance-based.

between `n and a is defined as the optimal
transport cost between the two measures:

, 2 (`n, a) = inf
{
�(-,. )∼c [2 (-,. )] : c ∈ P(X × X), c1 = `n, c2 = a

}
,

with c1 (resp. c2) the first (resp. second) marginal of the transport plan c . With such
an ambiguity set, the DRO Problem (4.2) becomes a Wasserstein Distributionally Robust
(WDRO) problem. We refer to (Blanchet et al., 2023) for a recent review of WDRO and
connections with DRO.

An important point here is that the transport cost plays a crucial role in uncertainty
modelling. Classical costs in optimal transport include the norm of the difference
2 (-,. ) = ‖- −. ‖ leading to the type-1 Wasserstein distance and the squared norm of
the difference 2 (-,. ) = ‖- − . ‖2 leading to the type-2 Wasserstein distance squared
(Villani et al., 2009, Chap. 6). These two choices lead to actual distances in the spaces
of measures, which will have an important role for studying statistical properties
and distribution shifts. Though natural, these choices are not always suited for the
situations encountered in machine learning. Typically, in binary classification tasks,
data points are of the form - = (G,~) ∈ ℝ3 × {0, 1} and thus the uncertainty in G is
very different from the one in ~. For such cases, it is useful to define transport costs of
the form 2 (- = (G,~), . = (G ′, ~′)) = ‖G − G ′‖ + ^1~≠~′ with ^ > 0 and 1~≠~′ = 1 if
~ ≠ ~′ and 0 otherwise. Thus, the choice of transport cost is an important aspect to
keep in mind when modeling uncertainties with WDRO, which will re-appear in the
optimization of the objective.

4.1.2 Context of the chapter : (W)DRO & Statistical Learning

We will place ourselves in the following context:
• The objective 5 is a bounded continuous function (we drop the dependency in G
for now)

• We seek robustness around an empirical distribution `n consisting of = i.i.d.
samples from some distribution `

• The distributions live in a compact X ⊂ ℝ3 (thus their mean, variance is finite)
and we rely on the type-1 Wasserstein distance

, 1 (`, a):= inf
{
�(-,. )∼c [‖- − . ‖] : c ∈ P(X × X), c1 = `n, c2 = a

}
= sup
5 ∈Lip1

∫
5 d` −

∫
5 da

where the equality comes from the Kantorovich-Rubinstein duality (see (Villani
et al., 2009, Rem. 6.5)).
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4.2 WDRO problems

In this part, we study the problem

sup
a∈U(`n )

�-∼a [5 (- )] (4.3)

where U(`n) = {` ∈ P(X) :, 1 (`, `n) ≤ d}
The first thing to do is to ensure that this problem has a finite value at that its

optimal value is attained.

Theorem 4.1. The problem (4.3) is finite and its optimum is attained by some probability
measure `★.

Proof. In our setting, since,1 metrizes the weak convergence of measures (Villani
et al., 2009,Th. 6.9), we have that the objective is weakly continuous and the constraint
set is weakly closed and thus sequentially compact by Prokhorov’s theorem (note
that X is compact). Hence, by Weierstrass’ theorem, the optimum of the problem is
finite and its optimal value is attained. �

There are absolutely continuous distributions in Wasserstein balls and also discrete
(atomic distributions), see the proof of (Villani et al., 2009, Th. 6.18).

Nevertheless, in our setting, the optimal solution has at most = + 1 atoms.

Theorem 4.2. The optimal value `★ of (4.3) is concentrated on at most = + 1 atoms.

Proof. See (Pinelis, 2016). �

4.3 Statistical Optimal Transport

Warning: this section is currently simply an excerpt of (Chewi et al., 2024,
Chap. 2) containing the results seen in class.

We show in this part a a quantitative Wasserstein law of large numbers and its
consequences in statistical learning and robustness.

4.3.1 The Wasserstein law of large numbers

Suppose that -1, . . . , -= ∼iid `, where ` is a probability measure on a compact subset
ofR3 , which we assume for convenience is equal to the unit cube [0, 1]3 . The empirical
measure is defined to be the (random) measure

`= =
1

=

=∑
8=1

X-8
.

The law of large numbers implies that `= ↩→ ` and also
∫
‖ · ‖? d`= →

∫
‖ · ‖? d`

almost surely; therefore,1 (`=, `) → 0. Moreover, since,1 (`=, `) is bounded almost
surely, we also have convergence in mean:

�, 1? (`=, `) → 0 .

How fast does this convergence occur? In the context of the classic law of large
numbers for bounded random vectors -1, . . . , -= in R3 , we of course have

�





1= =∑
8=1

-8 − �-





2 ®
1

=
.
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Note that the rate of decay =−1 holds irrespective of the dimension, and is true even in
infinite-dimensional Hilbert spaces.

By contrast, the Wasserstein law of large numbers behaves quite differently. In
this chapter, we prove the following proposition.

Proposition 4.3. If the support of ` lies in [0, 1]3 , then

�,1 (`=, `) ®
√
d ·


=−1/2 if d = 1,
(log=/=)1/2 if d = 2,
=−1/d if d ≥ 3,

and this rate is unimprovable in general.

In contrast to the standard law of large numbers, the convergence of `= to ` in
Wasserstein distance degrades exponentially as the dimension grows, a phenomenon
often known as the curse of dimensionality.

4.3.2 The dyadic partitioning argument

The fact that the Wasserstein distance is defined by a minimization over couplings
suggests a natural strategy for proving bounds: we can show an upper bound on,1

by exhibiting a coupling with a small cost. In this section, we build such a coupling,
which, perhaps surprisingly, gives rise to good bounds in many situations. The main
idea is to attempt to couple ` and a by recursively constructing candidate couplings at
multiple scales.

Before stating the bound, let us describe the basic strategy. For simplicity, let us
consider proving an upper bound on,1 (`, a) for ` and a whose support lies in [0, 1]3 .
We first make a trivial observation:

,1 (`, a) ≤
√
d . (4.4)

Indeed, the diameter of [0, 1]3 is
√
d, so no coupling between ` and a can move mass

a greater distance than this.
Let us now imagine a slight sharpening of this bound. Let Q be the collection of

cubes of side length 1/2 whose corners lie at points of the form 2−1 (:1, . . . , :d) for
:1, . . . , :d ∈ {0, 1, 2}. These cubes form a partition of [0, 1]3 into 23 pieces.21 21These cubes overlap at their

boundaries, but we can easily
modify these sets by removing
overlaps to obtain a bona fide
partition.

Suppose
for the sake of argument that ` (&) = a (&) for all & ∈ Q, 9 = 1, . . . , 23 , so that ` and a
assign the same mass to each of the small cubes. Then, it would be possible to couple
` and a by only moving mass within each small cube. Since the diameter of each small
cube is

√
d/2, any such coupling improves on the bound in (4.4) by a factor of 2.

The proof of the following bound is based on recursing the above argument � times.
At the 9-th stage, we bound the discrepancy between ` and a on 23 9 cubes of side
length 2− 9 . To state this bound, let us define the set Q 9 , 9 ≥ 0, to consist of a set of 23 9
cubes of side length 2− 9 which form a partition of [0, 1]3 .22 22As above, we assume that the

elements of Q9 been modified at
their boundary so that Q9 is a
partition and so that Q9+1 is a
refinement of Q9 for all 9 ≥ 0.

Theorem 4.4 (Dyadic partitioning bound). Let `, a ∈ P([0, 1]3 ). For any � ≥ 0,

,1 (`, a) ≤
√
d

� −1∑
9=0

(
2− 9

∑
&∈Q 9+1

|` (&) − a (&) |
)
+
√
d 2− � .
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Proof. We define a sequence of positive measures `0, . . . , ` � and a0, . . . , a � , which
satisfy

∑�

9=0 ` 9 = ` and
∑�

9=0 a 9 = a and such that

` 9 (&) = a 9 (&) ∀& ∈ Q 9 , 9 = 0, . . . , � .

We write for simplicity Ω:=[0, 1]3 . We first claim that

,1 (`, a) ≤
√
d

�∑
9=0

2− 9 ` 9 (Ω) . (4.5)

This bound is nothing but an instantiation of the strategy described above: since ` 9
and a 9 assign the same mass to each element of Q 9 , there exists a coupling W 9 between
` 9 and a 9 which only moves mass within each element of Q 9 ; for instance, we can
take the piecewise independent coupling

W 9 =
∑

&∈Q 9 :` 9 (& )>0

(` 9 ) |& ⊗ (a 9 ) |&
` 9 (&)

.

The fact that W 9 ∈ Γ̀
9 ,a9 implies W =

∑�

9=0 W 9 ∈ Γ̀ ,a , and

,1 (`, a) ≤
∫

‖G − ~‖ W (dG, d~)

=

�∑
9=0

∫
‖G − ~‖ W 9 (dG, d~)

≤
√
d

�∑
9=0

2− 9 ` 9 (Ω) ,

where the last inequality follows from the fact if (G,~) ∈ supp(W 9 ), then G and ~ lie
in the same element & ∈ Q 9 , so that ‖G − ~‖ ≤ diam(&) =

√
d 2− 9 .

We now exhibit the measures ` 9 and a 9 which give rise to the final bound. Define
the restriction of ` � on each & ∈ Q� by setting

(` � ) |& =
` (&) ∧ a (&)

` (&) ` |& ,

where by convention we let ` � be zero on & if ` (&) = 0. Similarly, set

(a � ) |& =
` (&) ∧ a (&)

a (&) a |& .

For 1 ≤ 9 < � , let

`′9 = ` −
∑
9<:≤ �

`: ,

a ′9 = a −
∑
9<:≤ �

a: ,

and then, for each & ∈ Q 9 , define

(` 9 ) |& =
`′9 (&) ∧ a ′9 (&)

`′
9
(&) (`′9 ) |& ,

(a 9 ) |& =
`′9 (&) ∧ a ′9 (&)

a ′
9
(&) (a ′9 ) |& .
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Finally, we set

`0 = ` −
�∑
9=1

` 9 and a0 = a −
�∑
9=1

a 9 ,

so that
�∑
9=0

` 9 = ` and
�∑
9=0

a 9 = a .

It is easy to see that ` 9 (&) = a 9 (&) for all & ∈ Q 9 and all 9 ∈ {0, . . . , � }. To apply
(4.5), we also need to check that ` 9 , a 9 ≥ 0.

Lemma 4.5. The measures `0, . . . , ` � and a0, . . . , a � are all positive.

Proof. By symmetry, it suffices to verify this fact for the sequence `0, . . . , ` � .
We first show by backwards induction on 9 that

` 9+1 ≥ 0 and 0 ≤
∑
9<:≤ �

`: ≤ ` (A9 )

for all 9 = 0, . . . , � − 1.
For 9 = � −1, these bounds follow directly from the construction of ` � . Next assume
that (A9 ) holds for some 9 , then

`′9 = ` −
∑
9<:≤ �

`: ≥ 0 ,

and therefore ` 9 ≥ 0, since ` 9 is obtained by reweighting `′9 on each element of
Q 9 by a non-negative quantity. Note also that this non-negative quantity is also
bounded by one so that we also have ` 9 ≤ `′9 . Together these two facts yields
0 ≤ ` 9 ≤ `′9 so that

0 ≤
∑

9−1<:≤ �
`: =

∑
9<:≤ �

`: + ` 9 ≤
∑
9<:≤ �

`: + `′9 = ` .

We have proved that (A9−1) holds. By induction, we obtain that `1, . . . , ` � are all
positive. Finally, since we have also shown that∑

0<:≤ �
`: ≤ `,

we obtain `0 ≥ 0 as well. �
In light of (4.5), it remains to bound ` 9 (Ω) for 9 = 0, . . . , � . We first claim that

|`′9 (&) − a ′9 (&) | = |` (&) − a (&) | ∀& ∈ Q 9 , 9 = 1, . . . , � . (4.6)

This follows from the fact that

`′9 (&) − a ′9 (&) = ` (&) − a (&) −
∑
9<:≤ �

(`: (&) − a: (&)) ,

since `: and a: assign the same mass to each element of Q: and since & can be
written as a disjoint union of elements of Q: , so the sum vanishes. We now claim
that we can bound the mass that ` 9 and a 9 assign to elements of Q 9 in terms of the
difference between ` and a on cubes in Q 9+1.
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Lemma 4.6. If ' ∈ Q 9 for some 0 ≤ 9 < � , then

` 9 (') = a 9 (') ≤
∑

&⊆',&∈Q 9+1

|` (&) − a (&) | .

Proof. We have already shown that ` 9 (') = a 9 ('), so it suffices to show that
expression holds for ` 9 ('). For notational consistency, we set `′0 = `0. Then, for
any 0 ≤ 9 < � and any ' ∈ Q 9 ,

` 9 (') ≤ `′9 (')

=
∑

&⊆',&∈Q 9+1

`′9 (&)

=
∑

&⊆',&∈Q 9+1

(`′9+1 (&) − ` 9+1 (&))

=
∑

&⊆',&∈Q 9+1

(`′9+1 (&) − a ′9+1 (&))+

≤
∑

&⊆',&∈Q 9+1

|`′9+1 (&) − a ′9+1 (&) |

=
∑

&⊆',&∈Q 9+1

|` (&) − a (&) | ,

where the second equality comes from comparing the definitions of `′9 and `
′
9+1,

and the last equality follows from (4.6). �
Putting it all together, (4.5) implies

,1 (`, a) ≤
√
d

�∑
9=0

2− 9 ` 9 (Ω)

=
√
d

� −1∑
9=0

2− 9 ` 9 (Ω) +
√
d 2− � ` � (Ω)

=
√
d

� −1∑
9=0

(
2− 9

∑
'∈Q 9

` 9 (')
)
+
√
d 2− � ` � (Ω)

≤
√
d

� −1∑
9=0

(
2− 9

∑
&∈Q 9+1

|` (&) − a (&) |
)
+
√
d 2− � .

This concludes the proof of Theorem 4.4. �
Applying Theorem 4.4 to ` and `= , we obtain the following bound.

Proposition 4.7. If the support of ` lies in [0, 1]3 , then

�,1 (`=, `) ®
√
d ·


=−1/2 if d = 1,
(log=) =−1/2 if d = 2,
=−1/d if d ≥ 3.
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Proof. Theorem 4.4 implies that for any � ≥ 0,

�,1 (`=, `) ≤
√
d

� −1∑
9=0

2− 9
∑

&∈Q 9+1

�|`= (&) − ` (&) | +
√
d 2− �

≤
√
d

� −1∑
9=0

2− 9 2d ( 9+1)/2
( ∑
&∈Q 9+1

�(`= (&) − ` (&))2
)1/2

+
√
d 2− �

≤
√
d

� −1∑
9=0

2− 9 2d ( 9+1)/2 =−1/2 +
√
d 2− �

®
√
d ·


2( � +1) (d/2−1) =−1/2 + 2− � if d ≥ 3,
�=−1/2 + 2− � if d = 2,
=−1/2 + 2− � if d = 1.

To balance these terms, we choose � such that 2� ≤ =1/2 < 2� +1 if d ≤ 2, and � such
that 2� +1 ≤ =1/d < 2� +2 if d ≥ 3. �

4.3.3 Dual chaining bounds

In this section, we present a superficially different proof of Proposition 4.7. Rather
than constructing a coupling in the primal, we use the dual representation of the
1-Wasserstein distance instead. The benefit of this approach is that we can write

,1 (`=, `) = sup
5 ∈Lip1

{∫
5 d`= −

∫
5 d`

}
= sup
5 ∈Lip1

1

=

=∑
8=1

{5 (-8 ) − �5 (-8 )} . (4.7)

The random process 5 ↦→ 1
=

∑=
8=1{5 (-8 ) − �5 (-8 )} is known as an empirical process,

and bounding the expected suprema of such processes is a very common task in many
areas of statistics.

To control this empirical process, we use a standard technique known as chaining.
Given a class F of real-valued functions on Ω ⊆ R3 , we call a set � = {51, . . . , 5# } an
Y-cover of F if, for any 5 ∈ F , there exists 58 ∈ � such that ‖ 5 − 58 ‖!∞ (Ω) ≤ Y. The
Y-covering number of F is

# (Y, F ) = min{|� | : � is an Y-cover of F } .

The chaining argument shows that the covering number of a class F controls the
supremum of an empirical process indexed by that set. We use the following version:

Proposition 4.8 ((Van Handel, 2014, Theorem 5.31)). If F is a set of real-valued
functions on Ω such that ‖ 5 ‖!∞ (Ω) ≤ ' for all 5 ∈ F , then

� sup
5 ∈F

1

=

=∑
8=1

{5 (-8 ) − �5 (-8 )} ® inf
g>0

{
g + 1

√
=

∫ '

g

√
log# (Y, F ) dY

}
.

Proposition 4.8 and (4.7) imply that we can obtain an upper bound on �,1 (`=, `)
as long as we can calculate the covering numbers of the set of Lipschitz functions on
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[0, 1]3 . We also notice that we can assume without loss of generality that the functions
appearing in (⁇) take the value 0 at (0, . . . , 0). Indeed, a Lipschitz function on [0, 1]3
is bounded, and since the value of 1

=

∑=
8=1{5 (-8 ) − �5 (-8 )} is unaffected if we shift 5

by a constant, we may fix its value at (0, . . . , 0) to be 0 without loss of generality.

Lemma4.9. Denote byLip1 ( [0, 1]3 ) the set of 1-Lipschitz functions on [0, 1]3 satisfying
5 (0) = 0. Then

log# (Y,Lip1 ( [0, 1]3 )) ® (4
√
d/Y)3 .

Proof. We bound the covering number by exhibiting an Y-cover of Lip1 ( [0, 1]3 ) of the
specified size. To do so, we again use the notion of a dyadic partition of [0, 1]3 into a
set Q 9 of cubes of side length 2− 9 . Each element of Q 9 is of the form 2− 9 ( [:1, :1 +
1] × . . . × [:d, :d + 1]) for some integers :1, . . . , :d ∈ [29 − 1]:={0, . . . , 29 − 1}, and
we denote such an element by & ®: for ®: = (:1, . . . , :d).2323This collection of cubes overlaps

at the boundaries, but as above we
may remove overlaps to obtain a

disjoint partition of [0, 1]3 .

Fix an integer 9 ≥ 0 and positive X > 0 to be specified. Consider the set H of
functions ℎ satisfying the following requirements:

1. ℎ is constant on each element of Q 9 , i.e., there exist constants (ℎ®: )®:∈[29−1]3
such that ℎ(G) = ℎ®: for all G ∈ & ®: .

2. ℎ®: is an integer multiple of X for all ®: ∈ [29 − 1]3 .
3. ℎ (0,...,0) = 0.

4. If ‖®: − ®: ′‖∞ ≤ 1, then |ℎ®: − ℎ®: ′ | ≤ 2− 9
√
d + X .

We first claim that H constitutes an Y-cover of Lip1 ( [0, 1]3 ) if 2− 9
√
d + X ≤ Y.

Given any 5 ∈ Lip1 ( [0, 1]3 ), denote by ℎ5 the element of H given by (ℎ5 )®: =

X b5 (2− 9 (:1, . . . , :d))/Xc for all ®: ∈ [29 − 1]3 . To see that ℎ5 ∈ H , note that it
immediately satisfies the first three requirements by construction, and for the fourth,
we have

| (ℎ5 )®: − (ℎ5 )®: ′ | = X
��b5 (2− 9 (:1, . . . , :d))/Xc − b5 (2− 9 (: ′1, . . . , : ′d))/Xc

��
≤ |5 (2− 9 (:1, . . . , :d)) − 5 (2− 9 (: ′1, . . . , : ′d)) | + X

≤ 2− 9 ‖®: − ®: ′‖2 + X ,

where the last inequality follows from the fact that 5 is Lipschitz. Since ‖®:−®: ′‖2 ≤
√
d

when ‖®: − ®: ′‖∞ = 1, the claim follows. Finally, for any G ∈ & ®: , the fact that 5 is
Lipschitz again implies

|5 (G) − (ℎ5 )®: | =
��5 (G) − X b5 (2− 9 (:1, . . . , :d))/Xc��

≤ |5 (G) − 5 (2− 9 (:1, . . . , :d)) | + X
≤ diam(& ®: ) + X

= 2− 9
√
d + X .

Therefore ‖ 5 − ℎ5 ‖∞ ≤ 2− 9
√
d + X .

We have shown that for every 5 ∈ Lip1 ( [0, 1]3 ), there exists ℎ5 ∈ H such that
‖ 5 − ℎ5 ‖∞ ≤ 2− 9

√
d + X . Therefore, if 2− 9

√
d + X ≤ Y, then H is an Y-cover of

Lip1 ([0, 1]3 ). We fix X = 2− 9
√
d, so that this requirement reduces to 2− 9

√
d ≤ Y/2.

To bound |H |, note that if we fix the value of ℎ®: for some ®: , then for any ®: ′ such that
‖®: − ®: ′‖∞ = 1, there are at most 5 possible values of ℎ®: ′ . This follows from the fact
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that ℎ®: ′ must be an integer multiple of X = 2− 9
√
d, and there are 5 integer multiples

of X in the interval [ℎ®: − 2X, ℎ®: + 2X]. Therefore, if we consider specifying an element
H by specifying the values of ℎ®: sequentially by setting ℎ (0,...,0) = 0 and proceeding
in lexicographic order, then at each stage we have at most 5 choices for the next
value of ℎ®: . This implies that |H | ≤ 52

3 9−1.
For any 9 for which 2− 9

√
d ≤ Y/2, we have therefore obtained an Y-cover H of F

satisfying log |H | ® 2d9 . Choosing 29 to be the smallest power of two larger than
2
√
d/Y yields the claim. �
With the bound of Lemma 4.9 in hand, we can give another proof of Proposition 4.7.

Proof of Proposition 4.7. Since ‖ 5 ‖∞ ≤
√
d for all 5 ∈ Lip1 ( [0, 1]3 ), by Proposi-

tion 4.8 and (⁇), for any g > 0,

�,1 (`=, `) ® g + 1
√
=

∫ √
d

g

√
log# (Y,Lip1 ( [0, 1]3 )) dY .

Applying Lemma 4.9 yields

�,1 (`=, `) ® g + 1
√
=

∫ √
d

g

(4
√
d/Y)d/2 dY .

We now consider the bound separately for d = 1 and d > 1. If d = 1, then we may
take g = 0 to obtain

�,1 (`=, `) ®
1
√
=

∫ 1

0

(4/Y)1/2 dY ® =−1/2 .

If d > 1, then Y−d/2 is no longer integrable at 0, so we take g = 4
√
d=−1/d to obtain

�,1 (`=, `) ®
√
d=−1/d + 1

√
=

∫ √
d

4
√
d=−1/d

(4
√
d/Y)d/2 dY .

When d = 2, the integral is$ (log=), and we obtain �,1 (`=, `) ® (log=)/
√
=. When

d > 2, the integral is $ (=1/2−1/d), and we obtain �,1 (`=, `) ®
√
d=−1/d. �

Though these two proofs of Proposition 4.7 look quite different, they are in fact very
similar: in both cases, we employ a multi-scale decomposition of [0, 1]3 . The dyadic
partitioning argument uses this decomposition to construct a coupling in the primal;
the chaining argument uses this decomposition to control the covering numbers of
Lipschitz functions in the dual.

4.3.4 Optimality

We have established upper bounds on the Wasserstein distance between the empir-
ical distribution `= and the data generating distribution ` and shown rates of order
=−1/d. While this result readily yields consistency, the rate is slow even in moder-
ate dimensions and is symptomatic of the curse of dimensionality that plagues most
non-parametric methods. One could wonder then whether such rates can be improved.

While a negative answer to the second question implies a negative answer to the
first one—if no estimator can estimate ` faster than =−1/d then certainly the empirical
measure `= cannot—we also make the negative answer to the first question explicit
since it is, in some sense stronger. Indeed, we show below that even in the case
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where ` is the uniform measure on [0, 1]3 then, �[,1 (`=, `)] ¦ =−1/d. However, in
that case, there is clearly a better estimator than `= : simply take ˜̀= = ` itself! The
answer to the second question relies on the theory of minimax lower bounds as in
(Tsybakov, 2009, Chapter 2) and states that for any estimator, i.e., any measurable
function ˜̀= = ˜̀= (-1, . . . , -=) of the data-1, . . . , -= , there exists ` supported on [0, 1]3
such that �[,1 ( ˜̀=, `)] ¦ =−1/d. Unlike the lower bound for the empirical measure
`= , in the minimax lower bounds, the unfavorable distribution ` is not explicit.

Lower bounds for the empirical measure `=

The goal of this section is to show that any distribution supported on = points has to
be far from the uniform measure on [0, 1]3 in,1 distance.

Theorem 4.10. Fix d ≥ 3 and let ` denote the uniform measure on [0, 1]3 . Then for
any measure ˜̀= supported on = points G1, . . . , G= ∈ R3 , it holds

,1 ( ˜̀=, `) ≥
1

108d
=−1/d .

Proof. We employ the Kantorovich-Rubinstein formulation so that proving a lower
bound on,1 can be done by exhibiting a 1-Lipschitz function with the desired
property. Given G ∈ [0, 1]3 , let b (G) ∈ {G1, . . . , G=} denote the closest point to G in
{G1, . . . , G=} (ties are broken arbitrarily). Next, consider the function

5= (G) = ‖G − b= (G)‖ ,
which is 1-Lipschitz thanks to the reverse triangle inequality. Moreover, for any
8 = 1, . . . , =, we have 5= (G8 ) = 0 so that

∫
5 d˜̀= = 0. Hence

,1 ( ˜̀=, `) ≥
∫

5= d` =

∫
‖G − b= (G)‖ ` (dG) .

To bound this quantity from below, we show that ` places significant mass on points
that are far from any G8 . To that end, consider a partition Q of [0, 1]3 into cubes of
side length (2=)−1/d. Since |Q| = 2=, there exist = such cubes &1, . . . , &= that do not
contain any of the G8 ’s. Let & ∈ Q be one such cube with center @ and consider its
subcube & ′ ⊂ & also with center @ but with a smaller side length than & by a factor
of 1 − 2/d. Using Minkowski sum notation, we can write this as:

& ′ =
(
1 − 2

d

)
(& − {@}) + {@} .

By construction, any G ∈ & ′ satisfies

‖G − b= (G)‖ ≥ inf
G∈& ′

~∈&2

‖G − ~‖ = 1

d
· (2=)−1/d .

Hence∫
‖G − b= (G)‖ ` (dG) ≥

=∑
8=1

∫
& ′

8

‖G − b= (G)‖ ` (dG) ≥
(2=)−1/d

d

=∑
8=1

` (& ′
8 ) .

We conclude by observing that

` (& ′
8 ) =

(1 − 2/d
(2=)1/d

)3 ≥ 1

54=
,

where we used the fact that d ↦→ (1 − 2/d)3 is increasing and that d ≥ 3. �
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Theorem 4.10 shows that,1 (`=, `) is indeed of order =−1/d at least for 3 ≥ 3. In
fact the lower bound holds almost surely in -1, . . . , -= since it only exploits the fact
that `= has a support of size at most =.

Minimax lower bounds

While it is hard to think of a better estimator for ` than `= in general it could be
the case that there exists another estimator ˜̀= for which �[,1 ( ˜̀=, `)] is smaller
than �[,1 (`=, `)] uniformly over all measures `. This possibility is ruled out by the
following minimax lower bound.

Theorem 4.11. Fix d ≥ 3, = ≥ 8 and let -1, . . . , -= be = i.i.d. observations from a
distribution ` on R3 . For any estimator ˜̀= , i.e., any measurable function of -1, . . . , -= ,
there exists a measure ` supported on [0, 1]3 such that

�` [,1 ( ˜̀=, `)] ≥
1

16
(2=)−1/d .

Proof. Our proof relies on classical techniques for minimax lower bounds. In par-
ticular, we use Theorem 2.12 in (Tsybakov, 2009). According to this theorem, if we
can find 2< probability measures indexed by l ∈ {−1, 1}< each supported on [0, 1]3
such that

(i) ,1 (` (l ) , ` (l
′ ) ) ≥ A=

2

∑<
9=1 |l 9 − l ′

9 | for any l,l ′ ∈ {−1, 1}< ,
(ii) for any l, ∈ {−1, 1}< differing in at most one coordinate,

KL(` (l ) | |` (l ′ ) ) ≤ 1

2=
,

then for any estimator ˜̀= based on = i.i.d. observations, there exists l ∈ {−1, 1}<
such that

�` (l ) [,1 ( ˜̀=, ` (l ) )] ≥ <A=

4
.

In our construction, we take< = = and define the measures ` (l ) to be supported on
a discrete set as follows. As in the proof of Theorem 4.10, let Q denote a partition of
[0, 1]3 into 2= cubes of side length (2=)−1/d and let @1, . . . , @2= denote their centers.
Let ` (0) denote the uniform measure on {@1, . . . , @2=}:

` (0) =
1

2=

2=∑
8=1

X@8 .

For l ∈ {−1, 1}= , let ` (l ) denote a perturbation of ` (0) defined as

` (l ) = ` (0) + U

2=

=∑
8=1

l8 (X@8 − X@=+8 ) ,

where l = (l1, . . . , l=) and U ∈ (0, 1) is to be defined later. Note that ` (l ) is a
probability measure.
Since ‖@ 9 − @: ‖ ≥ (2=)−1/d for 9 ≠ : for we have

,1 (` (l ) , ` (l
′ ) ) ≥ U

2=
(2=)−1/d

=∑
9=1

|l 9 − l ′
9 | =:

A=

2

=∑
9=1

|l 9 − l ′
9 |
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for any l,l ′ ∈ {0}= ∪ {−1, 1}= .
It remains to show that (ii) holds for a suitable choice of U . To that end, suppose that
l and l ′ differ on the 9th coordinate. Observe that

KL(` (l ) | |` (l ′ ) ) =
2=∑
8=1

` (l ) (@8 ) log
( ` (l ) (@8 )
` (l ′ ) (@8 )

)
=

1

2=

{
(1 + Ul 9 ) log

1 + Ul 9
1 − Ul 9

+ (1 − Ul 9 ) log
1 − Ul 9
1 + Ul 9

}
=
U

=
log

1 + U
1 − U ,

and this quantity is smaller than 1
2= if U = 1

4 . With this choice of U , we obtain

A= =
1

4=
(2=)−1/3 ,

which implies the desired bound. �

4.3.5 Regularization of Wasserstein distances

The curse of dimensionality that plagues statistical optimal transport has been rec-
ognized since its early days. To overcome this limitation, researchers have proposed
multiple solutions which can, in retrospect, be viewed as some kind of regularization
of the original optimal transport problem.

Integral probability metrics

Recall from the dual chaining argument of Section 4.3.3 that the rate =−1/d came
directly from the entropy number of the class of 1-Lipschitz functions. Lemma 4.9
showed

log# (Y,Lip1 ( [0, 1]3 )) ® (4
√
d/Y)3 .

The polynomial scaling in 1/Y is characteristic of non-parametric classes, as opposed
to parametric classes where this scaling is logarithmic. This raises the question of
potentially replacing the class of 1-Lipschitz functions with a smaller, ideally parametric,
class of functions.

Take for example the class of linear functions on R3 :

Flin:=
{
5 (G) = 〈\, G〉 : \, G ∈ R3 , ‖\ ‖ = 1

}
,

and consider the quantity

X (`, a) = sup
5 ∈Flin

{∫
5 d` −

∫
5 da

}
= sup
\ ∈R3 , ‖\ ‖=1

{∫
〈\, G〉 ` (dG) −

∫
〈\,~〉 a (d~)

}
= ‖�` [- ] − �a [. ] ‖ .

In particular, X (`, a) = 0 if and only if ` and a have the same mean. This is of course
not sufficient to say that the two measures are the same so the above quantity does not
define a distance between probability measures like the Wasserstein distance. To do
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so, we need to find a class of test functions F that is large enough to yield a distance
but not as massive as 1-Lipschitz functions so as to escape the curse of dimensionality.

Definition 4.12. A metric d(·, ·) between two probability measures is called an
integral probability metric (IPM) if it satisfies the properties of a metric and can be
written in the form

d(`, a) = sup
5 ∈F

����∫ 5 d` −
∫

5 da

���� . (4.8)

Note that both the 1-Wasserstein distance,1 and the quantity X above are of the
form (4.8) with F = Lip1 and F = Flin respectively. Indeed, the absolute value in (4.8)
is implicit when F is symmetric: F = −F . However, while,1 is an IPM, the quantity
X is not because it fails to satisfy the properties of a metric; here: definiteness.

Another example of a choice for F is the set of bounded Lipschitz functions which
indeed yields an IPM, but the size of this class is the same as Lip1 for the matter at
hand here. To improve the sample complexity, we need much smoother functions.

Smoothed Wasserstein distances

Definition 4.13. The smoothed 1-Wasserstein distance between two probability
measures `, a ∈ P(R3 ) is defined by

,
(f )
1 (`, a):=,1 (` ★N(0, f2� ), a ★N(0, f2� )) .

Smoothed Wasserstein distances enjoy faster statistical rates of convergence.

Theorem 4.14. Fix f > 0. Let -1, . . . , -= be = i.i.d. observations from a distribution `
on [−1, 1]3 and define the empirical measure

`= =
1

=

=∑
8=1

X-8
.

Then
�` [, (f )

1 (`=, `)] ®
1
√
=
,

where the implicit constant depends on both f2 and 3 .

Before turning to the proof, we note that the constant factor in this bound scales
exponentially in the dimension. This poor scaling in 3 is, in fact, unavoidable and
reflects the fundamental statistical difficulty of estimating the Wasserstein distance.
Proof. Denote by 5 the density of `★N(0, f2� ) and by 5= the density of `=★N(0, f2� ).
Write i (I):=(2cf2)−3/2 exp(− 1

2f2 ‖I‖2) for the density of N(0, f2� ). We have

�,
(f )
1 (`=, `) ≤ �

∫
‖I‖ |5= (I) − 5 (I) |dI

=

∫
‖I‖ �

���1
=

=∑
8=1

i (I − -8 ) − �i (I − -8 )
��� dI

≤ 1
√
=

∫
‖I‖

(
�(i (I − -1) − �i (I − -1))2

)1/2
dI

≤ 1
√
=

∫
‖I‖ (�i (I − -1)2)1/2 dI .
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where the first inequality comes from (Chewi et al., 2024, Th. 1.6). It suffices to
show that the integral is bounded. If ‖I‖ ≤ 2

√
3 , then we can use the crude bound

(�i (I −-1)2)1/2 ≤ (2cf2)−3/2. If ‖I‖ > 2
√
3 , then ‖I −-1‖ ≥ ‖I‖ − ‖-1‖ ≥ ‖I/2‖

almost surely, which yields (�i (I − -1)2)1/2 ≤ i (I/2). We obtain

�,
(f )
1 (`=, `) ≤

(2cf2)−3/2
√
=

∫
‖I ‖≤2

√
3

‖I‖ dI + 1
√
=

∫
‖I‖ i (I/2) dI

® =−1/2 ,

as claimed. �

4.4 Back toWassersteinDistributionallyRobustOptimiza-
tion

4.4.1 Regularization effect

Theorem 4.15. Let 5 be !-Lipchitz continuous. Then, we have

sup
a∈U(`n )

�-∼a [5 (- )] ≤ �-∼`n 5 (- ) + d!

Proof. See Theorem 8.5 in (Kuhn et al., 2024). �

4.4.2 Duality

Theorem 4.16. We have

sup
a∈U(`n )

�-∼a [5 (- )] = inf
_>0

_d + �-∼`n sup
. ∈X

5 (. ) − _‖- − . ‖

Proof. See in class. �

EF
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APPENDIX A Differentiabilityand smooth-
ness

In the first page of the renowned book “Variational analysis” by R. Tyrrell Rockafellar
and Roger J-B Wets (Rockafellar and Wets, 1998), we are told that “it’s convenient for
many purposes to consider functions 5 that are allowed to be extended-real-valued,
i.e., to take values in ℝ = [−∞, +∞] instead of just ℝ = (−∞, +∞)”, we will thus adopt
this convention ourselves.

A fundamental question in variational analysis is the study of the minimum (or
equivalently maximum) of functions defined over a Euclidean space ℝ= . In all this
course, we will place ourselves in the (finite-dimensional) Euclidean space ℝ= , with
the scalar product 〈·, ·〉 and the associated norm G ↦→ ‖G ‖:=

√
〈G, G〉.

For a function 5 : ℝ= → ℝ, we define its domain as dom 5 :={G ∈ ℝ= : 5 (G) < +∞},
and its infimum

inf 5 := inf
G∈ℝ=

5 (G) = inf
G∈dom 5

5 (G) .

Whenever this infimum is attained, ie. there is some G such that 5 (G) = inf 5 , then
it is called a minimum and is denoted by min 5 . We further define

argmin 5 := {G ∈ ℝ= : 5 (G) = inf 5 } .

Additionally, a function 5 is lower semi-continuous if for any G ∈ ℝ= ,

lim inf
D→G

5 (D):=min{C ∈ ℝ : ∃DA → G with 5 (DA ) → C} = 5 (G).

Finally, a function 5 is said to be proper is 5 (G) < +∞ for at least one G ∈ ℝ=

and 5 (G) > −∞ for all G ∈ ℝ= . This means that the domain of a proper function is a
nonempty set over which 5 is finite-valued.

1.1 Subgradients

In order to investigate the local behavior of a function with respect to minimization, a
first natural step is to consider local affine lower approximations. This first-order in-
formation is captured by the notion of subgradients. There is a variety of subgradients
and several ways to express them, see (Rockafellar and Wets, 1998, Chap. 7,8), (Mor-
dukhovich, 2006, Chap. 1) for general references. We give here only the notions that
will be used for our purposes following the terminology and notations of (Rockafellar
and Wets, 1998, Chap. 8).
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Definition A.1 (Subgradients). Consider a function 5 : ℝ= → ℝ and a point G ∈ ℝ=

at which 5 (G) is finite:
• the set of regular subgradients is defined as

m̂ 5 (G) = {{ : 5 (D) ≥ 5 (G) + 〈{,D − G〉 + > (‖D − G ‖) for all D ∈ ℝ=} . (A.1)

• the set of (general or limiting) subgradients is defined as

m5 (G) =
{
lim
A
{A : {A ∈ m̂ 5 (DA ), DA → G, 5 (DA ) → 5 (G)

}
. (A.2)

If 5 (G) is infinite, m̂ 5 (G) = m5 (G) = ∅.

While the regular subgradient seems simpler and more appealing at first, we will
use the general subgradient in all the following, simply referenced under the name
subgradient for simplicity. The reason for this is its superior continuity properties as
stated in the following lemma.

Lemma A.2 (Rockafellar and Wets 2009, Th. 8.6, Prop. 8.7 [★]). Consider a function
5 : ℝ= → ℝ and a point G ∈ ℝ= at which 5 (G) is finite, then the sets of regular
subgradients m̂ 5 (G) and general subgradients m5 (G) are closed. Furthermore, the set of
general subgradients m5 is outer semi-continuous at G , ie.

lim sup
D→G with 5 (D )→5 (G )

m5 (D) := {{ : ∃DA → G, ∃ {A → { with {A ∈ m5 (DA )} ⊂ m5 (G)

Note that the regular and limiting subdifferentials at some point G coincide in a
variety of situations, we then say that the function is (Clarke) regular at G (Rockafellar
and Wets, 2009, Def. 7.25, Cor. 8.11). While less natural in its definition, the outer
semi-continuity property of the general subgradient allows us, for example, to deduce
that any limit point G of a sequence (G: ) satisfy 0 ∈ m5 (G) if the distance from m5 (G: )
to 0 vanishes.

The condition 0 ∈ m5 (G) is particularly interesting since it is related to local
minimas by Fermat’s rule.

Theorem A.3 (Fermat’s rule). If a proper function 5 : ℝ= → ℝ has a local minimum
at G (ie. if there is a neighborhood U of G such that 5 (G) ≤ 5 (D) for all D ∈ U) then
0 ∈ m5 (G).

1.2 Differentiability

Differentiability plays a central role in optimization. This is somehow a special case of
the notion of subgradient defined above but the treatment of differentiable functions
will be rather different algorithmically. In order to promote even more this difference,
we will adopt the following convention for the name of generic functions: (i) 5 if it is
differentiable; (ii) 6 if it is not assumed differentiable; and (iii) 5 if the differentiability
does not play a role in the result.

1.2.1 Derivative of a function from ℝ to ℝ

In this basic case, the notion of differentiability is quite direct.
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Definition A.4. A function 5 : V ⊂ ℝ→ ℝ defined on a open subset24 24At first read, you can take V as
the full space to fix ideas

V of ℝ is
differentiable at G ∈ V if the derivative (ie. the limit)

5 ′ (G):= lim
ℎ→0

5 (G + ℎ) − 5 (G)
ℎ

exists. This function 5 is differentiable on V if it is differentiable at every point of V .

This definition is equivalent to the existence of a real number 5 ′ (G) such that

5 (G + ℎ) = 5 (G) + 5 ′ (G)ℎ + > ( |ℎ |).

Note that we now only consider an open subset of ℝ over which the function is
finite-valued. If 5 takes infinite values on any open set containing G , then it cannot be
differentiable at that point.

In addition, if 5 is differentiable at G , it is necessarily continuous at G . The derivative
5 ′ is itself a function from V → ℝ and may also be continuous (on V), in which case,
we say that 5 is continuously differentiable, often denoted C1 (V) or simply C1.

The derivative of the derivative is called the second-order derivative, noted 5 ′′. If
it exists and is continuous, we say that 5 is C2. Iterating, we can easily define higher
order derivatives and differentiability classes up to C∞.

1.2.2 Gradient of a function from ℝ= to ℝ

Let us now consider a function defined over an open subset V of ℝ=

5 : V ⊂ ℝ= −→ ℝ

G = [G1, .., G=] ↦−→ 5 (G) .

For every G ∈ V , the 8-th partial function is defined on V′ ⊂ ℝ as

q8,G : V′ −→ ℝ

D ↦−→ 5 (G1, .., G8−1, D, G8+1, .., G=)
,

and since this function falls into the case of the previous section, we can study its
differentiability. If for all 8 , q8,G is differentiable at G8 , then, we will say that 5 is
differentiable at G .

Definition A.5. A function 5 : V ⊂ ℝ= → ℝ defined on a open subset V of ℝ= is
differentiable at G ∈ V if for all 8 = 1, .., =, the derivative (ie. the limit)

m5

mG8
(G):= lim

ℎ→0

q8,G (G8 + ℎ) − q8,G (G8 )
ℎ

exists. This function 5 is differentiable on V if it is differentiable at every point of V .
Further, if 5 is differentiable on V , we define its gradient as the V ⊂ ℝ= → ℝ=

mapping

∇5 (G) =


m5

mG1
(G)
...

m5

mG=
(G)

 .
Similar to what was obtained in the one-dimensional case, we have a first-order

development of 5 at a point G at which 5 is differentiable:

5 (G + ℎ) = 5 (G) + 〈∇5 (G), ℎ〉 + > (‖ℎ‖).
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1.2.3 Jacobian of a mapping ℝ< to ℝ=

Now, let us consider the case of a mapping (ie. a multi-valued function) fromℝ< toℝ=

2 : V ⊂ ℝ< −→ ℝ=

G = [G1, .., G<] ↦−→ 2 (G) = [21 (G), .., 2= (G)]
.

A mapping is differentiable if and only if each of its component functions is differ-
entiable as formalized in the following definition.

Definition A.6. A mapping 2 : V ⊂ ℝ< → ℝ= defined on a open subset V of ℝ< is
differentiable at G ∈ V if for all 8 = 1, .., =, and all 9 ∈ 1, ..,<, the derivative m28

mG 9
(G)

exists. This mapping 2 is differentiable on V if it is differentiable at every point of V .
Further, if 2 is differentiable on V , we define its Jacobian as the V ⊂ ℝ< → ℝ= ×ℝ<

mapping2525The name comes from Carl
Gustav Jacob Jacobi (1804-1851), a

German mathematician.

�2 (G) =

∇21 (G)>

...

∇2= (G)>

 =


m21
mG1

(G) . . .
m21
mG<

(G)
...

. . .
...

m2=
mG1

(G) . . .
m2=
mG<

(G)

 .
While, we do not often differentiate mappings, we often differentiate compositions

of a function and mapping. For this, the chain rule gives a efficient formula based on
the respective gradients and Jacobian of the functions.

Lemma A.7 (Chain rule). Take a function 5 : V′ ⊂ ℝ= → ℝ and a mapping
2 : V ⊂ ℝ< → ℝ= . If 2 is differentiable at G ∈ V and 5 is differentiable at 2 (G) ∈ V′,
then 5 ◦ 2 is differentiable at G and its gradient can be obtained by2626

5 ◦ 2 (G ) = 5 (2 (G ) )

∇5 ◦ 2 (G) = �2 (G)>∇5 (2 (G)) . (Chain rule)

The first-order development of 5 ◦ 2 is thus

5 ◦ 2 (G + ℎ) = 5 ◦ 2 (G) + 〈�2 (G)>∇5 (2 (G)), ℎ〉 + > (‖ℎ‖).

1.2.4 Second-order differentiability

The derivative of the gradient, that is the second-order derivative of the function, is
often used in numerical optimization methods.

Definition A.8. A function 5 : V ⊂ ℝ= → ℝ defined on a open subset V of ℝ is
twice differentiable at G ∈ V if its gradient is differentiable at G ∈ V .
Further, if 5 is twice differentiable on V , we define its Hessian as the V ⊂ ℝ= →
ℝ= ×ℝ= mapping2727also denoted by � 5 , its name

comes from Ludwig Otto Hesse
(1811-1874), a German

mathematician. ∇2 5 (G) = �∇5 (G) =


m2 5

(mG1 )2 (G) . . .
m2 5

mG1mG=
(G)

...
. . .

...
m2 5

mG1mG=
(G) . . .

m2 5

(mG= )2 (G)

 .
This definition comes with the following important property.

Lemma A.9. The Hessian of a function 5 : V ⊂ ℝ= → ℝ at G ∈ V is a symmetric
matrix.
Proof. This follows directly from Schwarz’s theorem.2828Hermann Schwarz (1843-1921),

German mathematician, was the
first to propose a rigorous proof of
the symmetry of second derivatives

(also called the equality of mixed
partials).

�
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Remark A.10 (Hessian at a local minimum). If 5 admits a local minimum at G and is
twice differentiable at G , then ∇5 = 0 by Fermat’s rule (Theorem A.3) but we can also
show that ∇2 5 (G) is positive semi-definite; see ⁇ ⁇. Ê

1.2.5 Fréchet derivatives [★]
The notion of Fréchet derivatives generalizes the notion of gradient and Jacobian seen
above. A mapping 2 : V ⊂ ℝ< → ℝ= defined on a open subset V of ℝ< is Fréchet
differentiable at G ∈ V if there exists a linear operator

D2 (G) : ℝ< −→ ℝ=

ℎ ↦−→ D2 (G) [ℎ]

called the (Fréchet) differential of 2 at G ,29 29from Maurice René Fréchet
(1878-1973), a French
mathematician.

such that

2 (G + ℎ) = 2 (G) +D2 (G) [ℎ] + > (‖ℎ‖)

or, equivalently lim
ℎ→0

‖2 (G + ℎ) − 2 (G) −D2 (G) [ℎ] ‖
‖ℎ‖ = 0.

Then, if 5 is a V ⊂ ℝ= → ℝ function, the gradient of 5 can be defined as the
unique element of ℝ= that satisfies

D5 (G) [ℎ] = 〈∇5 (G), ℎ〉 for all ℎ ∈ ℝ=

and thus, in line with the regular subgradient notation, it can also be defined as

∇5 (G) = {{ : 5 (D) = 5 (G) + 〈{,D − G〉 + > (‖D − G ‖) for all D ∈ ℝ=} . (A.3)

The same can be done for mappings and the Jacobian of 2 can be defined as the
unique ℝ= ×ℝ< operator �2 (G) such that D2 (G) [ℎ] = �2 (G)ℎ.

Finally, the Chain rule for differentials is

D(5 ◦ 2) (G) [ℎ] = D5 (2 (G)) [D2 (G) [ℎ]] = 〈∇5 (2 (G)), �2 (G)ℎ〉 = 〈�2 (G)>∇5 (2 (G)), ℎ〉.

1.2.6 Link with subdifferentials

To be complete, let us relate the notion of gradient defined here with the subdifferentials
defined before.

Lemma A.11. Consider a function 5 : ℝ= → ℝ and a point G ∈ ℝ= at which 5

is differentiable, then ∇5 (G) = m̂ 5 (G) ⊂ m5 (G). If, in addition, 5 is continuously
differentiable around G , then ∇5 (G) = m5 (G).
Proof. For the first part, interpret directly (A.3) as (A.1). For the second part, the
continuity of ∇5 enables leaves no other choice for a limit in (A.2) than ∇5 (G). �

In the common case, where we deal with the sum of two functions, the following
lemma is particularly useful.

Lemma A.12. If � = 5 + 6 with 5 continuously differentiable around G and 6(G) finite,
then m� (G) = ∇5 (G) + m6(G).
Proof. Direct from the definitions. �
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1.3 Smoothness and Gradient descent

There is slight discrepancy in the literature concerning the notion of smoothness for
functions. In (Rockafellar and Wets, 1998), it is used for continuously differentiable
functions, in Riemannian analysis it often refers to C∞ function, while in numerical
optimization and machine learning (see eg. (Bubeck et al., 2015)), it is used for functions
with Lipschitz-continuous gradients. We will adopt the latter viewpoint. The reason
for this is that it allows us to have a quadratic upper approximation of our function,
obtained directly from the fundamental theorem of calculus. This is the crucial point
for the use of gradient methods.

DefinitionA.13. We say that a function 5 : ℝ= → ℝ is !-smooth if it has a !-Lipschitz
continuous gradient, ie. if

‖∇5 (G) − ∇5 (D)‖ ≤ !‖G − D‖ for all G,D ∈ ℝ= .

From this property, we can derive this highly important lemma.

Lemma A.14. Consider a function 5 : ℝ= → ℝwith a !-Lipschitz continuous gradient,
then for any G,D ∈ ℝ= , one has

|5 (D) − 5 (G) − 〈∇5 (G), D − G〉| ≤ !

2
‖G − D‖2 .

Thus, if we fix a point G , the function dG : D ↦→ 5 (G) + 〈∇5 (G), D − G〉 + !
2 ‖D − G ‖2

is quadratic in its argument and majorizes 5 , that is to say dG (D) ≥ 5 (D) for any D.
Furthermore, the minimum of dG is attained at G★ = G − 1

!
∇5 (G).

G
G − 1

!
∇5 (G )

dG

5

Such a quadratic approximation can be leveraged using gradients steps, ie. taking

D = G − W∇5 (G)

for some W > 0. Indeed, in that case, Lemma A.14 gives us

5 (D) ≤ 5 (G) −
(
1

W
− !

2

)
‖G − D‖2 = 5 (G) −

(
W − !W2

2

)
‖∇5 (G)‖2. (A.4)
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Thus, taking a gradient step leads to a strict functional decrease (5 (D) < 5 (G)) as
soon as W < 2/!. This is the core idea behind the gradient descent algorithm.30 30introduced by Louis Augustin

Cauchy (1789–1857), a French
mathematician, in his “Compte
Rendu à l’Académie des Sciences”
of October 18, 1847.

Take
G0 ∈ ℝ= and W > 0, the gradient descent algorithm consists in iterating

G:+1 = G: − W∇5 (G: ) (Gradient descent)

and leads to the following guarantees.

TheoremA.15. Consider a function 5 : ℝ= → ℝwith a !-Lipschitz continuous gradient
and such that inf 5 > −∞. Assume that (Gradient descent) is run with 0 < W < 2/!,
then (5 (G: )) converges and any limit point G of (G: ) satisfies ∇5 (G) = 0.

Even though the above theorem is only a partial justification, gradient descent
is widely used for finding critical points of smooth functions. The link between
finding critical points and minimizing a function will be brought in the next chapter
by convexity. In that case, the guarantees of gradient descent will be strengthened.

Finally, let us conclude this part with a quote from the original paper by Cauchy
(Cauchy et al., 1847) that also applies to us “I’ll restrict myself here to outlining the
principles underlying [my method], with the intention to come again over the same
subject”.31 31In the original text: “ Je me

bornerai pour l’instant à indiquer les
principes sur lesquels [ma méthode]
se fonde, me proposant de revenir
avec plus de détails sur le même
sujet, dans un prochain mémoire.”.
The translation and reference is due
to Claude Lemaréchal, see
(Lemaréchal, 2012).

Remark A.16 (What if my differentiable function is not smooth [★]). If 5 is differentiable
but not smooth, these guarantees fall down. We have to take a closer look at the
function:

• if the function seems locally Lipschitz but not constant can be computed, then
you can numerically test different values and see if (A.4) is satisfied (see later);

• if the function is blowing up at some finite point, a change of geometry may
help (see the Operation Research complementary);

• otherwise, treat it as a non-smooth function.
Ê
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APPENDIX B Convexity and optimality

Convexity is at the heart of optimization. This is notably due to the unicity
of projections onto convex sets and the direct link between critical points

and minimums for convex functions.

In this chapter, we will first study convex sets, then convex functions.

2.1 Convex sets

2.1.1 Motivation: Projecting onto a closed set

Similarly to orthogonal projections onto affine subspaces, we can define projection on
nonempty closed sets.32 32Nonempty: otherwise there is

nothing to project onto. Closed:
otherwise “the” closest point in a
set from another point is not
well-defined.

Thus, let us consider a non-empty closed set � and investigate the problem

inf
G∈�

5 ~ (G):=
1

2
‖~ − G ‖2 (B.1)

which intuitively amounts to projecting ~ onto � .
First, take D ∈ � , and define (:={G ∈ ℝ= : ‖~−G ‖2 ≤ ‖~−D‖2}. Then, the problem

(B.1) is equivalent to

inf
G∈�∩(

5 ~ (G):=
1

2
‖~ − G ‖2 (B.2)

where�∩( is a closed compact set. Projecting thus amounts tominimizing a continuous
function over a closed compact set, which always admits a solution, as per the following
lemma.

Lemma B.1. Let 5 : ℝ= → ℝ be a proper lower semi-continuous function (or in
particular, a continuous function) and let ( be a closed compact set. Then, there is some
G★ ∈ ( such that 5 (G★) = infG∈( 5 (G).
Proof. ([★]) Since 5 is proper, it nevers takes the value−∞ thus V̄:= infG∈( 5 (G) > −∞.
For a decreasing sequence of reals (V=) with V= → V̄ , let us define the sequence of
the (V= = {G : 5 (G) ≤ V=}. For any =, (V= is nonempty, closed, and included in (V=−1 .
Thus, the limit ( V̄ = {G : 5 (G) = infD∈( 5 (D)} is also nonempty and closed which
gives the result. �

This grants the existence of a minimizer of (B.2), and thus of (B.1), ie. a projection
on � . In particular, the inf above are actually min. However, the projection may not
be unique, that is where convexity comes into play.33 33The above enables us to show the

existence of projections onto
nonempty closed sets, but the
projection may not be unique.
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2.1.2 Convexity for sets

Let us now introduce the definition of a convex set.

Definition B.2. A subset� of ℝ= is convex if and only if for any G,D ∈ � , (1 − U)G +
UD ∈ � for any U ∈ (0, 1).

The crucial property here is that any (weighted) average of points of a convex
set belongs stay in the set. Equivalently, the set � is convex if and only if for any
(G1, .., G# ) ∈ �# ,

#∑
8=1

U8G8 ∈ � for any (U1, .., U# ) ∈ ℝ#+ with
#∑
8=1

U8 = 1,

where
∑#
8=1 U8G8 is called a convex combination of (G1, .., G# ).

Examples of convex sets:
• Affine spaces {G : 〈B, G〉 = A }
• Balls {G : ‖G − B ‖ ≤ A }
• Half spaces {G : 〈B, G〉 ≤ A } and open half spaces {G : 〈B, G〉 < A }
• Simplices {G :

∑=
8=1 G8 = 1 and G8 ≥ 0 for all 8 = 1, .., =}

• Intersections of convex sets ∩#8=1�8
Examples of non-convex sets:
• Discrete sets (eg. {0} ∪ {1}) or disjoint sets
• Spheres {G : ‖G − B ‖ = A }
• Sets with “holes”

2.1.3 Projection on convex sets

Getting back to the projection problem (B.1)

min
G∈�

5 ~ (G):=
1

2
‖~ − G ‖2 (B.3)

where (:={G ∈ ℝ= : ‖~ − G ‖2 ≤ ‖~ − D‖2}. Now, let us assume that � is additionally
convex.

Suppose that G1★ ≠ G2
★ are two distinct solutions of (B.3). Define G0★ = (G1★ +

G2
★)/2, then

5 ~ (G0★) =
1

2
‖~ − G0★‖2 =

1

2
‖(~ − G1★)/2 + (~ − G2★)/2‖2

=
1

4
‖~ − G1★‖2 +

1

4
‖~ − G2★‖2 −

1

8
‖G1★ − G2★‖2

=
1

2
(5 ~ (G1★) + 5 ~ (G2★)) −

1

8
‖G1★ − G2★‖2

thus 5 ~ (G0★) < 5 ~ (G1★) = 5 ~ (G2★) which contradicts G1★ ≠ G2
★ being two distinct

solutions. Hence, the projection on a convex set is unique. We have shown the
following lemma.
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Lemma B.3. Let � be a closed nonempty convex set. Then, for any ~ ∈ ℝ= , there is a
unique projection proj� (~), solution of (B.3).

In fact, this unique projection can be characterized more precisely.

Theorem B.4. Let � be a closed nonempty convex set. Then, for any ~ ∈ ℝ= , proj� (~)
is the projection of ~ onto � if and only if

〈~ − proj� (~), I − proj� (~)〉 ≤ 0 for all I ∈ �.

Proof. Left as an exercise. See (Hiriart-Urruty and Lemaréchal, 1993b, Th. 3.1.1). �

2.1.4 Minimization over convex sets

Now, let us consider a more general problem: minimizing a function 5 over a convex
set � . The problem consists in finding G★ ∈ � such that 5 (G★) ≤ 5 (G) for all G ∈ � ,
we note this problem

G★ ∈ argmin� 5 ⇔ G★ is a solution of inf
G∈�

5 (G)

We directly note that if � is empty, the problem is impossible34 34infeasible in the optimization
language.

and if � is open it
may be impossible to find a solution. Hence, we will restrict our analysis to closed
nonempty convex sets as before.

The constrained variant of Fermat’s rule (Theorem A.3) that links the (sub)gradient
of the function with local minimas writes as follows.

Theorem B.5 ((Rockafellar and Wets, 1998, Th. 6.12,8.15)). If a proper lower-
semicontinuous function 5 : ℝ= → ℝ has a local minimum at G constrained to the
convex set � (ie. if there is a neighborhood U of G in � such that 5 (G) ≤ 5 (D) for all
D ∈ U) then 0 ∈ m5 (G) + #� (G) or,35 35The normal cone of a convex set�

at a point G ∈ � is defined as the set
#� (G ):={D : 〈~ − G,D 〉 ≤
0 for all ~ ∈ � }.

equivalently,

〈~ − G, {〉 ≥ 0

for any { ∈ m5 (G) and all ~ ∈ � .
In particular, if 5 is differentiable, 0 ∈ ∇5 (G) + #� (G) means that

〈~ − G,∇5 (G)〉 ≥ 0

for all ~ ∈ � .

Note that if G belongs to the relative interior of � , then #� (G) = {0}.

�

G1
★

interior

#� (G1★) = {0} = ∇5 (G1★)

−∇5 (G2★)G2
★

border #� (G2★)
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2.2 Convex functions

The notion of convexity is as important for functions as for sets. Notably, this is the
notion that will enable us to go from the (sub)gradient inequalities and local minimizers
above to global minimizers.

2.2.1 Definition

A function is convex if and only if its epigraph3636This is the set
epi5 :={ (G, C ) : 5 (G ) ≤ C }

is convex. However, the following
definition is much more direct.

Definition B.6. A function 5 : ℝ= → ℝ is convex if and only if for any G,D ∈ dom 5 ,
5 ((1 − U)G + UD) ≤ (1 − U) 5 (G) + U 5 (D) for any U ∈ (0, 1).

More generally convex functions verify Jensen’s inequality. For any convex combi-
nation

∑#
8=1 U8G8 ,

5

(
#∑
8=1

U8G8

)
≤

#∑
8=1

U8 5 (G8 ).

Checking the definition directly may be possible but it is often simpler to rely on
convexity-preserving operations :

• all norms are convex;
• a sum of convex functions is convex;
• affine substitution of the argument (if 5 is convex, G ↦→ 5 (�G + 1) is convex for
any affine map �G + 1);

• the (pointwise) maximum of convex functions is convex.
The most striking point of convex functions is that local minimizers are actually

global.

TheoremB.7. Let 5 : ℝ= → ℝ be a proper convex function. Then, every local minimizer
of 5 is a (global) minimizer.

2.2.2 Subgradients of convex functions

This class of functions comes with several interesting properties, for instance dom 5

and argmin 5 are convex if 5 is convex, furthermore, every local minimum is a global
one. This is again captured by the notion of subgradients.

Lemma B.8 (Rockafellar and Wets 1998, Prop. 8.12). Consider a convex proper function
5 : ℝ= → ℝ and a point G ∈ dom 5 . Then,

m5 (G) = {{ : 5 (D) ≥ 5 (G) + 〈{,D − G〉 for all D ∈ ℝ=} = m̂ 5 (G) ≠ ∅.

Thus, 5 is regular at any point and 0 ∈ m5 (G) if and only if G ∈ argmin 5 .

An important point is thatD ↦→ 5 (G)+〈{,D−G〉 provides a linear under-approximation
of the whole function 5 .

Furthermore, we have the same link between subgradients and optimality when
constrained to a convex set.
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Theorem B.9 ((Rockafellar and Wets, 1998, Th. 8.15)). Consider a proper lower-
semicontinuous convex function 5 : ℝ= → ℝ and a convex set � . Then, G ∈ argmin� 5
if and only if 0 ∈ m5 (G) + #� (G) or, equivalently,

〈~ − G, {〉 ≥ 0

for any { ∈ m5 (G) and all ~ ∈ � .

2.2.3 Differentiable convex functions

First, Theorem B.9 can be a little simplified if the function is differentiable.

Theorem B.10 ((Rockafellar and Wets, 1998, Th. 6.12)). Consider a proper lower-
semicontinuous convex and differentiable function 5 : ℝ= → ℝ and a convex set
� . Then, G ∈ argmin� 5 if and only if 0 ∈ ∇5 (G) + #� (G) which means that

〈~ − G,∇5 (G)〉 ≥ 0

for all ~ ∈ � .

In addition, for a differentiable 5 , convexity can be seen directly as a property on
the gradient mapping.

Theorem B.11 (Bauschke and Combettes 2011, Prop. 17.10). Let 5 : ℝ= → ℝ be a
proper function with open domain.37 37typically here, dom 5 = ℝ= .Suppose that 5 is differentiable on dom 5 . Then the
following are equivalent:

i) 5 is convex;

ii) 5 (D) ≥ 5 (G) + 〈∇5 (G), D − G〉 for all G,D ∈ dom 5 ;

iii) 〈∇5 (G) − ∇5 (D), G − D〉 ≥ 0 for all G,D ∈ dom 5 , ie. ∇5 is monotone.
Furthermore, if 5 is twice differentiable on dom 5 , any of the above is equivalent to

iv) 〈D,∇2 5 (G)D〉 ≥ 0 for all G,D ∈ dom 5 , ie. ∇2 5 is positive semi-definite.

2.2.4 Strict convexity

Strict convexity is simply convexity but when every inequality is replaced with a strict
inequality: a function 5 : ℝ= → ℝ is strictly convex if and only if for any G,D ∈ � ,
5 ((1−U)G +UD) < (1−U) 5 (G) +U 5 (D) for any U ∈ (0, 1). All results above then hold
with strict inequalities.

Lemma B.12. Let 5 : ℝ= → ℝ be a strictly convex lower semi-continuous proper
function and� a convex set, then 5 has at most one minimizer on� . In particular, 5 has
at most one minimizer on ℝ= .

Strict convexity can be observed mathematically and from that we can ensure
the uniqueness of solutions. However, it is almost impossible to exploit numerically
since it only grants us a strict inequality and not an exploitable knowledge about the
function’s local behavior. For this, we need a stronger condition: strong convexity.

2.2.5 Strong convexity

While convexity provides affine lower bounds, having quadratic lower-bounds enable
to get a better control that may have a great impact on the convergence of optimization
methods; this is captured by the notion of strong convexity.
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Definition B.13. For some ` > 0, a function 5 : ℝ= → ℝ is `-strongly convex if and
only if 5 − 1

2`‖ · ‖
2 is convex.

Using the fact that6:=5 − 1
2`‖ · ‖

2 is convex and verifies m6 = m5 −`· by Lemma A.12,
we get that for any G ∈ ℝ= and any { ∈ m5 (G)

5 (D) ≥ 5 (G) + 〈{,D − G〉 + `
2
‖D − G ‖2 for all D ∈ ℝ= (B.4)

which directly implies that a strongly convex function has at most one minimizer
by taking G such that 0 ∈ m5 (G). The following lemma then adds the existence (see
(Bauschke and Combettes, 2011, Chap. 11.4) for a more general take).

Lemma B.14. Let 5 : ℝ= → ℝ be a strongly convex lower semi-continuous proper
function and � a convex set, then 5 has exactly one minimizer on � . In particular, 5 has
exactly one minimizer one minimizer on ℝ= .

Proof. ([★]) Let us consider the case where � = ℝ= , the other cases can be deduced
easily. From (B.4), we get that for all D ∈ ℝ= ,

5 (D) ≥ 5 (G) + `

2
‖G ‖2 − 〈{, G〉 + 〈{ + `G,D〉 + `

2
‖D‖2

≥ 5 (G) + `

2
‖G ‖2 − 〈{, G〉 − ‖{ + `G ‖‖D‖ + `

2
‖D‖2

hence 5 (D)/‖D‖ → +∞ when ‖D‖ → +∞, ie. 5 is supercoercive. Thus, this means
that for any C , the level set {G : 5 (G) ≤ C} is bounded (this is direct by contradiction,
see (Bauschke and Combettes, 2011, Chap. 11.11)). This means that since 5 is proper,
we can take C sufficiently large so that the corresponding level set is non-empty
and bounded. Finally, since 5 is lower semi-continuous, applying Lemma B.1 to this
compact set gives us the existence of a minimal value, which is unique from the
quadratic lower bound expressed in (B.4). �

If a differentiable function is strongly convex, we have the following characteriza-
tions.

Theorem B.15. Let 5 : ℝ= → ℝ be a proper function with open domain. Suppose that
5 is differentiable on dom 5 . Then the following are equivalent:

i) 5 is `-strongly convex;

ii) 5 (D) ≥ 5 (G) + 〈∇5 (G), D − G〉 + `

2 ‖D − G ‖2 for all G,D ∈ dom 5 ;

iii) 〈∇5 (G) − ∇5 (D), G − D〉 ≥ `‖D − G ‖2 for all G,D ∈ dom 5 , ie. ∇5 is monotone.
Furthermore, if 5 is twice differentiable on dom 5 , any of the above is equivalent to

iv) 〈D,∇2 5 (G)D〉 ≥ `‖D‖2 for all G,D ∈ dom 5 , ie. ∇2 5 is positive definite.

2.3 Back to the gradient algorithm

We saw in Tutorial 1.3 that the (Gradient descent) algorithm on a !-smooth function
function 5 consists in taking G0 ∈ ℝ= and iterating

G:+1 = G: − W∇5 (G: ) (Gradient descent)

for some W ∈ (0, 2/!).
In ⁇, we saw that the functional values were decreasing and all limit points where

critical points of 5 . However, we had no convergence guarantee and no rate. Convexity
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will help us get these rates. For this part, our main reference will be (Bubeck et al.,
2015, Chap. 3.2,3.4).

2.3.1 Gradient algorithm for convex functions

When 5 is !-smooth and convex, we can guarantee convergence and a O(1/:) rate.
Theorem B.16. Let 5 : ℝ= → ℝ be a convex !-smooth function. Then, the iterates (G: )
generated by (Gradient descent) with W = 1/! satisfy:

• (convergence) G: → G★ for some minimizer G★ of 5 ;38 38ie. a point such that ∇5 (G★) = 0.

• (rate) 5 (G: ) − 5 (G★) ≤
2!‖G0 − G★‖2

:
for any minimizer G★ of 5 .

In the above theorem, any W ∈ (0, 1/!) actually works for the convergence and
gets a similar complexity but W = 1/! is the optimal value in terms of rate.
Remark B.17 (Lower bound). This is not the fastest way to minimize a convex smooth
function. Actually, one can show that the fastest attainable rate for this class of
functions is O(1/:2); see (Bubeck et al., 2015, Th. 3.14). This complexity is attained by
Nesterov’s fast gradient method (Nesterov, 1983). This method accelerates gradient
descent by adding an “inertial” step:

~:+1 = G: − W∇5 (G: ) (Fast Gradient descent)
G:+1 = ~:+1 + U:+1 (~:+1 − ~: )

where W ∈ (0, 1/!) and U:+1 = (: + 2)/(: + 3).39 39Actually, the choice for U:+1 is a
bit more complicated but this
variant grants the same rate.

Ê

2.3.2 Gradient algorithm for strongly convex functions

Now, if the function is additionally strongly convex, the quadratic lower bounds grants
us a better rate.

Theorem B.18. Let 5 : ℝ= → ℝ be a `-strongly convex !-smooth function. Then, the
iterates (G: ) generated by (Gradient descent) with W = 2

`+! satisfy:

• (convergence) G: → G★ for the minimizer G★ of 5 ;40 40unique by strong convexity

• (rate) 5 (G: ) − 5 (G★) ≤
(
^ − 1

^ + 1

)2:
‖G0 − G★‖2 where ^ = !

`
≥ 1.

In the above theorem, any W ∈ (0, 2/(` + !)] actually works for the convergence
and gets a similar complexity but W = 2/(` + !) is the optimal value in terms of rate.

We note here that the term ^ = !
`
≥ 1 appears in the rate, this number is generally

called the conditioning of the number by analogy with matrices and linear systems.
Finally, the obtained rate is again not optimal for this class of functions, the optimal

rate beingO
((√

^−1√
^+1

)2: )
, again attained by amodified version of (Fast Gradient descent).

2.3.3 Projected Gradient algorithm

Now let us consider the problem of minimizing a smooth convex function 5 over a
nonempty closed convex set � . Thanks to the ability to project onto � , we can easily
define a projected gradient method:

G:+1 = proj� (G: − W∇5 (G: )) (Projected gradient descent)
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for some initialization G0 ∈ ℝ= and stepsize W > 0.
This algorithm has similar guarantees as gradient descent.

Theorem B.19. Let 5 : ℝ= → ℝ be a convex !-smooth function. Then, the iterates (G: )
generated by (Gradient descent) with W = 1/! belong to � and satisfy:

• (convergence) G: → G★ for some minimizer G★ of 5 on � ;4141ie. a point such that
−∇5 (G★) ∈ #� (G★) , ie.

〈~ − G★, ∇5 (G★) 〉 ≥ 0 for all
~ ∈ � .

• (rate) 5 (G: ) − 5 (G★) ≤
3!‖G0 − G★‖2 + 5 (G0) − 5 (G★)

: + 1
for any minimizer G★ of

5 on � .

Proof. We use Theorem B.4 to get that since G:+1 = proj�
(
G: − 1

!
∇5 (G: )

)
, we have

〈G: −
1

!
∇5 (G: ) − G:+1, I − G:+1〉 ≥ 0 for any I ∈ �

and taking I = G: this gives

〈∇5 (G: ), G: − G:+1〉 ≤ 〈!(G: − G:+1)︸          ︷︷          ︸
:=6� (G: )

, G: − G:+1〉.

Then, smoothness of 5 implies that

5 (G:+1) ≤ 5 (G: ) + 〈∇5 (G: ), G: − G:+1〉 +
!

2
‖G: − G:+1‖2

≤ 5 (G: ) + 〈6� (G: ), G: − G:+1〉 +
1

2!
‖6� (G: )‖2

and the rest of the proof is similar to the one of Theorem B.16 with ∇5 (G: ) replaced
with 6� (G: ). �



APPENDIX C Karush-Kuhn-Tucker condi-
tions

Optimization problems with constraints arise in many areas of applied mathemat-
ics. The Karush–Kuhn–Tucker (KKT) conditions provide necessary conditions for
optimality under appropriate constraint qualifications. In what follows we treat the
finite-dimensional case in full detail and then indicate how the ideas extend to infinite-
dimensional (Banach space) settings. For further background and technical details, see,
e.g., (Bertsekas, 1999), (Luenberger et al., 1984), (Rockafellar, 1970), and (Bonnans and
Shapiro, 2013).

3.1 Finite-Dimensional KKT Conditions

Consider the nonlinear programming problem:

min
G∈ℝ=

5 (G)
subject to 68 (G) ≤ 0, 8 = 1, . . . ,<,

ℎ 9 (G) = 0, 9 = 1, . . . , ?,

(C.1)

where
5 : ℝ= → ℝ, 68 : ℝ

= → ℝ, ℎ 9 : ℝ
= → ℝ

are continuously differentiable.

3.1.1 An example of Constraint Qualification: LICQ

To ensure that the problem’s solutions are non-degenerate and that suitable duality
holds, one need to ensure some qualification condition. Among a vast literature (see
Wikipedia for instance), we provide here a rather simple one.

Definition C.1 (Active Set). At a feasible point G∗, define the active set as

� (G∗) = {8 ∈ {1, . . . ,<} : 68 (G∗) = 0}.

Definition C.2 (Linear Independence Constraint Qualification (LICQ)). We say that
the Linear Independence Constraint Qualification (LICQ) holds at G∗ if the set of vectors

{∇68 (G∗) : 8 ∈ � (G∗)} ∪ {∇ℎ 9 (G∗) : 9 = 1, . . . , ?}

is linearly independent.

https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions
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3.1.2 Statement

Theorem C.3 (KKT Conditions in Finite Dimensions). Let G∗ be a local minimizer of
Problem (C.1) and suppose that LICQ holds at G∗. Then, there exist multipliers

_8 ≥ 0, 8 = 1, . . . ,<, and ` 9 ∈ ℝ, 9 = 1, . . . , ?,

such that:
1. Stationarity:

∇5 (G∗) +
<∑
8=1

_8 ∇68 (G∗) +
?∑
9=1

` 9 ∇ℎ 9 (G∗) = 0.

2. Primal Feasibility:

68 (G∗) ≤ 0, 8 = 1, . . . ,<, and ℎ 9 (G∗) = 0, 9 = 1, . . . , ?.

3. Dual Feasibility:
_8 ≥ 0, 8 = 1, . . . ,<.

4. Complementary Slackness:

_8 68 (G∗) = 0, 8 = 1, . . . ,<.

Proof. Since G∗ is a local minimizer and the functions are continuously differentiable,
a first-order necessary condition holds. Define the cone of feasible directions at G∗ by

) = {3 ∈ ℝ= : ∇ℎ 9 (G∗))3 = 0 ( 9 = 1, . . . , ?), ∇68 (G∗))3 ≤ 0 (8 ∈ � (G∗))}.

By the local minimality of G∗, for every feasible direction 3 (with ‖3 ‖ small enough)
we have

5 (G∗ + 3) ≥ 5 (G∗).

A Taylor expansion yields

5 (G∗ + 3) = 5 (G∗) + ∇5 (G∗))3 + > (‖3 ‖).

Thus, for every 3 ∈ ) ,
∇5 (G∗))3 ≥ 0.

A standard result in convex analysis (a variant of the Farkas lemma) shows that this
condition is equivalent to the existence of multipliers _8 ≥ 0 (for 8 ∈ � (G∗)) and
` 9 ∈ ℝ (for 9 = 1, . . . , ?) such that

∇5 (G∗) = − ©­«
∑

8∈� (G∗ )
_8 ∇68 (G∗) +

?∑
9=1

` 9 ∇ℎ 9 (G∗)
ª®¬ .

For indices 8 not in the active set (i.e. when 68 (G∗) < 0), we may set _8 = 0 without
affecting the identity. Rearranging yields the stationarity condition:

∇5 (G∗) +
<∑
8=1

_8 ∇68 (G∗) +
?∑
9=1

` 9 ∇ℎ 9 (G∗) = 0.
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The primal feasibility 68 (G∗) ≤ 0 and ℎ 9 (G∗) = 0 are given, while dual feasibility
_8 ≥ 0 is part of the construction. Finally, complementary slackness follows because
if 68 (G∗) < 0 then the corresponding _8 is set to zero, so that _8 68 (G∗) = 0.
A more rigorous treatment of these arguments (in particular, a detailed version of
Farkas’ lemma and its application) can be found in (Bertsekas, 1999, Chap. 3) and
(Luenberger et al., 1984, Sec. 3.3). �

3.2 Convex Optimization with Linear Constraints in Eu-
clidean spaces

In many practical problems the objective is convex and the constraints are affine
(linear), a setting in which the KKT conditions are both necessary and sufficient for
optimality.

Consider the convex optimization problem

min
G∈ℝ=

5 (G)
subject to �G ≤ 1,

�G = 3,

where
• 5 : ℝ= → ℝ is convex and continuously differentiable,
• � ∈ ℝ<×= and 1 ∈ ℝ< (so that each row of �G ≤ 1 defines a linear inequality
constraint), and

• � ∈ ℝ?×= and 3 ∈ ℝ? .

Theorem C.4 (KKT Conditions for Convex Problems with Linear Constraints). Sup-
pose that 5 : ℝ= → ℝ is convex and continuously differentiable, and that the constraints
�G ≤ 1 and �G = 3 are affine. Assume that Slater’s condition holds:

there exists an Ḡ such that �Ḡ < 1 and �Ḡ = 3 (Slater’s condition)

Then, a point G∗ is optimal if and only if there exist multipliers _∗ ≥ 0 and `∗ such that:
1. Stationarity:

∇5 (G∗) +�)_∗ +�) `∗ = 0;

2. Primal Feasibility:
�G∗ ≤ 1, �G∗ = 3;

3. Dual Feasibility:
_∗ ≥ 0;

4. Complementary Slackness:

_∗8 (�8G∗ − 18 ) = 0, for 8 = 1, . . . ,<.

Proof. Necessity: Assume G∗ is an optimal solution. Under Slater’s condition, strong
duality holds and there exists no duality gap. By the first-order necessary optimality
conditions for convex problems, there exist multipliers _∗ ≥ 0 and `∗ such that the
Lagrangian

!(G, _∗, `∗) = 5 (G) + (_∗)) (�G − 1) + (`∗)) (�G − 3)
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attains its saddle point at (G∗, _∗, `∗). In particular, for all G ∈ ℝ= ,

!(G∗, _∗, `∗) ≤ !(G, _∗, `∗),

which implies that G∗ minimizes !(·, _∗, `∗). Since 5 is continuously differentiable,
the first-order necessary condition for this unconstrained minimization problem
yields

∇5 (G∗) +�)_∗ +�) `∗ = 0.

Primal feasibility holds by assumption, and dual feasibility _∗ ≥ 0 is required by the
definition of the Lagrangian dual function. Complementary slackness follows from
the saddle point property:

!(G∗, _∗, `∗) ≤ !(G∗, _, `∗) ∀_ ≥ 0,

which after some algebra shows that for each 8 ,

_∗8 (�8G∗ − 18 ) = 0.

Sufficiency: Now assume that there exist G∗, _∗ ≥ 0, and `∗ satisfying the KKT
conditions. For any feasible G (i.e., �G ≤ 1 and �G = 3), we have

5 (G) ≥ !(G, _∗, `∗),

since _∗8 (�8G − 18 ) ≤ 0 (because _∗8 ≥ 0 and �8G − 18 ≤ 0). On the other hand,
stationarity implies

!(G∗, _∗, `∗) = 5 (G∗) + (_∗)) (�G∗ − 1) + (`∗)) (�G∗ − 3) = 5 (G∗),

since �G∗ ≤ 1, �G∗ = 3 , and complementary slackness gives (_∗)) (�G∗ − 1) = 0.
Hence, for all feasible G ,

5 (G) ≥ 5 (G∗),

which shows that G∗ is optimal.
A complete discussion of this convex setting (and the role of Slater’s condition) can
be found in (Bertsekas, 1999, Chapter 5). �

3.3 Infinite-Dimensional KKT Conditions

Let - be a Banach space and consider the optimization problem

min
G∈-

5 (G)
subject to 68 (G) ≤ 0, 8 = 1, . . . ,<,

ℎ 9 (G) = 0, 9 = 1, . . . , ?,

where 5 : - → ℝ, 68 : - → ℝ, and ℎ 9 : - → ℝ are Fréchet differentiable.

3.3.1 Constraint Qualification in Infinite Dimensions

A suitable constraint qualification is required to ensure the existence of Lagrange
multipliers. One common approach is to assume that the linearized constraint mapping

Φ(G) =
(
61 (G), . . . , 6< (G), ℎ1 (G), . . . , ℎ? (G)

)
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has a derivative �Φ(G∗) whose range is “large enough” (e.g., closed or surjective onto
an appropriate product space). Equivalently, one may assume that the set

{�68 (G∗) : 8 ∈ � (G∗)} ∪ {�ℎ 9 (G∗) : 9 = 1, . . . , ?}
satisfies a generalized linear independence condition in the dual space - ∗.

3.3.2 Statement

Theorem C.5 (KKT Conditions in Infinite Dimensions). Let G∗ ∈ - be a local min-
imizer of the problem and suppose that 5 , 68 , ℎ 9 are Fréchet differentiable and that a
suitable infinite-dimensional constraint qualification holds at G∗. Then there exist multi-
pliers

_8 ≥ 0, 8 = 1, . . . ,<, and ` 9 ∈ ℝ, 9 = 1, . . . , ?,

such that:
1. Stationarity:

�5 (G∗) +
<∑
8=1

_8 �68 (G∗) +
?∑
9=1

` 9 �ℎ 9 (G∗) = 0 in - ∗ .

2. Primal Feasibility:

68 (G∗) ≤ 0, 8 = 1, . . . ,<, and ℎ 9 (G∗) = 0, 9 = 1, . . . , ?.

3. Dual Feasibility:
_8 ≥ 0, 8 = 1, . . . ,<.

4. Complementary Slackness:

_8 68 (G∗) = 0, 8 = 1, . . . ,<.

Proof. The overall strategy mimics the finite-dimensional case but requires func-
tional analytic tools such as the Hahn–Banach theorem. Define the cone of feasible
directions at G∗ by

) = {3 ∈ - : �ℎ 9 (G∗) (3) = 0 ( 9 = 1, . . . , ?), �68 (G∗) (3) ≤ 0 (8 ∈ � (G∗))}.

Local optimality implies that for every 3 ∈ ) ,

�5 (G∗) (3) ≥ 0.

Under the assumed constraint qualification, one shows (by a generalized Farkas-type
lemma or by applying a separation theorem in Banach spaces) that the condition

�5 (G∗) (3) ≥ 0 ∀3 ∈ )

forces the existence of multipliers _8 ≥ 0 and ` 9 ∈ ℝ such that

�5 (G∗) +
∑

8∈� (G∗ )
_8 �68 (G∗) +

?∑
9=1

` 9 �ℎ 9 (G∗) = 0 in - ∗ .

For those 8 with 68 (G∗) < 0 (inactive constraints), we set _8 = 0. The remaining
feasibility conditions and complementary slackness are verified by similar reasoning.
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A complete rigorous treatment involves verifying that the dual cone of the set

� =


∑

8∈� (G∗ )
W8 �68 (G∗) +

?∑
9=1

X 9 �ℎ 9 (G∗) : W8 ≥ 0, X 9 ∈ ℝ


admits −�5 (G∗) as an element, and then applying the Hahn–Banach separation
theorem. For full details, see (Rockafellar, 1970, Chapter 5) and (Bonnans and Shapiro,
2013). �

3.4 Convex Optimization with Linear Constraints in Ba-
nach spaces

We now extend the convex setting to an infinite-dimensional context.
Let - be a Banach space. Assume:
• 5 : - → ℝ is convex and Fréchet differentiable,
• � : - → . is a bounded linear operator into a Banach space . that is partially
ordered by a closed convex cone  ⊂ . (so that the inequality �G ≤ 1 is defined
as �G ∈ 1 −  ),

• � : - → / is a bounded linear operator into a Banach space / ,
• 1 ∈ . and 3 ∈ / .

The infinite-dimensional convex optimization problem with linear constraints is

min
G∈-

5 (G)
subject to �G ≤ 1,

�G = 3.

TheoremC.6 (KKT Conditions for Infinite-Dimensional Convex Problems with Linear
Constraints). Assume that

1. 5 : - → ℝ is convex and Fréchet differentiable,

2. � : - → . and � : - → / are bounded linear operators,

3. Slater’s condition holds: there exists Ḡ ∈ - such that �Ḡ ∈ 1 − int( ) and�Ḡ = 3 .
Then G∗ ∈ - is optimal if and only if there exist multipliers _∗ ∈ . ∗ (with _∗ ≥ 0) and
`∗ ∈ / ∗ such that:

1. Stationarity:
�5 (G∗) +�∗_∗ +�∗`∗ = 0 in - ∗,

where �∗ and �∗ are the adjoints of � and � , respectively.

2. Primal Feasibility:
�G∗ ∈ 1 −  , �G∗ = 3.

3. Dual Feasibility:
_∗ ≥ 0.

4. Complementary Slackness:

〈_∗, �G∗ − 1〉. = 0.

Proof. Necessity: Assume that G∗ is an optimal solution. Under the infinite-
dimensional version of Slater’s condition, strong duality holds (see, e.g., (Rockafellar,
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1970) and (Bonnans and Shapiro, 2013)). Thus, there exists a saddle point (G∗, _∗, `∗)
of the Lagrangian. In particular, for all G ∈ - and for all (_, `) with _ ≥ 0,

!(G∗, _∗, `∗) ≤ !(G, _∗, `∗) and !(G∗, _∗, `∗) ≥ !(G∗, _, `).

Since G∗ minimizes !(·, _∗, `∗) and 5 is Fréchet differentiable, the first-order necessary
condition gives

�5 (G∗) +�∗_∗ +�∗`∗ = 0.

Primal feasibility follows from the problem statement. Dual feasibility _∗ ≥ 0 is
built into the dual problem. Complementary slackness follows from the saddle
point property. In fact, if there were any nonzero dual pairing 〈_∗, �G∗ − 1〉. (with
�G∗ − 1 ∈ − ), then one could improve the dual objective, contradicting the saddle
point property.

Sufficiency: Conversely, assume that there exist G∗, _∗ ≥ 0, and `∗ satisfying the
above KKT conditions. For any feasible G (i.e., �G ∈ 1 −  and �G = 3), convexity of
5 and the saddle point property of the Lagrangian imply that

5 (G) ≥ !(G, _∗, `∗) ≥ !(G∗, _∗, `∗) = 5 (G∗),

where the last equality uses stationarity, primal feasibility, and complementary
slackness. Thus, G∗ is optimal.
A rigorous justification of these steps in the infinite-dimensional setting is given in
(Rockafellar, 1970, Chapter 5) and (Bonnans and Shapiro, 2013). �

3.5 An example of KKT over probability measures

In many applications (e.g., in information theory, statistical mechanics, or Bayesian
inference) one seeks to determine a probability measure that minimizes a convex
functional subject to linear constraints. In this example, we minimize the relative
entropy (or Kullback–Leibler divergence) with respect to a given reference measure
subject to moment constraints. This problem is convex in the infinite-dimensional
space of probability measures, and the constraints are affine. Thus, the KKT conditions
are not only necessary but also sufficient for optimality.

Let (Ω, F , a) be af-finite measure space and assume that a is our referencemeasure.
Denote by

P(Ω) =
{
` � a : ` (Ω) = 1

}
the set of probability measures on Ω that are absolutely continuous with respect to a .
For any ` ∈ P(Ω), denote by

? (G) = 3`

3a
(G)

its density with respect to a .
The relative entropy of ` with respect to a is defined by

� (` |a) =

∫
Ω
? (G) log ? (G) 3a (G), if ` � a,

+∞, otherwise.
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We wish to solve

min
`∈P(Ω)

� (` |a)

subject to
∫
Ω
k8 (G) 3` (G) = 28 , 8 = 1, . . . ,<,

where eachk8 : Ω → ℝ is measurable and 28 ∈ ℝ is given.

3.5.1 Lagrangian Formulation

We introduce Lagrange multipliers for the moment constraints and for the normaliza-
tion condition. Let

_ = (_1, . . . , _<) ∈ ℝ<

be the multipliers associated with the constraints∫
Ω
k8 (G) 3` (G) = 28 ,

and let [ ∈ ℝ be the multiplier for the probability constraint∫
Ω
3` (G) = 1.

Since ` � a , writing ? (G) = 3`

3a
(G), the Lagrangian is given by

L(`, _, [) = � (` |a) +
<∑
8=1

_8

(∫
Ω
k8 (G) 3` (G) − 28

)
+ [

(∫
Ω
3` (G) − 1

)
=

∫
Ω
? (G) log ? (G) 3a (G) +

<∑
8=1

_8

(∫
Ω
k8 (G)? (G) 3a (G) − 28

)
+ [

(∫
Ω
? (G) 3a (G) − 1

)
.

3.5.2 First-Order Optimality (Stationarity)

We now compute the first variation of L with respect to `. Let X` be an admissible
variation, with corresponding variation in the density denoted by X? (G). The Gateaux
derivative of the relative entropy is

X� (` |a) =
∫
Ω

(
log ? (G) + 1

)
X? (G) 3a (G).

Similarly, the variations of the constraint terms are:

X

(∫
Ω
k8 (G)? (G) 3a (G)

)
=

∫
Ω
k8 (G) X? (G) 3a (G),

and
X

(∫
Ω
? (G) 3a (G)

)
=

∫
Ω
X? (G) 3a (G).

Thus, the first variation of the Lagrangian is

XL =

∫
Ω

[
log ? (G) + 1 +

<∑
8=1

_8 k8 (G) + [
]
X? (G) 3a (G).
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For stationarity (i.e., for XL = 0 for all admissible variations X?) we must have

log ? (G) + 1 +
<∑
8=1

_8 k8 (G) + [ = 0 for a.e. G ∈ Ω.

Solving for ? (G) gives:

log ? (G) = −1 − [ −
<∑
8=1

_8 k8 (G),

or equivalently,

? (G) = exp
(
−1 − [ −

<∑
8=1

_8 k8 (G)
)
.

Defining the normalizing constant

/ (_) = exp(1 + [),

the density can be written as

? (G) = 1

/ (_) exp
(
−

<∑
8=1

_8 k8 (G)
)
.

3.5.3 Feasibility and Determination of the Multipliers

The optimal density must satisfy the probability constraint:∫
Ω
? (G) 3a (G) = 1.

Thus,

/ (_) =
∫
Ω
exp

(
−

<∑
8=1

_8 k8 (G)
)
3a (G).

Moreover, the moment constraints require that∫
Ω
k8 (G) ? (G) 3a (G) = 28 , 8 = 1, . . . ,<.

These equations determine the Lagrange multipliers _8 . Because the objective (relative
entropy) is convex and the constraints are linear in `, the KKT conditions are both
necessary and sufficient for optimality.

3.5.4 Summary of the KKT Conditions and the Optimal Solution

The KKT conditions in this infinite-dimensional setting lead us to the following con-
clusion: The optimal probability measure `∗ has a density with respect to a of the
form

3`∗

3a
(G) = ?∗ (G) = 1

/ (_) exp
(
−

<∑
8=1

_8 k8 (G)
)
,

where

/ (_) =
∫
Ω
exp

(
−

<∑
8=1

_8 k8 (G)
)
3a (G),



82 Apx. C - Karush-Kuhn-Tucker conditions

and the multipliers _8 ∈ ℝ are chosen so that∫
Ω
k8 (G) ?∗ (G) 3a (G) = 28 , 8 = 1, . . . ,<.

This exponential form is characteristic of maximum entropy distributions.

3.6 Conclusion

We have presented detailed proofs of the KKT conditions in the finite-dimensional set-
ting under LICQ and outlined the infinite-dimensional generalization under a suitable
constraint qualification. These results form the backbone of nonlinear optimization
theory and provide the basis for many theoretical and algorithmic developments.

EF
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EXERCICES 1 Comparison of distributions

This part contains a series of exercises related to statistical optimal transport, robust
optimization, and information inequalities. In particular, we include a full proof of
Pinsker’s inequality, its discrete version, and an application in distributionally robust
optimization.

In this whole part, we let (Ω,A) be a measurable space and let ` and a be two
probability measures on (Ω,A). Suppose that g is a f-finite measure on (Ω,A)
satisfying ` � g and a � g . Define ? = d`/dg, @ = da/dg . Observe that such a
measure g always exists since we can take, for example, g = ` + a .

Exercise 1.1. What is the maximum (differential) entropy distribution on [0, 0]?

Exercise 1.2. If X is compact (say an interval) and we consider the discretized version
of - , called -Δ, where Δ is the discretization step. Show that � (-Δ) + log(Δ) →Δ→0

ℎ(- ) and thus that a =-bits discretization of has an entropy of approximately ℎ(- ) +2=
where 2 is a constant.

Exercise 1.3. What is the maximal entropy discrete distribution with a prescribed
mean on an infinite set? How does this relate to the questions above? See the related
Wikipedia page.

Exercise 1.4 (Proof of Lemma 1.18). Prove that

� ! (`‖a) = 0 if and only if ` = a.

Elements of Solution: If ` 3 a , � ! (`‖a) = +∞ and ` ≠ a so we focus on the
case where ` � a . Since ` � a , by the Radon-Nikodym theorem, there exists a
measurable function 5 =

3`

3a
: Ω → [0,∞) such that

` (�) =
∫
�

5 (G)3a (G)

for all � ∈ F . By definition, the KL divergence is given by

� ! (`‖a) =
∫
Ω
5 (G) log (5 (G)) 3a (G).

https://en.wikipedia.org/wiki/Maximum_entropy_probability_distribution
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(i) If ` = a then � ! (`‖a) = 0: If ` = a , then for a-almost every G ∈ Ω we have

5 (G) = 3`

3a
(G) = 1.

Hence,

� ! (`‖a) =
∫
Ω
1 · log(1)3a (G) =

∫
Ω
03a (G) = 0.

(ii) If � ! (`‖a) = 0 then ` = a : Assume that

� ! (`‖a) =
∫
Ω
5 (G) log (5 (G)) 3a (G) = 0.

For any C ≥ 0, the function

i (C) = C log C − C + 1

satisfies i (C) ≥ 0 with equality if and only if C = 1. As C log C = i (C) + C − 1, we can
rewrite the KL divergence as

� ! (`‖a) =
∫
Ω
[i (5 (G)) + 5 (G) − 1] 3a (G).

Since ∫
Ω
5 (G)3a (G) = ` (Ω) = 1,

∫
Ω
13a (G) = a (Ω) = 1,

we obtain

0 = � ! (`‖a) =
∫
Ω
i (5 (G))3a (G).

Since i (5 (G)) ≥ 0 for all G and the integral is zero, it follows that

i (5 (G)) = 0 for a-almost every G .

By the characterization of i , we deduce that 5 (G) = 1 for a-almost every G . Therefore,

3`

3a
(G) = 1 for a-almost every G,

which implies that

` (�) =
∫
�

13a (G) = a (�)

for all � ∈ F . That is, ` = a .

Thus, we have shown that � ! (`‖a) = 0 if and only if ` = a . �

Exercise 1.5 (Proof of Proposition 1.20.). Suppose that a is absolutely continuous
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with respect to `. Let 6 be a real-valued `-integrable random variable. Show that

log�-∼` exp(ℎ(- )) = sup
a�`

{�-∼a exp(ℎ(- )) − �KL (a | |`)} .

and that the supremum is attained if and only if a (d- )/` (d- ) =

exp(ℎ(- ))/�-∼` exp(ℎ(- )).

Exercise 1.6 (Total Variation). The total variation distance between ` and a is defined
as follows:

‖` − a ‖)+ = sup
�∈A

|` (�) − a (�) | = sup
�∈A

����∫
�

(? − @)3g
���� .

1. Show Scheffé’s theorem stating that

‖` − a ‖)+ =
1

2

∫
|? − @ |dg = 1 −

∫
min(d`, da) =

∫
max(d`, da) − 1

2. Deduce that 0 ≤ ‖` − a ‖)+ ≤ 1 and that the total variation satisfies the axioms
of distance.

Elements of Solution: Let �0 = {G ∈ Ω : @(G) ≥ ? (G)}. Then∫
|? − @ |dg =

∫
�0

(@ − ?)dg +
∫
�2

0

(? − @)dg

= 2

∫
�0

(@ − ?)dg

where �20 is the complement of �0 and we use that
∫
�2

0

?dg = 1 −
∫
�0
?dg . We also

have ∫
|? − @ |dg =

∫
�0

(@ − ?)dg +
∫
�2

0

(? − @)dg

=

∫
�0

(@ −min(?, @))dg +
∫
�2

0

(? −min(?, @))dg

=

∫
�0

@dg +
∫
�2

0

?dg −
∫

min(?, @)dg

=

∫
�0

(@ − ?)dg + 1 −
∫

min(?, @)dg

=
1

2

∫
|? − @ |dg + 1 −

∫
min(?, @)dg

and thus 1
2

∫
|? − @ |dg = 1 −

∫
min(?, @)dg and similarly, 1

2

∫
|? − @ |dg =∫

max(?, @)dg − 1. Hence, we have

‖` − a ‖)+ ≥ a (�0) − ` (�0) =
1

2

∫
|? − @ |dg = 1 −

∫
min(?, @)dg

On the other hand, for all � ∈ A,
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����∫
�

(@ − ?)dg
���� = �����∫�∩�0

(@ − ?)dg +
∫
�∩�2

0

(@ − ?)dg
�����

≤ max

{∫
�0

(@ − ?)dg,
∫
�2

0

(? − @)dg
}
=
1

2

∫
|? − @ |dg

Then
‖` − a ‖)+ = a (�0) − ` (�0)

implying the required result. �

Exercise 1.7 (Proof of Pinsker’s Inequality). Suppose that ` � a . Show that

‖` − a ‖)+ ≤
√

1

2
� ! (`‖a).

Elements of Solution: Assume that ` � a and denote

5 =
3`

3a
.

Then,

� ! (`‖a) =
∫

5 log 5 3a,

and

‖` − a ‖)+ =
1

2

∫
|5 − 1| 3a.

Let us consider the function

q (C) = C log C − C + 1,

for which one can show that (
4

3
+ 2

3
C

)
q (C) ≥ (C − 1)2

holds for all C ≥ 0.
Integrate the inequality with respect to 3a :

‖` − a ‖)+ =
1

2

∫
|5 − 1| 3a ≤ 1

2

∫ √(
4

3
+ 2

3
5

) (
5 log 5 − 5 + 1

)
3a

≤ 1

2

√∫ (
4

3
+ 2

3
5

)
3a

√∫ (
5 log 5 − 5 + 1

)
3a

=
1

2

√
4

3

∫
3a + 2

3

∫
3`

√∫ (
5 log 5 − 5 + 1

)
3a

=

√
1

2

∫ (
5 log 5 − 5 + 1

)
3a

=

√
1

2
� ! (`‖a)
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where we used the above inequality and Cauchy-Schwarz. This completes the proof
of Pinsker’s inequality �

Exercise 1.8 (Pinsker’s Inequality for Discrete Distributions). Let ? = (?1, . . . , ?=)
and @ = (@1, . . . , @=) be two probability distributions on the finite set {1, 2, . . . , =}.
Prove that

‖? − @‖1 ≤
√
2� ! (? ‖@).

Elements of Solution: In the discrete case, the total variation distance is given by

‖? − @‖)+ =
1

2
‖? − @‖1 .

By applying the result of Exercise 1.7 to the discrete measures ? and @ (taking the
Radon–Nikodym derivative to be 5 (8) = ?8/@8 ), we have

‖? − @‖)+ ≤
√

1

2
� ! (? ‖@).

Multiplying both sides by 2 yields

‖? − @‖1 ≤
√
2� ! (? ‖@).

This completes the proof for the discrete setting. �

Exercise 1.9 (Application in Distributionally Robust Optimization). Suppose that the
true probability distribution ` is unknown, but it is known to lie in a Kullback-Leibler
(KL) divergence ball around a nominal distribution a :

U = {` : � ! (`‖a) ≤ X}.

Show that for any measurable event �,

sup
`∈U

|` (�) − a (�) | ≤
√
X

2
.

Elements of Solution: By Pinsker’s inequality (Exercise 1.7), for any ` ∈ U we have

‖` − a ‖)+ ≤
√

1

2
� ! (`‖a) ≤

√
X

2
.

Recall that for any measurable set �,

|` (�) − a (�) | ≤ ‖` − a ‖)+ .

Thus,

sup
`∈U

|` (�) − a (�) | ≤
√
X

2
,

which is the desired bound. �
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Exercise 1.10 (Reduction to the Binary Case). Show that for a fixed total variation
distance, the Kullback-Leibler (KL) divergence is maximized by a two-point (binary)
distribution.
Hint: prove that since KL divergence is a convex function of the density ratio and that
the worst-case scenario occurs when the ratio takes on only two distinct values.

Exercise 1.11 (Alternative Pinsker Bound: Bretagnolle-Huber Inequality). Let ` � a .
We want to prove that

‖` − a ‖)+ ≤
√
1 − exp

(
−� ! (`‖a)

)
≤ 1 − 1

2
exp

(
−� ! (`‖a)

)
.

1. Prove the following inequality:

1 − ‖` − a ‖2)+ ≥
(∫ √

?@dg

)2
.

2. Use that (·)2 = exp(2 log(·)) to prove the following inequality:(∫ √
?@dg

)2
≥ exp

(
2

∫
?@>0

? log

√
@

?
dg

)
= exp(−� ! (`‖a))

Elements of Solution:

1 − ‖` − a ‖2)+ = (1 − ‖` − a ‖)+ ) (1 + ‖` − a ‖)+ )

=

∫
min(d`, da)

∫
max(d`, da)

≥
(∫ √

min(d`, da)max(d`, da)
)2

=

(∫ √
?@dg

)2
.

Writing (·)2 = exp(2 log(·)) and using Jensen’s inequality we get:(∫ √
?@dg

)2
= exp

(
2 log

∫
?@>0

√
?@dg

)
= exp

(
2 log

∫
?@>0

?

√
@

?
dg

)
≥ exp

(
2

∫
?@>0

? log

√
@

?
dg

)
= exp(−� ! (`‖a))

�

Exercise 1.12 (Application to Hypothesis Testing). Consider a binary hypothesis
testing problem between �0 : - ∼ a and �1 : - ∼ `. Let q be any test function with
Type I error U = a (q (- ) = 1) and Type II error V = ` (q (- ) = 0). Prove that

U + V ≥ 1

2
exp

(
−� ! (`‖a)

)
.
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Hint: As an intermediate point, show that for any measurable set �,

` (�) + a (�2 ) ≥ 1

2
exp

(
−� ! (`‖a)

)
.

Elements of Solution: For anymeasurable set�, ‖`−a ‖)+ = sup�′∈A |` (�′)−a (�′) | ≥
` (�) − a (�) = 1 − (` (�2 ) + a (�)). Using Exercise 1.11, we get that

1 − (` (�2 ) + a (�)) ≤ 1 − 1

2
exp

(
−� ! (`‖a)

)
⇔` (�2 ) + a (�) ≥ 1

2
exp

(
−� ! (`‖a)

)
Setting �2 = {G : q (G) = 1} ,

U = a (�), V = ` (�2 ).

Thus,
U + V ≥ 1

2
exp

(
−� ! (`‖a)

)
,

providing a lower bound on the error sum, showing that no test can have both errors
arbitrarily small when � ! is small. �

EF
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EXERCICES 2 Game theory

Exercise 2.1. What is the pure Nash Equilibrium of the following game?

Player 2
A B

Player 1

a (3, 1) (2, 3)
b (4, 5) (3, 0)
c (2, 2) (5, 4)

Elements of Solution: (b,A) and (c,B) are pure NE. �

Exercise 2.2. What is the pure Nash Equilibrium of the following game?

Player 2
A B C

Player 1

a (3, 1) (2, 3) (10, 2)
b (4, 5) (3, 0) (6, 4)
c (2, 2) (5, 4) (12, 3)
d (5, 6) (4, 5) (9, 7)

Elements of Solution: (c,B) is the pure NE of the game. �

Exercise 2.3. Depending on the value of the parameter G ∈ ℝ, give the pure and
mixed Nash Equilibria for the following game:

Player 2
A B

Player 1 A (0.5, 0.5) (G, 1 − G)
B (1 − G, G) (0.5, 0.5)

Elements of Solution: �

Exercise 2.4. We consider the following game in normal form:

Player 2
G D

Player 1 G (0, 2) (3, 0)
D (2, 1) (1, 3)

1. What are the actions and cost functions of each player?
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2. Is there a Nash Equilibrium with only pure strategies?
3. What are all Nash Equilibria with mixed strategies?

Elements of Solution:
�

Exercise 2.5. Three companies are in concurrence in a product. They choose their
price ?8 , 8 = 1, .., 3, simultaneously (a positive real number). The customer demand is
then given by @8 = 100 − 3?8 +

∑
9≠8 ? 9 for each company 8 = 1, .., 3. The reward of

company 8 is then ?8 × @8 .
1. What are the actions and cost functions of each player?
2. What is the best response of player 1 to a strategy (?2, ?3) ∈ ℝ+ × ℝ+ of the

two other players?
3. What is the Nash Equilibrium of the game?

Elements of Solution:
�

Exercise 2.6. Consider the following two-player game in normal form. Both players
have the strategy set {�, �} and the payoff matrix is given by

� �

� (3, 3) (0, 2)
� (2, 0) (1, 1)

(a) Identify all pure strategy Nash equilibria.
(b) Find the mixed strategy Nash equilibrium.

Elements of Solution:
(a) Pure Strategies:

• If both players play �, neither can improve by deviating (since deviating
to � would give a payoff of 2 instead of 3). Hence, (�,�) is a Nash
equilibrium.

• If both play �, unilateral deviation is not profitable (switching from � to
� would lower a player’s payoff from 1 to 0). Thus, (�, �) is also a Nash
equilibrium.

(b) Mixed Strategy Equilibrium: Denote by ? (resp. @) the probability that
Player 1 (resp. Player 2) plays �. For a mixed equilibrium, each player must be
indifferent between playing � and �.

Player 1:

Payoff from � = 3@ + 0 (1 − @) = 3@,

Payoff from � = 2@ + 1 (1 − @) = 2@ + 1 − @ = 1 + @.

Set equal for indifference:

3@ = 1 + @ =⇒ 2@ = 1 =⇒ @ =
1

2
.
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Player 2: Similarly, denote by ? the probability that Player 1 plays �. Then

Payoff from � = 3? + 0 (1 − ?) = 3?,

Payoff from � = 2? + 1 (1 − ?) = 2? + 1 − ? = 1 + ?.

For indifference:

3? = 1 + ? =⇒ 2? = 1 =⇒ ? =
1

2
.

Hence, the unique mixed Nash equilibrium is(
? =

1

2
, @ =

1

2

)
,

in which each player randomizes equally between � and �.
�

Exercise 2.7. Consider the following game between two players. The strategy sets
are:

Player 1 : {�, �} and Player 2 : {-,. },

with payoff matrix
- .

� (4, 3) (0, 1)
� (2, 0) (2, 4)

.

(a) Determine the pure strategy Nash equilibria.
(b) Find the mixed strategy Nash equilibrium and show that at equilibrium each

player is strongly indifferent among the pure strategies in the support of their
mixed strategy.

Elements of Solution:
(a) Pure Strategies:

• For Player 1: If Player 2 plays - , � gives 4 and � gives 2; if Player 2 plays
. , � gives 0 and � gives 2.

• For Player 2: If Player 1 plays �, - gives 3 and . gives 1; if Player 1 plays
�, - gives 0 and . gives 4.

Thus, the best responses are:
• (�,- ): If Player 1 plays �, Player 2’s best response is - , and if Player 2
plays - , Player 1’s best response is �.

• (�,. ): If Player 1 plays �, Player 2’s best response is . , and if Player 2
plays . , Player 1’s best response is �.

Hence, the pure Nash equilibria are (�,- ) and (�,. ).
(b) Mixed Strategy Equilibrium: Let Player 1 play � with probability ? (and �

with 1− ?), and Player 2 play - with probability @ (and . with 1−@). For each
player to mix, they must be indifferent between their strategies.
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For Player 1:

Payoff from � = 4@ + 0 (1 − @) = 4@,

Payoff from � = 2@ + 2 (1 − @) = 2@ + 2 − 2@ = 2.

Indifference implies

4@ = 2 =⇒ @ =
1

2
.

For Player 2:

Payoff from - = 3? + 0 (1 − ?) = 3?,

Payoff from . = 1? + 4 (1 − ?) = ? + 4 − 4? = 4 − 3?.

Equate these for indifference:

3? = 4 − 3? =⇒ 6? = 4 =⇒ ? =
2

3
.

Thus, the unique mixed equilibrium is:(
? =

2

3
, @ =

1

2

)
.

Strong Indifference: In this equilibrium the expected payoffs are:

For Player 1: 4@ = 4

(
1

2

)
= 2, and 2 = 2.

For Player 2: 3? = 3

(
2

3

)
= 2, and 4 − 3? = 4 − 2 = 2.

Since each player’s pure strategies (that are played with positive probability)
yield the same expected payoff, they are strongly indifferent among them.

�

Exercise 2.8. Consider the following bimatrix game between Player 1 (rows) and
Player 2 (columns). Their available strategies are

Player 1: '1, '2, '3, Player 2: �1, �2, �3 .

The payoff matrix (written as (D1, D2)) is:

�1 �2 �3

'1 (3, 2) (2, 1) (0, 1)
'2 (2, 1) (3, 3) (1, 0)
'3 (1, 0) (1, 1) (0,−1)

(a) Show that for Player 1 the strategy '3 is strictly dominated by '2, and for Player
2 the strategy �3 is strictly dominated by �1. (Hint: Compare payoffs column
by column.)
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(b) After eliminating '3 and �3, find all pure-strategy Nash equilibria of the result-
ing reduced 2×2 game.

(c) In the reduced game, compute the mixed-strategy Nash equilibrium and verify
that it makes each player strongly indifferent between the strategies in the
support.

Elements of Solution:
(a) For Player 1:

• When Player 2 plays �1: '1 gives 3, '2 gives 2, and '3 gives 1.
• When Player 2 plays �2: '1 gives 2, '2 gives 3, and '3 gives 1.
• When Player 2 plays �3: '1 gives 0, '2 gives 1, and '3 gives 0.

In every column '2 yields a higher payoff than '3 (and in the�3 column, 1 > 0).
Hence, '3 is strictly dominated by '2.

For Player 2:
• When Player 1 plays '1: �1 gives 2, �2 gives 1, �3 gives 1.
• When Player 1 plays '2: �1 gives 1, �2 gives 3, �3 gives 0.
• (After elimination, Player 1 will never play '3.)

Comparing�1 and�3: against '1, 2 > 1; against '2, 1 > 0. Hence�3 is strictly
dominated by �1.

(b) After eliminating '3 and �3, the reduced game is:

�1 �2

'1 (3, 2) (2, 1)
'2 (2, 1) (3, 3)

Best responses:
• For Player 1: If Player 2 plays �1, best response is '1 (3 vs. 2); if Player 2
plays �2, best response is '2 (3 vs. 2).

• For Player 2: If Player 1 plays '1, best response is �1 (2 vs. 1); if Player 1
plays '2, best response is �2 (3 vs. 1).

Hence, the pure Nash equilibria of the reduced game are ('1,�1) and ('2,�2).
(c) Mixed-Strategy Equilibrium: Denote by ? the probability that Player 1 plays

'1 (and 1 − ? for '2), and by @ the probability that Player 2 plays�1 (and 1 − @
for �2).

Player 1’s indifference:

*1 ('1) = 3@ + 2(1 − @) = 2 + @,

*1 ('2) = 2@ + 3(1 − @) = 3 − @.

Setting 2 + @ = 3 − @ yields 2@ = 1, so @ = 1
2 .

Player 2’s indifference:

*2 (�1) = 2? + 1(1 − ?) = 1 + ?,

*2 (�2) = 1? + 3(1 − ?) = 3 − 2?.
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Setting 1 + ? = 3 − 2? gives 3? = 2, so ? = 2
3 .

Thus, the unique mixed-strategy Nash equilibrium in the reduced game is(
? =

2

3
, @ =

1

2

)
.

Verify the indifference:

*1 ('1) = 2 + 1

2
= 2.5, *1 ('2) = 3 − 1

2
= 2.5,

and
*2 (�1) = 1 + 2

3
≈ 1.67, *2 (�2) = 3 − 2 · 2

3
≈ 1.67.

In equilibrium each player obtains the same expected payoff from any strategy
played with positive probability; hence, they are strongly indifferent among
the strategies in their support.

�

Exercise 2.9 (Cournot Duopoly with Continuous Quantities). Consider two firms
(Firm 1 and Firm 2) competing in a Cournot duopoly. The market inverse demand
function is

% (&) = 0 −&, with & = @1 + @2,

and both firms have constant marginal cost 2 (with 0 < 2 < 0). The profit functions
are

c8 (@1, @2) = @8
(
0 − @1 − @2 − 2

)
, 8 = 1, 2.

(a) Derive the best response function for each firm.
(b) Find the Nash equilibrium quantities (@∗1, @∗2).
(c) Determine the equilibrium market price.

Elements of Solution:
(a) Best Response Functions:

For Firm 1, fix @2 and maximize

c1 (@1, @2) = @1 (0 − @1 − @2 − 2).

Differentiating with respect to @1 gives:

mc1

m@1
= 0 − @1 − @2 − 2 − @1 = 0 − 2 − @2 − 2@1 .

Setting this derivative equal to zero:

0 − 2 − @2 − 2@1 = 0 =⇒ @1 =
0 − 2 − @2

2
.

Similarly, by symmetry for Firm 2:

@2 =
0 − 2 − @1

2
.

(b) Nash Equilibrium Quantities:
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Substitute Firm 2’s best response into Firm 1’s:

@1 =
0 − 2 − 0−2−@1

2

2
.

Multiply numerator and denominator appropriately:

@1 =
2(0 − 2) − (0 − 2 − @1)

4
=

(0 − 2) + @1
4

.

Multiply both sides by 4:

4@1 = 0 − 2 + @1 =⇒ 3@1 = 0 − 2.

Hence,
@∗1 =

0 − 2
3

.

By symmetry,
@∗2 =

0 − 2
3

.

(c) Equilibrium Price:
The total equilibrium quantity is:

&∗ = @∗1 + @∗2 =
0 − 2
3

+ 0 − 2
3

=
2(0 − 2)

3
.

Thus the equilibrium price is:

%∗ = 0 −&∗ = 0 − 2(0 − 2)
3

=
30 − 20 + 22

3
=
0 + 22

3
.

�

Exercise 2.10 (Subgame-Perfect Equilibrium in a Sequential Game). Consider the
following extensive-form game between Player 1 and Player 2:

• First, Player 1 chooses between actions � and �.
• If Player 1 chooses �, then Player 2 chooses between � and � .
• If Player 1 chooses �, then Player 2 chooses between � and � .

The payoffs (written as (D1, D2)) are given by:

If � is chosen: � �

(3, 2) (1, 4)
If � is chosen: � �

(5, 0) (0, 0)

(a) Using backward induction, determine the optimal action for Player 2 in each
subgame.

Definition 2.1 (Subgame-Perfect Equilibrium). A strategy profile in an
extensive-form game is a subgame-perfect equilibrium (SPE) if it induces a
Nash equilibrium in every subgame of the original game. In other words, the
strategy profile is obtained by applying backward induction so that at every
decision node the players’ actions are optimal given the continuation of the
game.
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(b) Find the subgame-perfect Nash equilibrium (SPE) of the game and state the
outcome.

Elements of Solution:
(a) Subgames:

• Subgame after �: Player 2 chooses between:

� : D2 = 2, � : D2 = 4.

Hence, Player 2’s optimal action is � .
• Subgame after �: Player 2 chooses between:

� : D2 = 0, � : D2 = 0.

(Player 2 is indifferent; assume she chooses � by convention.)
(b) Backward Induction: Given Player 2’s responses:

• If Player 1 chooses �, the outcome is (�,�) with payoff (1, 4).
• If Player 1 chooses �, the outcome is (�, �) with payoff (5, 0).

Since Player 1 prefers a payoff of 5 over 1, her optimal action is to choose �.
Thus, the SPE is:

Player 1: Choose �,
Player 2: If � is reached, choose �; if � is reached, choose �.

The equilibrium outcome is (�, �) with payoffs (5, 0).
�

EF



EXERCICES 3 OptimalTransportandStatis-
tics

Exercise 3.1 (Total Variation and IPM).
The total variation distance between ` and a is defined by

3)+ (`, a) = sup
�∈B(X)

|` (�) − a (�) |.

Show that TV is an IPM (see Definition 4.12) for F = {5 : ‖ 5 ‖∞ ≤ 1}.
Elements of Solution: For any measurable set �, define the indicator function 5� (G) =
1� (G). Since ‖ 5�‖∞ ≤ 1, we have

` (�) − a (�) =
∫
X
5� (G) 3` (G) −

∫
X
5� (G) 3a (G).

Taking the supremum over all measurable sets �, it follows that

sup
�∈B(X)

|` (�) − a (�) | ≤ sup
‖ 5 ‖∞≤1

����∫ 5 3` −
∫

5 3a

����
but, defining 5̃� (G) = 1� (G) − 1�2 (G), we still have ‖ 5̃�‖∞ ≤ 1 but

∫
X 5̃� (G) 3` (G) =

` (�) − (1 − ` (�)). Hence,
∫
X 5̃� (G) 3` (G) −

∫
X 5̃� (G) 3a (G) = 2(` (�) − a (�)).

For the reverse inequality, let �∗ be a measurable set such that

3)+ (`, a) = |` (�∗) − a (�∗) |.

Define

5 (G) =
{
1, G ∈ �∗,

−1, G ∉ �∗ .

Clearly, ‖ 5 ‖∞ = 1, and then∫
5 3` −

∫
5 3a = [` (�∗) − ` (�∗2 )] − [a (�∗) − a (�∗2 )] .

Since ` (�∗) + ` (�∗2 ) = a (�∗) + a (�∗2 ) = 1, one can verify that∫
5 3` −

∫
5 3a = 2

[
` (�∗) − a (�∗)

]
= 23)+ (`, a).

Thus,

sup
‖ 5 ‖∞≤1

����∫ 5 3` −
∫

5 3a

���� ≥ 23)+ (`, a).



102 Ex. 3 - Optimal Transport and Statistics

Combining the two inequalities, we obtain

sup
‖ 5 ‖∞≤1

����∫ 5 3` −
∫

5 3a

���� = 23)+ (`, a),

or equivalently,

3)+ (`, a) =
1

2
sup

‖ 5 ‖∞≤1

����∫ 5 3` −
∫

5 3a

���� .
This shows that TV is an IPM with function class {5 : ‖ 5 ‖∞ ≤ 1}. �

Exercise 3.2 (Kernel embeddings, MMD, and IPM).
Given a symmetric, positive-definite kernel : : X × X → ℝ the Moore-Aronszajn
theorem asserts the existence of a unique RKHS H on X (a Hilbert space of functions
5 : X → ℝ equipped with an inner product 〈·, ·〉H and a norm ‖ · ‖H) for which :
is a reproducing kernel, i.e., in which the element : (G, ·) satisfies the reproducing
property

〈5 , : (G, ·)〉H = 5 (G) ∀5 ∈ H , ∀G ∈ X

and in particular, taking 5 = : (~, ·),

〈: (~, ·), : (G, ·)〉H = : (G,~) and ‖: (G, ·)‖H = : (G, G)

which are both computable quantities (using only :).
Onemay alternatively consider G ↦→ : (G, ·) as an implicit feature mappingi : X → H
(which is therefore also called the feature space), so that : (G, G ′) = 〈i (G), i (G ′)〉H can
be viewed as a measure of similarity between points G, G ′ ∈ X. While the similarity
measure is linear in the feature space, it may be highly nonlinear in the original space
depending on the choice of kernel.
The kernel embedding of the distribution ` in H (also called the kernel mean or mean
map) is given by:

<` := �-∼` [: (-, ·)] =
∫

: (G, ·)d` (G) = �[i (- )] =
∫
X
i (G) d` (G)

If ` allows a square integrable density ? , then<` = E:? , where E: is the Hilbert-
Schmidt integral operator. A kernel is characteristic if the mean embedding < :
{family of distributions over X} → H is injective. Each distribution can then be
uniquely represented in the RKHS and all statistical features of distributions are
preserved by the kernel embedding if a characteristic kernel is used. Finally, note that
computationally speaking, we only have access to : and never to elements of H or to
the feature map i .
The maximum mean discrepancy (MMD) is then defined as

""� (`, a) = ‖<` −<a ‖H .

1. Show that MMD is an IPM for F = {5 ∈ H : ‖ 5 ‖H ≤ 1}.
2. Show that the linear kernel : (G,~) = 〈G,~〉 is not characteristic.
3. Show that ""�2 (`, a) =

∬
: (G,~)d` (G)d` (~) +

∬
: (G,~)da (G)da (~) −

2
∬
: (G,~)d` (G)da (~)
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Elements of Solution: For part 1.,

""� (`, a) = ‖
∫

: (G, ·)d` (G) −
∫

: (G, ·)da (G)‖H

= sup
5 ∈H,‖ 5 ‖H≤1

〈
∫

: (G, ·)d` (G) −
∫

: (G, ·)da (G), 5 〉H

= sup
5 ∈H,‖ 5 ‖H≤1

∫
〈: (G, ·) , 5 〉Hd` (G) −

∫
〈: (G, ·) , 5 〉Hda (G)

= sup
5 ∈H,‖ 5 ‖H≤1

∫
5 (G)d` (G) −

∫
5 (G)da (G)

and the absolute value can be added since if 5 ∈ H ,−5 ∈ H .
For part 3., The kernel mean embedding of a probability measure ` into H is defined
as

<` =

∫
X
: (·, G) 3` (G).

Then,
MMD(`, a) = ‖<` −<a ‖H .

Expanding the squared norm gives:

‖<` −<a ‖2H = 〈<`,<`〉H + 〈<a ,<a〉H − 2〈<`,<a〉H .

Using the reproducing property,

〈<`,<`〉H =

∫
X

∫
X
: (G, G ′) 3` (G) 3` (G ′),

〈<a ,<a〉H =

∫
X

∫
X
: (~,~′) 3a (~) 3a (~′),

and
〈<`,<a〉H =

∫
X

∫
X
: (G,~) 3` (G) 3a (~).

Thus,

MMD2 (`, a) = �-,- ′∼` [: (-,- ′)] + �.,. ′∼a [: (.,. ′)] − 2�-∼`,.∼a [: (-,. )] .

�

Exercise 3.3 (Comparison of Integral Probability Metrics). Let : : X × X → ℝ be a
positive definite kernel with associated Reproducing Kernel Hilbert Space (RKHS) H
and assume that supG∈X ‖∇G: (·, G)‖H ≤ 1.
Prove that for any pair of probability distributions on X, we have

MMD(`, a) ≤,1 (`, a).

Elements of Solution: Let 5 ∈ H where H is the RKHS corresponding to the kernel : .
By the reproducing property,

5 (G) = 〈5 , : (·, G)〉H .
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Differentiating with respect to G yields

∇5 (G) = 〈5 ,∇G: (·, G)〉H .

By the Cauchy–Schwarz inequality,

‖∇5 (G)‖ ≤ ‖ 5 ‖H ‖∇G: (·, G)‖H .

Thus, for any 5 ∈ H ,

‖ 5 ‖Lip = sup
G≠~

|5 (G) − 5 (~) |
‖G − ~‖ ≤ ‖ 5 ‖H .

In particular, if ‖ 5 ‖H ≤ 1, then 5 is Lipschitz with constant 1 and thus

{5 ∈ H : ‖ 5 ‖H ≤ 1} ⊂ {5 : ‖ 5 ‖Lip ≤ 1}.

�

Exercise 3.4. LetX be a compact metric space and let : : X×X → ℝ be a continuous,
positive definite kernel. The Reproducing Kernel Hilbert Space (RKHS) H associated
with : is defined as the completion of the linear span of the functions : (·, G) for G ∈ X.
In many applications, one is interested in whether H is rich enough to approximate
all continuous functions on X uniformly. When this is the case, we say that the kernel
: is universal.

Definition 3.1 (Universal Kernel). A continuous kernel : : X×X → ℝ on a compact
metric space X is called universal if its RKHS H is dense in � (X) (the space of
continuous functions on X) with respect to the uniform norm.

A kernel : is universal if it satisfies the following conditions:
1. Continuity: : is continuous on X × X.
2. Strict Positive Definiteness: For any distinct points G1, . . . , G= ∈ X and

nonzero coefficients 21, . . . , 2= ,

=∑
8, 9=1

282 9 : (G8 , G 9 ) > 0.

This ensures that the mapping G ↦→ : (·, G) is injective.
3. Separation of Points and Constants: The linear span A = span{: (·, G) : G ∈

X} separates points in X and the constant functions are contained in (or can be
approximated arbitrarily well by) A.

For example, when X ⊂ ℝ3 is compact and : is translation invariant (i.e., : (G,~) =
k (G − ~)) with the Fourier transform of k strictly positive everywhere, then : is
universal. The Gaussian RBF kernel is a well-known example.
Show that if the RKHS associated with : is sufficiently rich , one may also relate 3)+
and MMD and show that

3)+ (`, a) ≤ MMD(`, a).
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EXERCICES 4 Concentration & Robustness

This part contains a series of exercises related to concentration and statistical robust-
ness.

Exercise 4.1 (Concentration for the MMD distance). Let : be a characteristic kernel
such that : (G, G) ≤ 1 for any G ∈ ℝ3 . Let -1, . . . , -= be = i.i.d. observations from a
distribution ` on ℝ3 and define the empirical measure

`= =
1

=

=∑
8=1

X-8
.

Then
�[MMD(`=, `)] ≤

1
√
=
.

Elements of Solution: It follows from Exercise 3.2 that

�[MMD2 (`=, `)] = �




1
=

=∑
8=1

{: (-8 , ·) − �: (-8 , ·)}



2
H

=
1

=
�‖: (-1, ·) − �: (-1, ·)‖2H

=
1

=

(
�‖: (-1, ·)‖2H − ‖�: (-1, ·)‖2H

)
≤ 1

=
�‖: (-1, ·)‖2H .

Next, observe that
�‖: (-1, ·)‖2H = �[: (-1, -1)] ≤ 1 .

The claim follows from Jensen’s inequality. �

EF
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